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Abstract

Super-symmetric tensors – a higher-order extension of

scatter matrices – are becoming increasingly popular in

machine learning and computer vision for modeling data

statistics, co-occurrences, or even as visual descriptors.

They were shown recently to outperform second-order ap-

proaches [18], however, the size of these tensors are ex-

ponential in the data dimensionality, which is a signifi-

cant concern. In this paper, we study third-order super-

symmetric tensor descriptors in the context of dictionary

learning and sparse coding. For this purpose, we propose

a novel non-linear third-order texture descriptor. Our goal

is to approximate these tensors as sparse conic combina-

tions of atoms from a learned dictionary. Apart from the

significant benefits to tensor compression that this frame-

work offers, our experiments demonstrate that the sparse

coefficients produced by this scheme lead to better aggrega-

tion of high-dimensional data and showcase superior per-

formance on two common computer vision tasks compared

to the state of the art.

1. Introduction

Recent times have witnessed an increasing trend in sev-

eral machine learning and computer vision applications to

use rich representations that capture the inherent structure

and statistics of the data. A few notable such representa-

tions are histograms, strings, covariances, trees, and graphs.

The goal of this paper is to study a new class of structured

data descriptors – third-order super-symmetric tensors – in

the context of sparse coding and dictionary learning. Ten-

sors are often used to capture higher-order moments of data

distributions such as the covariance, skewness, or kurtosis

and have been used as data descriptors in several computer

vision applications. In region covariances [36], a covari-

ance matrix – computed on multi-modal features from an

image region – is used as a descriptor for the region and

is useful for object tracking, retrieval, texture recognition,

and video analysis [36, 39, 30, 21, 10]. Given bag-of-words

histograms or local descriptor vectors from an image, a

second-order co-occurrence pooling of these vectors cap-

tures the occurrences of two features together in an image

and is recently shown to provide superior performance in

semantic segmentation and visual concept detection, com-

pared to their first-order counterparts [5, 18]. A natural ex-

tension of the idea is to use higher-order pooling operators,

an extensive experimental analysis of which is provided

in [18]. Their paper shows that pooling using third-order

super-symmetric tensors can significantly improve upon the

second-order descriptors, e.g., by more than 7% MAP on

the challenging PASCAL VOC07 dataset.

However, given that the size of the tensors increases ex-

ponentially against the dimensionality of their first-order

counterpart, efficient representations are extremely impor-

tant for applications that use these higher-order descriptors.

To this end, the goal of this paper is to study these de-

scriptors in the classical dictionary learning and sparse cod-

ing setting [27]. Using the properties of super-symmetric

tensors, we formulate a novel optimization objective (Sec-

tions 6, 7) in which each third-order data tensor is approxi-

mated by a sparse non-negative linear combination of posi-

tive semi-definite matrices. Although our objective is non-

convex – typical to several dictionary learning algorithms

– we show that our objective is convex in each variable,

thus allowing a block-coordinate descent scheme for the

optimization. Experiments (Section 8) on the PASCAL

VOC07 dataset show that the compressed coefficient vec-

tors produced by our sparse coding preserve the discrimina-

tive properties of the original tensors and provide robust ten-

sor compression and aggregation. Inspired by the merits of

third-order pooling proposed in [18], we further introduce

a novel tensor descriptor for texture recognition via the lin-

earization of explicitly defined RBF kernels, and show that

sparse coding of these novel tensors performs better than

the state-of-the-art descriptors used for texture recognition.

In summary, our contributions are: i) a novel third-order

texture descriptor1, ii) novel third-order tensor dictionary

learning and sparse coding, and iii) theoretical guarantees

on the existence of the sparse decomposition.

