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Abstract

From scientific research to commercial applications, eye

tracking is an important tool across many domains. Despite

its range of applications, eye tracking has yet to become a

pervasive technology. We believe that we can put the power

of eye tracking in everyone’s palm by building eye tracking

software that works on commodity hardware such as mobile

phones and tablets, without the need for additional sensors

or devices. We tackle this problem by introducing GazeCap-

ture, the first large-scale dataset for eye tracking, contain-

ing data from over 1450 people consisting of almost 2.5M
frames. Using GazeCapture, we train iTracker, a convolu-

tional neural network for eye tracking, which achieves a sig-

nificant reduction in error over previous approaches while

running in real time (10–15fps) on a modern mobile de-

vice. Our model achieves a prediction error of 1.71cm and

2.53cm without calibration on mobile phones and tablets

respectively. With calibration, this is reduced to 1.34cm and

2.12cm. Further, we demonstrate that the features learned

by iTracker generalize well to other datasets, achieving

state-of-the-art results. The code, data, and models are

available at http://gazecapture.csail.mit.edu.

1. Introduction

From human–computer interaction techniques [16, 23,

26] to medical diagnoses [12] to psychological studies [27]

to computer vision [3, 18], eye tracking has applications in

many areas [6]. Gaze is the externally-observable indica-

tor of human visual attention, and many have attempted to

record it, dating back to the late eighteenth century [14]. To-

day, a variety of solutions exist (many of them commercial)

but all suffer from one or more of the following: high cost

(e.g., Tobii X2-60), custom or invasive hardware (e.g., Eye

Tribe, Tobii EyeX) or inaccuracy under real-world condi-
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Figure 1: In this work, we develop GazeCapture, the first

large-scale eye tracking dataset captured via crowdsourc-

ing. Using GazeCapture, we train iTracker, a convolutional

neural network for robust gaze prediction.

tions (e.g. [25, 34, 43]). These factors prevent eye tracking

from becoming a pervasive technology that should be avail-

able to anyone with a reasonable camera (e.g., a smartphone

or a webcam). In this work, our goal is to overcome these

challenges to bring eye tracking to everyone.

We believe that this goal can be achieved by develop-

ing systems that work reliably on mobile devices such as

smartphones and tablets, without the need for any external

attachments (Fig. 1). Mobile devices offer several benefits

over other platforms: (1) widespread use—more than a third

of the world’s population is estimated to have smartphones

by 2019 [32], far exceeding the number of desktop/laptop

users; (2) high adoption rate of technology upgrades—a

large proportion of people have the latest hardware allow-

ing for the use of computationally expensive methods, such

as convolutional neural networks (CNNs), in real-time; (3)

the heavy usage of cameras on mobile devices has lead to

rapid development and deployment of camera technology,

and (4) the fixed position of the camera relative to the screen

reduces the number of unknown parameters, potentially al-

12176

http://gazecapture.csail.mit.edu
mailto:khosla@csail.mit.edu


lowing for the development of high-accuracy calibration-

free tracking.

The recent success of deep learning has been apparent in

a variety of domains in computer vision [20, 7, 36, 28, 19],

but its impact on improving the performance of eye tracking

has been rather limited [43]. We believe that this is due to

the lack of availability of large-scale data, with the largest

datasets having ∼50 subjects [13, 34]. In this work, us-

ing crowdsourcing, we build GazeCapture, a mobile-based

eye tracking dataset containing almost 1500 subjects from a

wide variety of backgrounds, recorded under variable light-

ing conditions and unconstrained head motion.

Using GazeCapture, we train iTracker, a convolutional

neural network (CNN) learned end-to-end for gaze predic-

tion. iTracker does not rely on any preexisting systems for

head pose estimation or other manually-engineered features

for prediction. Training the network with just crops of both

eyes and the face, we outperform existing eye tracking ap-

proaches in this domain by a significant margin. While our

network achieves state-of-the-art performance in terms of

accuracy, the size of the inputs and number of parameters

make it difficult to use in real-time on a mobile device. To

address this we apply ideas from the work on dark knowl-

edge by Hinton et al. [11] to train a smaller and faster net-

work that achieves real-time performance on mobile devices

with a minimal loss in accuracy.

Overall, we take a significant step towards putting the

power of eye tracking in everyone’s palm.

2. Related Work

There has been a plethora of work on predicting gaze.