1Note that, third-order descriptors can be easily aggregated from CNN

features similar to [9]; however, the choice of input features is complemen-

tary to our main goal - theoretical foundations of third-order tensor coding.
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2. Related Work

Dictionary learning and sparse coding [8, 27] methods

have significantly contributed to improving the performance

of numerous applications in computer vision and image pro-

cessing. While these algorithms assume a Euclidean vecto-

rial representation of the data, there have been extensions to

other data descriptors such as tensors, especially symmetric

positive definite matrices [6, 11, 34]. These extensions typ-

ically use non-Euclidean geometries defined by a similarity

measure. Popular choices of such measures for positive def-

inite matrices are the log-determinant divergence [34], the

log-Euclidean metric [1], and the affine invariant Rieman-

nian metric [28]. However, the third-order tensors consid-

ered in this paper are neither positive definite nor there are

any standard similarity measures known, apart from the Eu-

clidean distance. Thus, extending these prior methods to

our setting is infeasible, demanding novel formulations.

Third-order tensors have been used for various tasks.

Spatio-temporal third-order tensor on video data for activ-

ity analysis and gesture recognition is proposed in [15] .

Non-negative factorization is applied to third-order tensors

in [33] for image denoising. Multi-linear algebraic methods

for tensor subspace learning are surveyed in [24]. Tensor

textures are used in the context of texture rendering in com-

puter vision applications in [38]. Similar to eigenfaces for

face recognition, multi-linear algebra based techniques for

face recognition use third-order tensors in [37]. However,

these applications work with a single tensor; the objective

of this paper is to learn the underlying structure of a large

collection of such tensors generated from visual data us-

ing the framework of dictionary learning and sparse coding,

which to the best of our knowledge is a novel proposition.

In addition to the dictionary learning framework, we also

introduce an image descriptor for textures. While we are

not aware of any previous works that propose third-order

tensors as image region descriptors, the most similar meth-

ods to our approach are i) third-order probability matrices

for image splicing detection [42] and ii) third-order global

image descriptors that aggregates SIFT vectors into auto-

correlation tensors [18]. In contrast, our descriptor, is as-

sembled from elementary signals such as intensity and its

first- and second-order derivatives, analogous to covariance

descriptors [36], but demonstrating superior accuracy. The

formulation chosen by us for texture recognition also differs

from prior works such as kernel descriptors [2] and convo-

lutional kernel networks [25].

3. Notations

Before we proceed, we briefly review our notations next.

We use bold-face upper-case calligraphic and regular letters

for third-order tensors and matrices, respectively, bold-face

lower-case letters for vectors and normal fonts for scalars.

Each second-order tensor along the third mode of a third-

order tensor is called a slice. Using Matlab style notation,

the s-th slice of X is given by X :,:,s. The operation ↑⊗
stands for an outer product of a second-order tensor with a

vector. For example, Y = Y ↑⊗y produces a third-order

tensor Y ∈ R
d1×d2×d3 from a matrix Y ∈ R

d1×d2 and a

vector y ∈ R
d3 , where the s-th slice of Y is given by Yys,

ys being the s-th dimension of y. IN stands for the index

set {1, 2, ..., N}. We denote the space of d × d positive

semi-definite matrices as Sd
+ ⊂ R

d×d, the space of super-

symmetric tensors of dimension d× d× d as Sd⊂R
d×d×d

and the space of tensors R
d×...×d with r modes as R

×rd.

Going by the standard terminology in higher-order tensor

factorization literature [7, 20], we define a core tensor as the

analogous of the singular value matrix produced by SVD in

the second-order case. A core tensor need not be diagonal

in general and depends on the chosen decomposition.

4. Background

In this section, we review super-symmetric tensors and

their properties, followed by a brief exposition of the

method described in [18] for generating tensor descriptors

for an image. The latter will come useful when introducing

our new texture descriptors.

4.1. ThirdOrder SuperSymmetric Tensors

We define a super-symmetric tensor descriptor as fol-

lows:

Definition 1. Suppose xn ∈ R
d
+, ∀n ∈ IN represents data

vectors from an image, then a third-order super-symmetric

tensor (TOSST) descriptor X ∈ S
d of these data vectors is

given by:

X =
1

N

N∑

n=1

(xnx
T
n ) ↑⊗xn. (1)

In an object recognition setting, the data vectors are usu-

ally SIFT descriptors, Gabor filters, or other primitives ex-

tracted from the image, while the tensor descriptor is ob-

tained as the third-order autocorrelation tensor via apply-

ing (1).

The following properties of the TOSST descriptor are

useful in the sequel.

Proposition 1. For a TOSST descriptor X ∈S
d, we have:

1. Super-Symmetry: X i,j,k=XΠ(i,j,k) for indexes i, j, k
and their permutation given by Π, ∀Π .

2. Every slice is positive semi-definite, that is, X :,:,s ∈
Sd
+, ∀s ∈ Id.

3. Indefiniteness, i.e., under a CP decomposition [20], it

can have positive, negative, or zero entries in its core-

tensor – equivalent of eigenvalues in matrix case.
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Proof. The first two properties can be proved directly

from (1). To prove the last property, note that for a

TOSST tensor X and some z ∈ R
d, z 6= 0, we have

((X ⊗1 z)⊗2 z)⊗3 z=
∑d

s=1zs(z
TXsz) where Xs is the

s-th slice of X . While zTXsz≥0, the tensor product could

be negative for z < 0. In the above, ⊗i denotes tensor

product in the i-th mode [16].

Due to the indefiniteness of the tensors, we cannot use

some of the well-known distances on the manifold of SPD

matrices [1, 28]. Thus, we restrict to using the Euclidean

distance for the derivations and experiments in this paper.

Among several properties of tensors, one that is impor-

tant and is typically preserved by tensor decompositions is

the tensor rank defined below.

Definition 2 (Tensor Rank). Given a tensor X ∈ S
d, its

tensor rank TRank(X ) is defined as the minimum p such

that X :,:,s ∈ Span (M1,M2, ...,Mp) for all s ∈ Id, where

each Mi ∈ Sd
+ is rank-one.

4.2. ThirdOrder Global Image Descriptor

In what follows, we outline a global image descriptor for

the object category recognition from [18] used in our exper-

iments on the PASCAL VOC07 dataset. This descriptor is

a specific example of the TOSST approach. To the unfamil-

iar reader, we also illustrate below, some preliminary results

for this descriptor to highlight its robustness. The simplicity

of the approach and good results it produces, motivate us to

develop a third-order descriptor for textures (Section 5) as

a natural extension of second-order region covariance de-

scriptors (RCD), which are very popular for texture recog-

nition. Furthermore, the high dimensionality of TOSST de-

scriptors provides a strong motivation to extend the classical

dictionary learning and sparse coding algorithm to generate

compact tensor representations (Section 6).

The Third-order Global Image Descriptor is based on

SIFT descriptors [23] aggregated into a third-order auto-

correlation tensor. This step precedes applying Higher Or-

der Singular Value Decomposition [20, 16] for whitening

via Power Normalisation [18] performed on the core tensor.

The following steps represent this tensor descriptor:

V i=↑⊗rvi, ∀i ∈ I (2)

V̄ = Avg
i∈I

(V i) (3)

(E ;A) = HOSVD(V̄) (4)

Ê = Sgn(E) |E |γe (5)

V̂ = ((Ê ⊗1A) ...)⊗rA (6)

X = Sgn(V̂) |V̂ |γc (7)

Equations (2, 3) assemble a higher-order autocorrelation

tensor V̄ per image. First, the outer product ↑⊗r of or-

der r [20, 16, 18] is applied to the local image descriptors

vi ∈ R
d from an index set I i.e., indexes of SIFT vectors

from an image. This results in |I| autocorrelation matrices

(↑⊗2vi , viv
T
i ) or third-order tensors V i ∈ S

d : V i =
(↑⊗3vi , (viv

T
i ) ↑⊗vi) of rank one if r = 2 or r = 3,

respectively. These rank-one tensors are then averaged by

Avg, resulting in tensor V̄ ∈ S
d that describes globally

the image and could be used as a training sample. How-

ever, practical image representations have to deal with the

so-called burstiness which is “the property that a given vi-

sual element appears more times in an image than a statis-

tically independent model would predict” [13].