Here, we give a brief overview of some of the existing gaze

estimation methods and urge the reader to look at this ex-

cellent survey paper [8] for a more complete picture. We

also discuss the differences between GazeCapture and other

popular gaze estimation datasets.

Gaze estimation: Gaze estimation methods can be di-

vided into model-based or appearance-based [8]. Model-

based approaches use a geometric model of an eye and

can be subdivided into corneal-reflection-based and shape-

based methods. Corneal-reflection-based methods [42, 45,

46, 10] rely on external light sources to detect eye features.

On the other hand, shape-based methods [15, 4, 39, 9] in-

fer gaze direction from observed eye shapes, such as pupil

centers and iris edges. These approaches tend to suffer with

low image quality and variable lighting conditions, as in our

scenario. Appearance-based methods [37, 30, 22, 21, 38, 2]

directly use eyes as input and can potentially work on

low-resolution images. Appearance-based methods are be-

lieved [43] to require larger amounts of user-specific train-

ing data as compared to model-based methods. However,

we show that our model is able to generalize well to novel

faces without needing user-specific data. While calibration

# People Poses Targets Illum. Images

[24] 20 1 16 1 videos

[40] 20 19 2–9 1 1,236

[31] 56 5 21 1 5,880

[25] 16 cont. cont. 2 videos

[34] 50 8+synth. 160 1 64,000

[43] 15 cont. cont. cont. 213,659

[13] 51 cont. 35 cont. videos

Ours 1474 cont. 13+cont. cont. 2,445,504

Table 1: Comparison of our GazeCapture dataset with pop-

ular publicly available datasets. GazeCapture has approx-

imately 30 times as many participants and 10 times as

many frames as the largest datasets and contains a signif-

icant amount of variation in pose and illumination, as it was

recorded using crowdsourcing. We use the following abbre-

viations: cont. for continuous, illum. for illumination, and

synth. for synthesized.

is helpful, its impact is not as significant as in other ap-

proaches given our model’s inherent generalization ability

achieved through the use of deep learning and large-scale

data. Thus, our model does not have to rely on visual

saliency maps [5, 33] or key presses [35] to achieve accurate

calibration-free gaze estimation. Overall, iTracker is a data-

driven appearance-based model learned end-to-end without

using any hand-engineered features such as head pose or

eye center location. We also demonstrate that our trained

networks can produce excellent features for gaze predic-

tion (that outperform hand-engineered features) on other

datasets despite not having been trained on them.

Gaze datasets: There are a number of publicly available

gaze datasets in the community [24, 40, 31, 25, 34, 43, 13].

We summarize the distinctions from these datasets in Tbl. 1.

Many of the earlier datasets [24, 40, 31] do not contain sig-

nificant variation in head pose or have a coarse gaze point

sampling density. We overcome this by encouraging par-

ticipants to move their head while recording and generating

a random distribution of gaze points for each participant.

While some of the modern datasets follow a similar ap-

proach [34, 25, 43, 13], their scale—especially in the num-

ber of participants—is rather limited. We overcome this

through the use of crowdsourcing, allowing us to build a

dataset with ∼30 times as many participants as the current

largest dataset. Further, unlike [43], given our recording

permissions, we can release the complete images without

post-processing. We believe that GazeCapture will serve as

an invaluable resource for future work in this domain.

3. GazeCapture: A Large-Scale Dataset

In this section, we describe how we achieve our goal of

scaling up the collection of eye tracking data. We find that
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most existing eye tracking datasets have been collected by

researchers inviting participants to the lab, a process that

leads to a lack of variation in the data and is costly and inef-

ficient to scale up. We overcome these limitations through

the use of crowdsourcing, a popular approach for collecting

large-scale datasets [29, 19, 44, 28]. In Sec. 3.1, we describe

the process of obtaining reliable data via crowdsourcing and

in Sec. 3.2, we compare the characteristics of GazeCapture

with existing datasets.

3.1. Collecting Eye Tracking Data

Our goal here is to develop an approach for collecting

eye tracking data on mobile devices that is (1) scalable, (2)

reliable, and (3) produces large variability. Below, we de-

scribe, in detail, how we achieve each of these three goals.