Power Normalization (PN) [3, 29, 13] is known to sup-

press burstiness. Therefore, equations (4-6) and (7) ap-

ply two-stage pooling with the eigenvalue- and coefficient-

wise PN respectively. In equation (4), operator HOSVD :
S

d →
(
R

×rd;Rd×d) decomposes tensor V̄ into a core ten-

sor E ∈ R
×rd with eigenvalues and an orthonormal factor

matrix A ∈ R
d×d, which can be interpreted as the principal

components in r modes. PN is then applied element-wise by

equation (5) to the eigenvalues of E to even out their con-

tributions. Tensor V̂ ∈ R
×rd is then assembled in equation

(6) by the tensor product ⊗i in the i-th mode [16]. Then, the

coefficient-wise PN acting on V̂ produces tensor X ∈R
×rd

in equation (7).

In our experiments, we use r = 3 and i) X = V̄ when

PN is disabled, e.g., γe = γc = 1, or ii) apply the above

HOSVD approach if 0 < γe < 1 ∧ 0 < γc ≤ 1. Therefore,

the final descriptor X in equation (7) represents an image

by a TOSST which consists entirely of SPD matrix slices,

if no PN is used. Preliminary results in Table 1 show that

the third-order descriptor outperforms the second-order ap-

proach.

PASCAL VOC07 Caltech 101 Flowers 102

second-order 54.0% 78.5% 83.1%

third-order 62.7% 83.9% 89.0%

Table 1: Evaluation of the Third-order Global Image Descriptor.

5. TOSST Texture Descriptors

Many region descriptors for texture recognition are de-

scribed in the literature [5, 21, 36]. Their construction gen-

erally consists of the following steps:

i) For an image I and a region R in it, extract feature statis-

tics from the region. If (x, y) represent pixel coordinates

in R, then a feature vector from R at (x, y) is given as:

φxy(I)=
[
x−x0

w−1 ,
y−y0

h−1 , Ixy,
∂Ixy

∂x ,
∂Ixy

∂y ,
∂2Ixy

∂x2 ,
∂2Ixy

∂y2

]T
, (8)

where (x0, y0), w and h are the coordinate origin, width,

and height of R, respectively.

ii) Given feature vectors φxy , compute a covariance matrix

Φ(I,R) = 1
|R|−1

∑
(x,y)∈R

(
φxy(I)−φ̄

) (
φxy(I)−φ̄

)T
,
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where φ̄ is the mean over φxy(I) from region R [36, 21].

Alternatively, one can compute an autocorrelation matrix

Φ(I,R)= 1
|R|

∑
(x,y)∈R

φxy(I)φxy(I)
Tas proposed in [5, 18].

In this work, we make modifications to the steps listed

above. Instead of using linear representations for φxy(I),
we use RBF kernels that are known to improve classification

performance. The concatenated statistics in step (i) can be

seen as linear features forming linear kernel Klin:

Klin((x, y, I
a), (x′, y′, Ib)) = φxy(I

a)Tφx′y′(Ib). (9)

We go a step further and define the following sum kernel

Krbf composed of τ=7 RBF kernels G:

Krbf

(
(x, y, Ia),

(
x′, y′, Ib

))
=

τ∑

i=1

Gσi
(φi

xy(I
a)−φi

x′y′(Ib)),

(10)

where φi
xy(I) is the i-th feature in equation (8) while

Gσi
(u−u

′

) = exp(−‖u−u
′‖2/2σ2

i ) is the so-called rel-

ative compatibility kernel that measures the compatibility

between features of type i in each of the image regions.