Scalability: In order for our approach to be scalable,

we must design an automated mechanism for gathering

data and reaching participants. Crowdsourcing is a popular

technique researchers use to achieve scalability. The pri-

mary difficulty with this approach is that most crowdsourc-

ing platforms are designed to be used on laptops/desktops

and provide limited flexibility required to design the de-

sired user experience. Thus, we decided to use a hybrid

approach, combining the scalable workforce of crowdsourc-

ing platforms together with the design freedom provided by

building custom mobile applications. Specifically, we built

an iOS application, also named GazeCapture1, capable of

recording and uploading gaze tracking data, and used Ama-

zon Mechanical Turk (AMT) as a platform for recruiting

people to use our application. On AMT, the workers were

provided detailed instructions on how to download the ap-

plication from Apple’s App Store and complete the task.

We chose to build the GazeCapture application for Ap-

ple’s iOS because of the large-scale adoption of latest Ap-

ple devices, and the ease of deployment across multiple de-

vice types such as iPhones and iPads using a common code

base. Further, the lack of fragmentation in the versions of

the operating system (as compared to other platforms) sig-

nificantly simplified the development process. Additionally,

we released the application publicly to the App Store (as op-

posed to a beta release with limited reach) simplifying in-

stallation of our application, thereby further aiding the scal-

ability of our approach.

Reliability: The simplest rendition of our GazeCapture

application could involve showing workers dots on a screen

at random locations and recording their gaze using the front-

facing camera. While this approach may work well when

calling individual participants to the lab, it is not likely to

produce reliable results without human supervision. Thus,

we must design an automatic mechanism that ensures work-

ers are paying attention and fixating directly on the dots

shown on the screen.

1http://apple.co/1q1Ozsg

Display Dot Start Recording Display Letter Hide Dot, Wait for Response

0.5s 1.5s

“Tap left or

  right side”

Figure 2: The timeline of the display of an individual dot.

Dotted gray lines indicate how the dot changes size over

time to keep attention.

First, to avoid distraction from notifications, we ensure

that the worker uses Airplane Mode with no network con-

nection throughout the task, until the task is complete and

ready to be uploaded. Second, instead of showing a plain

dot, we show a pulsating red circle around the dot, as shown

in Fig. 2, that directs the fixation of the eye to lie in the

middle of that circle. This pulsating dot is shown for ap-

proximately 2s and we start the recording 0.5sec. after the

dot moves to a new location to allow enough time for the

worker to fixate at the dot location. Third, towards the end

of the 2sec. window, a small letter, L or R is displayed for

0.05sec.—based on this letter, the worker is required to tap

either the left (L) or right (R) side of the screen. This serves

as a means to monitor the worker’s attention and provide en-

gagement with the application. If the worker taps the wrong

side, they are warned and must repeat the dot again. Last,

we use the real-time face detector built into iOS to ensure

that the worker’s face is visible in a large proportion of the

recorded frames. This is critical as we cannot hope to track

where someone is looking without a picture of their eyes.

Variability: In order to learn a robust eye tracking

model, significant variability in the data is important. We

believe that this variability is critical to achieving high-

accuracy calibration-free eye tracking. Thus, we designed

our setup to explicitly encourage high variability.

First, given our use of crowdsourcing, we expect to have

a large variability in pose, appearance, and illumination.

Second, to encourage further variability in pose, we tell the

workers to continuously move their head and the distance of

the phone relative to them by showing them an instructional

video with a person doing the same. Last, we force workers

to change the orientation of their mobile device after every

60 dots. This change can be detected using the built-in sen-

sors on the device. This changes the relative position of the

camera and the screen providing further variability.

Implementation details: Here, we provide some imple-

mentation details that may be helpful for other researchers

conducting similar studies. In order to associate each mo-

bile device with an AMT task, we provided each worker

with a unique code in AMT that they subsequently typed

into their mobile application. The dot locations were both

random and from 13 fixed locations (same locations as Fig.

3 of [41])—we use the fixed locations to study the effect
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Figure 3: Sample frames from our GazeCapture dataset. Note the significant variation in illumination, head pose, appearance,

and background. This variation allows us to learn robust models that generalize well to novel faces.

of calibration (Sec. 5.3). We displayed a total of 60 dots2

for each orientation of the device3 leading to a task duration

of ∼10min. Each worker was only allowed to complete the

task once and we paid them $1–$1.50. We uploaded the data

as individual frames rather than a video to avoid compres-

sion artifacts. Further, while we did not use it in this work,

we also recorded device motion sensor data. We believe that

this could be a useful resource for other researchers in the

future.

3.2. Dataset Characteristics

We collected data from a total of 1474 subjects: 1103

subjects through AMT, 230 subjects through in-class re-

cruitment at UGA, and 141 subjects through other var-

ious App Store downloads. This resulted in a total of

2, 445, 504 frames with corresponding fixation locations.

Sample frames are shown in Fig. 3. 1249 subjects used

iPhones while 225 used iPads, resulting in a total of ∼ 2.1M

and ∼ 360k frames from each of the devices respectively.

To demonstrate the variability of our data, we used

the approach from [43] to estimate head pose, h, and

gaze direction, g, for each of our frames. In Fig. 4 we

plot the distribution of h and g on GazeCapture as well

as existing state-of-the-art datasets, MPIIGaze [43] and

TabletGaze [13]. We find that while our dataset contains a

similar overall distribution of h there is a significantly larger

2This was the number of dots displayed when the user entered a code

provided via AMT. When the user did not enter a code (typical case when

the application is downloaded directly from the App Store), they were

shown 8 dots per orientation to keep them engaged.
3Three orientations for iPhones and four orientations for iPads follow-

ing their natural use cases.

proportion of outliers as compared to existing datasets.

Further, we observe that our data capture technique from

Sec. 3.1 introduces significant variation in the relative posi-

tion of the camera to the user as compared to other datasets;

e.g., we have frames where the camera is mounted below

the screen (i.e., when the device is turned upside down) as

well as above. These variations can be helpful for training

and evaluating eye tracking approaches.
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Figure 4: Distribution of head pose h (1st row) and gaze

direction g relative to the head pose (2nd row) for datasets

TabletGaze, MPIIGaze, and GazeCapture (ours). All inten-

sities are logarithmic.
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Figure 5: Overview of iTracker, our eye tracking CNN. Inputs include left eye, right eye, and face images detected and

cropped from the original frame (all of size 224× 224). The face grid input is a binary mask used to indicate the location and

size of the head within the frame (of size 25 × 25). The output is the distance, in centimeters, from the camera. CONV rep-

resents convolutional layers (with filter size/number of kernels: CONV-E1,CONV-F1: 11 × 11/96, CONV-E2,CONV-F2:

5 × 5/256, CONV-E3,CONV-F3: 3 × 3/384, CONV-E4,CONV-F4: 1 × 1/64) while FC represents fully-connected layers

(with sizes: FC-E1: 128, FC-F1: 128, FC-F2: 64, FC-FG1: 256, FC-FG2: 128, FC1: 128, FC2: 2). The exact model

configuration is available on the project website.

4. iTracker: A Deep Network for Eye Tracking

In this section, we describe our approach for building a

robust eye tracker using our large-scale dataset, GazeCap-

ture. Given the recent success of convolutional neural net-

works (CNNs) in computer vision, we use this approach to

tackle the problem of eye tracking. We believe that, given

enough data, we can learn eye tracking end-to-end without

the need to include any manually engineered features, such

as head pose [43]. In Sec. 4.1, we describe how we de-

sign an end-to-end CNN for robust eye tracking. Then, in

Sec. 4.2 we use the concept of dark knowledge [11] to learn

a smaller network that achieves a similar performance while

running at 10–15fps on a modern mobile device.

4.1. Learning an EndtoEnd Model

Our goal is to design an approach that can use the infor-

mation from a single image to robustly predict gaze. We

choose to use deep convolutional neural networks (CNNs)

to make effective use of our large-scale dataset. Specifi-

cally, we provide the following as input to the model: (1)

the image of the face together with its location in the im-

age (termed face grid), and (2) the image of the eyes. We

believe that using the model can (1) infer the head pose rela-

tive to the camera, and (2) infer the pose of the eyes relative

to the head. By combining this information, the model can

infer the location of gaze. Based on this information, we

design the overall architecture of our iTracker network, as

shown in Fig. 5. The size of the various layers is similar to

those of AlexNet [20]. Note that we include the eyes as indi-

vidual inputs into the network (even though the face already

contains them) to provide the network with a higher resolu-

tion image of the eye to allow it to identify subtle changes.

In order to best leverage the power of our large-scale

dataset, we design a unified prediction space that allows us

to train a single model using all the data. Note that this is not

trivial since our data was collected using multiple devices at

various orientations. Directly predicting screen coordinates

would not be meaningful beyond a single device in a sin-

gle orientation since the input could change significantly.