The next step involves linearization of Gaussian kernels

Gσi
for i = 1, ..., τ to obtain feature maps that expresses the

kernel Krbf by the dot-product. In what follows, we use

a fast approximation method based on probability product

kernels [12]. Specifically, we employ the inner product for

the d′-dimensional isotropic Gaussian distribution:

Gσ

(
u−u

′

)
=

(
2

πσ2

) d′

2
∫

ζ∈Rd′

Gσ/
√
2(u−ζ)Gσ/

√
2(u

′−ζ) dζ.

(11)

Equation (11) is then approximated by replacing the integral

with the sum over Z pivots ζ1, ..., ζZ :

Gσ(u− u
′

) ≈
〈√

wφ(u),
√
wφ(u

′

)
〉
,

φ(u) =
[
Gσ/

√
2(u− ζ1), ..., Gσ/

√
2(u− ζZ)

]T
. (12)

A weighting constant w relates to the width of the rectangle

in the numerical integration and is factored out by the ℓ2
normalization:

Gσ(u− u
′

) =
Gσ(u−u

′

)

Gσ(u−u)Gσ(u
′−u

′)
≈ (13)

〈 √
wφ(u)

‖√wφ(u)‖2
,

√
wφ(u

′

)

‖√wφ(u′)‖2

〉
=

〈
φ(u)

‖φ(u)‖2
,

φ(u
′

)

‖φ(u′)‖2

〉
.

The task of linearizing each Gσi
in equation (10) is triv-

ial as these kernels use one-dimensional variables (d′= 1).

Thus, we uniformly sample domains of each variable and

use Z=5. With this tool at hand, we rewrite kernel Krbf as:

Krbf ((x, y, I
a), (x

′

, y
′

, Ib)) ≈
〈
va
xy,v

b
x′y′

〉
, (14)

where vector va
xy is composed by τ sub-vectors

φi
xy,σi

‖φi
xy,σi

‖
2

and each sub-vector i = 1, ..., τ is a result of linearization

by equations (11-13). We use a third-order aggregation of v

according to equation (1) to generate our TOSST descriptor

for textures. For comparisons, we also aggregate φ from

equation (8) into a third-order linear descriptor. See Ap-

pendix A for the derivation of the third-order aggregation

procedure.

6. Problem Formulation

Suppose we are given data tensors Xn, n ∈ IN , each

Xn ∈ S
d. We want to learn a tensor dictionary B with

atoms B1,B2, ...,BK , where each Bk ∈S
d consists of d-

slices. Let the s-th slice of the k-th atom be given by Bs
k

where s∈Id, k∈IK and each Bs
k∈Sd

+. Then, the problem

of dictionary learning and sparse coding can be formulated

as follows for sparse coefficient vectors αn∈R
K , n∈IN :

argmin
B

α1,...,αN

N∑

n=1

∥∥∥∥∥Xn −
K∑

k=1

Bkα
n
k

∥∥∥∥∥

2

F

+ λ ‖αn‖1. (15)

Note that in the above formulation, third-order dictio-

nary atoms Bk are multiplied by scalars αn
k . For K atoms,

each of size d3, there are Kd3 parameters to be learned in

the dictionary learning process. An obvious consequence

of this reconstruction process is that we require N ≫ K
to prevent overfitting. To circumvent this bottleneck and

work in the regime dN ≫ K, the reconstruction pro-

cess is amended such that every dictionary atom is repre-

sented by an outer product of a second-order symmetric

positive semi-definite matrix Bk and a vector bk. Such

a decomposition/approximation will reduce the number of

parameters from Kd3 to K(d2 + d). Using this strategy,

we re-define dictionary B to be represented by atom pairs

B ≡ {(Bk,bk)}Kk=1 such that Bk = Bk ↑⊗bk. Note that

the tensor rank of Bk under this new representation is equal

to the Rank(Bk) as formally stated below.

Proposition 2 (Atom Rank). Let B = B ↑⊗b and ‖b‖1 6=
0, then TRank(B) = Rank(B).