Instead, we leverage the fact that the front-facing camera

is typically on the same plane as, and angled perpendicu-

lar to, the screen. As shown in Fig. 6, we predict the dot

location relative to the camera (in centimeters in the x and

y direction). We obtain this through precise measurements

of device screen sizes and camera placement. Finally, we

train the model using a Euclidean loss on the x and y gaze

position. The training parameters are provided in Sec. 5.1.

Further, after training the joint network, we found fine-

tuning the network to each device and orientation helpful.

This was particularly useful in dealing with the unbalanced

data distribution between mobile phones and tablets. We

denote this model as iTracker∗.
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Figure 6: Our unified prediction space. The plot above

shows the distribution of all dots in our dataset mapped

to the prediction space. Axes denote centimeters from the

camera; i.e., all dots on the screen are projected to this space

where the camera is at (0, 0).

4.2. RealTime Inference

As our goal is to build an eye tracker that is practically

useful, we provide evidence that our model can be applied

on resource-constrained mobile devices. Encouraged by the

work of Hinton et al. [11], we apply dark knowledge to

reduce model complexity and thus, computation time and

memory footprint. First, while we designed the iTracker

network to be robust to poor-quality eye detections, we use

tighter crops (of size 80× 80) produced by facial landmark

eye detections [1] for the smaller network. These tighter

crops focus the attention of the network on the more dis-

criminative regions of the image, while also being faster

due to the reduced image size. Then, we fine-tune the ar-

chitecture configuration using the validation set to optimize

efficiency without sacrificing much accuracy. Specifically,

we have a combined loss on the ground truth, the predic-

tions from our full model, as well as the features from the

penultimate layer to assist the network in producing qual-

ity results. We implemented this model on an iPhone using

Jetpac’s Deep Belief SDK4. We found that the reduced ver-

sion of the model took about 0.05sec. to run on a iPhone

6s. Combining this with Apple’s face detection pipeline, we

can expect to achieve an overall detection rate of 10–15fps

on a typical mobile device.

5. Experiments

In this section, we thoroughly evaluate the performance

of iTracker using our large-scale GazeCapture dataset.

Overall, we significantly outperform state-of-the-art ap-

proaches, achieving an average error of ∼ 2cm without cal-

ibration and are able to reduce this further to 1.8cm through

4https://github.com/jetpacapp/DeepBeliefSDK

calibration. Further, we demonstrate the importance of hav-

ing a large-scale dataset as well as having variety in the data

in terms of number of subjects rather than number of exam-

ples per subject. Then, we apply the features learned by

iTracker to an existing dataset, TabletGaze [13], to demon-

strate the generalization ability of our model.

5.1. Setup

Data preparation: First, from the 2,445,504 frames in

GazeCapture, we select 1,490,959 frames that have both

face and eye detections. These detections serve as important

inputs to the model, as described in Sec. 4.1. This leads to a

total of 1471 subjects being selected where each person has

at least one frame with a valid detection. Then, we divide

the dataset into train, validation, and test splits consisting

of 1271, 50, and 150 subjects5, respectively. For the vali-

dation and test splits, we only select subjects who looked

at the full set of points. This ensures a uniform data distri-

bution in the validation/test sets and allows us to perform

a thorough evaluation on the impact of calibration across

these subjects. Further, we evaluate the performance of our

approach by augmenting the training and test set 25-fold by

shifting the eyes and the face, changing face grid appropri-

ately. For training, each of the augmented samples is treated

independently while for testing, we average the predictions

of the augmented samples to obtain the prediction on the

original test sample (similar to [20]).

Implementation details: The model was implemented

using Caffe [17]. It was trained from scratch on the Gaze-

Capture dataset for 150, 000 iterations with a batch size of

256. An initial learning rate of 0.001 was used, and after

75, 000 iterations, it was reduced to 0.0001. Further, simi-

lar to AlexNet [20], we used a momentum of 0.9 and weight

decay of 0.0005 throughout the training procedure. Further,

we truncate the predictions based on the size of the device.

Evaluation metric: Similar to [13], we report the error

in terms of average Euclidean distance (in centimeters) from

the location of the true fixation. Further, given the differ-

ent screen sizes, and hence usage distances of phones and

tablets, we provide performance for both of these devices

(even though the models used are exactly the same for both

devices, unless otherwise specified). Lastly, to simulate a

realistic use case where a stream of frames is processed for

each given fixation rather than just a single frame, we re-

port a value called dot error. In this case, the output of the

classifier is given as the average prediction of all the frames

corresponding to a gaze point at a certain location.