Proof. Rank of B is the smallest p satisfying (B↑⊗b):,:,s=
B · bs ∈ Span (M1,M2, ...,Mp) , ∀s ∈ Id, where each

Mi ∈ Sd
+ is rank-one. The smallest p satisfying B ∈

Span (M1,M2, ...,Mp) is the same, since multiplication

of a matrix by any non-zero scalar (B · bs, bs 6= 0) will

not change its eigenvectors, which constitute the spanning

set.
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Using the above idea, we can rewrite (15) as follows:

argmin
B

α1,...,αN

N∑

n=1

∥∥∥∥∥Xn −
K∑

k=1

(Bk ↑⊗bk)α
n
k

∥∥∥∥∥

2

F

+ λ ‖αn‖1.

(16)

Introducing optimization variables βn
k and rewriting the

loss function by taking the slices out, we rewrite (16) as:

argmin
B

α1,...,αN

N∑

n=1

S∑

s=1

∥∥∥∥∥X
s
n −

K∑

k=1

Bkβ
s,n
k

∥∥∥∥∥

2

F

+ λ ‖αn‖1 ,

subject to βn
k = bkα

n
k , ∀k ∈ IK and n ∈ IN . (17)

We may rewrite the equality constraints in (17) as a prox-

imity constraint in the objective function (using a regular-

ization parameter γ), and constrain the sparse coefficients

in αn to be non-negative, as each slice is positive semi-

definite. This is a standard technique used in optimization,

commonly referred to as variable splitting. We can also nor-

malize the dictionary atoms Bk to be positive semi-definite

and of unit-trace for better numerical stability. In that case,

vector atoms bk can be constrained to be non-negative (or

even better, βn
k ≥0 instead of αn≥0 and bk≥0). Introduc-

ing chosen constraints, we can rewrite our tensor dictionary

learning and sparse coding formulation:

argmin
B

α1,...,αN≥0

N∑

n=1

S∑

s=1

∥∥∥∥∥X
s
n−

K∑

k=1

Bkβ
s,n
k

∥∥∥∥∥

2

F

+γ ‖βs,n−bs⊙αn‖22
+ λ ‖αn‖1 ,

subject to Bk<0, Tr(Bk)≤1, ‖bk‖1≤1, k∈IK . (18)

In the above equation, operator ⊙ is an element-wise multi-

plication between vectors. Coefficients γ and λ control the

quality of the proximity and sparsity of αn, respectively.

The formulation (18) is convex in each variable and can be

solved efficiently using block coordinate descent. Note that,

we may use a richer characterization of the loss by replac-

ing the Frobenius norm with one based on the Riemannian

geometry of positive definite matrices [6]; however, in that

case the convexity in each variable will be lost.

Remark 1 (Non-symmetric Tensors). Note that non-

symmetric Xn ∈ R
d1×d2×d3 can be coded if the positive

semi-definite constraint on Bk in (18) is dropped, such that

Bk∈R
d1×d2 and bk∈R

d3 . Other non-negative constraints

can also be removed. While this case is a straightforward

extension of our formulation, a thorough investigation into

it is left as future work.

Optimization
We propose a block-coordinate descent scheme to

solve (18), in which each variable is solved alternately,

while keeping other variables fixed. Due to the convexity

Algorithm 1: Third-order Dictionary Learning and
Sparse Coding.