5.2. Unconstrained Eye Tracking

Here, our goal is to evaluate the generalization ability

of iTracker to novel faces by evaluating it on unconstrained

5Train, validation and test splits contain 1,251,983, 59,480, and

179,496 frames, respectively.
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Model Aug.
Mobile phone Tablet

error dot err. error dot err.

Baseline tr + te 2.99 2.40 5.13 4.54

iTracker None 2.04 1.62 3.32 2.82

iTracker te 1.84 1.58 3.21 2.90

iTracker tr 1.86 1.57 2.81 2.47

iTracker tr + te 1.77 1.53 2.83 2.53

iTracker∗ tr + te 1.71 1.53 2.53 2.38

iTracker (no eyes) None 2.11 1.72 3.40 2.93

iTracker (no face) None 2.15 1.69 3.45 2.92

iTracker (no fg.) None 2.23 1.81 3.90 3.36

Table 2: Unconstrained eye tracking results (top half) and

ablation study (bottom half). The error and dot error values

are reported in centimeters (see Sec. 5.1 for details); lower

is better. Aug. refers to dataset augmentation, and tr and te

refer to train and test respectively. Baseline refers to apply-

ing support vector regression (SVR) on features from a pre-

trained ImageNet network, as done in Sec. 5.4. We found

that this method outperformed all existing approaches. For

the ablation study (Sec. 5.5), we removed each critical input

to our model, namely eyes, face and face grid (fg.), one at a

time and evaluated its performance.

(calibration-free) eye tracking. As described in Sec. 5.1, we

train and test iTracker on the appropriate splits of the data.

To demonstrate the impact of performing data augmentation

during train and test, we include the performance with and

without train/test augmentation. As baseline, we apply the

best performing approach (pre-trained ImageNet model) on

TabletGaze (Sec. 5.4) to GazeCapture. The results are sum-

marized in the top half of Tbl. 2 and the error distribution is

plotted in Fig. 7.

We observe that our model consistently outperforms the

baseline approach by a large margin, achieving an error as

low as 1.53cm and 2.38cm on mobile phones and tablets re-

spectively. Further, we find that the dot error is consistently

lower than the error demonstrating the advantage of using

temporal averaging in real-world eye tracking applications.

Also note that both train and test augmentation are helpful

for reducing the prediction error. While test augmentation

may not allow for real-time performance, train augmenta-

tion can be used to learn a more robust model. Last, we

observe that fine-tuning the general iTracker model to each

device and orientation (iTracker∗) is helpful for further re-

ducing errors, especially for tablets. This is to be expected,

given the large proportion of samples from mobile phones

(85%) as compared to tablets (15%) in GazeCapture.

5.3. Eye Tracking with Calibration

As mentioned in Sec. 3.1, we collect data from 13 fixed

dot locations (per device orientation) for each subject. We

use these locations to simulate the process of calibration.

11

6

1

error (cm)

tabletsmobile phones

error (cm)

1.5

3.5

2.5

Figure 7: Distribution of error for iTracker (with train and

test augmentation) across the prediction space, plotted at

ground truth location. The black and white circles represent

the location of the camera. We observe that the error near

the camera tends to be lower.

Model
# calib. Mobile phone Tablet

points error dot err. error dot err.

iTracker

0 1.77 1.53 2.83 2.53

4 1.92 1.71 4.41 4.11

5 1.76 1.50 3.50 3.13

9 1.64 1.33 3.04 2.59

13 1.56 1.26 2.81 2.38

iTracker*

0 1.71 1.53 2.53 2.38

4 1.65 1.42 3.12 2.96

5 1.52 1.22 2.56 2.30

9 1.41 1.10 2.29 1.87

13 1.34 1.04 2.12 1.69

Table 3: Performance of iTracker using different numbers

of points for calibration (error and dot error in centimeters;

lower is better). Calibration significantly improves perfor-

mance.

For each subject in the test set, we use frames from these 13

fixed locations for training, and evaluate on the remaining

locations. Specifically, we extract features from the fc1

layer of iTracker and train a model using SVR to predict

each subject’s gaze locations. The results are summarized in

Tbl. 3. We observe that the performance decreases slightly

when given few points for calibration. This likely occurs

due to overfitting when training the SVR. However, when

using the full set of 13 points for calibration, the perfor-

mance improves significantly, achieving an error of 1.34cm

and 2.12cm on mobile phones and tablets, respectively.

5.4. CrossDataset Generalization

We evaluate the generalization ability of the features

learned by iTracker by applying them to another dataset,

TabletGaze [13]. TabletGaze contains recordings from a to-

tal of 51 subjects and a sub-dataset of 40 usable subjects6.

We split this set of 40 subjects into 32 for training and 8

6 [13] mentions 41 usable subjects but at the time of the experiments,

only data from 40 of them was released.
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Method Error Description

Center 7.54 Simple baseline

TurkerGaze [41] 4.77 pixel features + SVR

TabletGaze 4.04 Our implementation of [13]

MPIIGaze [43] 3.63 CNN + head pose

TabletGaze[13] 3.17 Random forest + mHoG

AlexNet [20] 3.09 eyes (conv3) + face (fc6) + fg.

iTracker (ours) 2.58 fc1 of iTracker + SVR

Table 4: Result of applying various state-of-the-art ap-

proaches to TabletGaze [13] dataset (error in cm). For the

AlexNet + SVR approach, we train a SVR on the concate-

nation of features from various layers of AlexNet (conv3

for eyes and fc6 for face) and a binary face grid (fg.).

for testing. We apply support vector regression (SVR) to

the features extracted using iTracker to predict the gaze lo-

cations in this dataset, and apply this trained classifier to

the test set. The results are shown in Tbl. 4. We report the

performance of applying various state-of-the-art approaches

(TabletGaze [13], TurkerGaze [41] and MPIIGaze [43]) and

other baseline methods for comparison. We propose two

simple baseline methods: (1) center prediction (i.e., always

predicting the center of the screen regardless of the data)

and (2) applying support vector regression (SVR) to im-

age features extracted using AlexNet [20] pre-trained on

ImageNet [29]. Interestingly, we find that the AlexNet +

SVR approach outperforms all existing state-of-the-art ap-

proaches despite the features being trained for a completely

different task. Importantly, we find that the features from

iTracker significantly outperform all existing approaches to

achieve an error of 2.58cm demonstrating the generalization

ability of our features.

5.5. Analysis

Ablation study: In the bottom half of Tbl. 2 we report

the performance after removing different components of our

model, one at a time, to better understand their significance.

In general, all three inputs (eyes, face, and face grid) con-

tribute to the performance of our model. Interestingly, the

mode with face but no eyes achieves comparable perfor-

mance to our full model suggesting that we may be able

to design a more efficient approach that requires only the

face and face grid as input. We believe the large-scale data

allows the CNN to effectively identify the fine-grained dif-

ferences across people’s faces (their eyes) and hence make

accurate predictions.

Importance of large-scale data: In Fig. 8b we plot the

performance of iTracker as we increase the total number

of train subjects. We find that the error decreases signif-

icantly as the number of subjects is increased, illustrating

the importance of gathering a large-scale dataset. Further,

to illustrate the importance of having variability in the data,

in Fig. 8b, we plot the performance of iTracker as (1) the
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Figure 8: Dataset size is important for achieving low error.

Specifically, growing the number of subjects in a dataset is

more important than the number of samples, which further

motivates the use of crowdsourcing.

number of subjects is increased while keeping the number

of samples per subject constant (in blue), and (2) the num-

ber of samples per subject is increased while keeping the

number of subjects constant (in red). In both cases the total

number of samples is kept constant to ensure the results are

comparable. We find that the error decreases significantly

more quickly as the number of subjects is increased indicat-

ing the importance of having variability in the data.

6. Conclusion

In this work, we introduced an end-to-end eye track-

ing solution targeting mobile devices. First, we intro-

duced GazeCapture, the first large-scale mobile eye track-

ing dataset. We demonstrated the power of crowdsourcing

to collect gaze data, a method unexplored by prior works.

We demonstrated the importance of both having a large-

scale dataset, as well as having a large variety of data to

be able to train robust models for eye tracking. Then, us-

ing GazeCapture we trained iTracker, a deep convolutional

neural network for predicting gaze. Through careful evalu-

ation, we show that iTracker is capable of robustly predict-

ing gaze, achieving an error as low as 1.04cm and 1.69cm

on mobile phones and tablets respectively. Further, we

demonstrate that the features learned by our model gener-

alize well to existing datasets, outperforming state-of-the-

art approaches by a large margin. Though eye tracking has

been around for centuries, we believe that this work will

serve as a key benchmark for the next generation of eye

tracking solutions. We hope that through this work, we can

bring the power of eye tracking to everyone.
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