Data: N data tensors X ≡ {X 1, ...,XN}, proximity and
sparsity constants γ and λ, stepsize η, K dictionary

atoms B ≡ {(Bk,bk)}
K
k=1 if coding, otherwise

LearnDict= true
Result: N sparse coeffs. α ≡ {α1, ...,αN}, K atoms

B ≡ {(Bk,bk)}
K
k=1 if LearnDict= true

Initialization:
if LearnDict then

• Uniformly sample slices from X and fill Bk, ∀k∈IK

• Uniformly sample values in
[

− 1
K
; 1
K

]

to init. bk, ∀k∈IK

end
• Vectorize slices Xs

n, ∀s∈IS , ∀n∈IN , and atoms Bk,
∀k∈IK , solve Lasso problem to fill βs,n, ∀s∈IS , ∀n∈IN

• Uniformly sample values in
[

− 1
Kλ

; 1
Kλ

]

to fill αn, ∀n∈IN

• Objective(0)=0, t=1

Main loop:
while ¬Converged do

if LearnDict then

• B
(t+1)
k =ΠSPD

(

B
(t)
k −η ∂f

∂ Bk

∣

∣

∣

B
(t)
k

)

, ∀k∈IK, where

f is the cost from (18), projection ΠSPD(B)= B
∗

Tr(B∗)
,

B
∗=U max(λ∗, 0)V T for (U ,λ∗,V )=SV D(B)

• b
(t+1)
k =Π+

(

b
(t)
k − η ∂f

∂ bk

∣

∣

∣

b
(t)
k

)

, ∀k∈IK , and

Π+(b)=max(b, 0) if Π+ is used
end

• β s,n,(t+1)=Π+

(

βs,n,(t) − η ∂f

∂ β

∣

∣

∣

β
s,n,(t)
k

)

, ∀s∈IS ,

∀n∈IN , use of Π+ is optional

• α
(t+1)
n =Π+

(

α
(t)
n − η ∂f

∂ α

∣

∣

α
(t)
n

)

, ∀n∈IN , use of Π+

is optional

• Objective(t)=f
(

X ,B
(t)

,b
(t)

,α(t)
)

, where B
(t)

and b
(t)

are K matrix and vector atoms
• Converged=

EvaluateStoppingCriteria
(

t, Objective(t), Objective(t−1)
)

end

of each sub-problem, we observe convergence to a local

minimum empirically, but a theoretical convergence anal-

ysis is difficult due to the non-smoothness of the problem.

Initial values of Bk, bk, and αn are chosen randomly from

the uniform distribution within a prespecified range. Vec-

tors βs,n are initialized with the Lasso algorithm. Next,

we solve four separate convex sub-problems resulting in up-

dates of Bk, bk, βs,n, and αn. For learning second-order

matrices Bk, we employ the PQN solver [32] which lets us

implement and apply projections into the SPD cone, handle

the trace norm or even the rank of matrices (if this con-

straint is used). Similarly, the projected gradient is used to

keep bk inside the simplex ‖bk‖1 ≤ 1. For the remain-

ing sub-problems, we use the L-BFGS-B solver [4] which

enables us to handle simple box constraints e.g., we split

coding for αn into two non-negative sub-problems αn
+ and
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αn
− (unless αn ≥ 0) by applying box constraints αn

+ ≥ 0
and αn

− ≥ 0. Finally, we obtain αn = αn
+ − αn

− after

minimization. For the sparse coding phase (no dictionary

learning), we fix {(Bk,bk)}Kk=1. The algorithm proceeds

as above, but without updates of Bk and bk. Algorithm 1

shows the important steps of our dictionary learning and

sparse coding.

7. Theory

In this section, we analyze the theoretical properties of

our sparse coding formulation. We establish that under an

approximation setting, a sparse coding of the data tensor ex-

ists in some dictionary for every data point. We also provide

bounds on the quality of this approximation and its tensor

rank. Note that the exact sparse recovery is not mandatory

in image classification [41]. Thus, we skip this line of inves-

tigation. The following lemma comes useful in the sequel.

Lemma 1 ([35]). Let Y =
∑m

i=1 φiφ
T
i , where each φi ∈

R
d and m = Ω(d2). Then, there exist an α ∈ R

m
+ and

ǫ ∈ (0, 1) such that:

Y �
m∑

i=1

αiφiφ
T
i � (1 + ǫ)Y, (19)

where α has O(d log(d)/ǫ2) non-zeros.

Theorem 1. Let X =
∑m

i=1(φiφ
T
i ) ↑⊗φi, then there

exist a second-order dictionary B with md atoms and a

sparse coefficient vector β ∈ R
md
+ with O(d2 log(d)/ǫ2)

non-zeros, such that for ǫ ∈ (0, 1),

I) X̃ =

m∑

i=1

(φiφ
T
i )↑⊗ β̄i and II)

∥∥∥X−X̃

∥∥∥
F
≤ǫ

d∑

s=1

‖Xs‖F ,

where Xs is the s-th slice of X and β̄i ∈ R
d.

Proof. To prove I: each slice Xs =
∑m

i=1(φiφ
T
i )φ

s
i , where

φs
i is the s-th dimension of φi. Let φ′

i = φi

√
φs
i , then

Xs =
∑m

i=1 φ
′
iφ

′T
i . If the slices are to be treated in-

dependently (as in (18)), then to each slice we can apply

Lemma 1 that results in sparse coefficient vectors β̄i hav-

ing O(d log(d)/ǫ2) non-zeros. Extending this result to all

the d-slices, we obtain the result.

To prove II: substituting X̃ with its sparse approximation

and using the upper-bound in (19) for each slice, the result

follows.

Theorem 2 (Approximation quality via Tensor Rank). Let

X̃ be the sparse approximation to X ∈ S
d obtained by

solving (17) using a dictionary B and if Rank(B) represent

the maximum of the rank of any atom, then:

TRank(X̃ ) ≤ min

(∣∣∣∣∣

d⋃

s=1

Supp(Xs)

∣∣∣∣∣Rank(B), d2

)
,

(20)

(a) (b) (c) (d) (e)

Figure 1: Examples of textures in 1(a) and 1(b) show 4 images

from 4 different classes of the Brodatz dataset. Note the high

inerclass similarity between the top and bottom images. Figures

1(c)-1(e) show 2 samples per class per column to illustrate UIUC

materials. Note high interclass variations (in contrast to Brodatz).

where Supp(Xs) is the support set produced by (17) for

slice Xs.

Proof. Rewriting X̃ in terms of its sparse tensor approxi-

mation, followed by applying Proposition 2 and Definition

2, the proof directly follows. Note that the maximum tensor

rank of X̃ is d2.
Theorem 2 gives a bound on the rank of approxima-

tion of a tensor X by X̃ (which is a linear combination of

atoms). Knowing rank of X and X̃ helps assess the quality

of approximation (beyond the Euclidean norm between X

and X̃ ). This is useful in experiments with imposed Rank-

R constraints (R=1, 2, ...) on atoms Bk and helps measure

how rank constraints on Bk impact the approximation.

8. Experiments

In this section, we present experiments demonstrating

the usefulness of our framework. As second-order region

covariance descriptors (RCD) are the most similar tensor

descriptors to our TOSST descriptor, we decided to evalu-

ate our performance on applications of RCDs, specifically

for texture recognition. In the sequel, we evaluate our novel

TOSST texture descriptor and compare to the state of the

art on two texture benchmarks, namely the Brodatz tex-

tures [26] and the UIUC materials [22]. Moreover, exper-

iments illustrating behaviour of our dictionary learning are

provided. We also demonstrate the adequacy of our frame-

work to compression of third-order global image descrip-

tors [18] on the challenging PASCAL VOC07 dataset.

8.1. Datasets

The Brodatz dataset illustrated in Figures 1(a)-1(b) con-

tains 111 different textures each one represented by a single

640×640 image. We follow the standard protocol, i.e., each

texture image is subdivided into 49 overlapping blocks of

size 160×160. For training, 24 randomly selected blocks are

used per class, while the rest is used for testing. We use 10

data splits. The UIUC materials dataset illustrated in Fig-

ures 1(c)-1(e) contains 18 subcategories of materials taken
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Figure 2: Parameter sensitivity on Brodatz textures: 2(a) and 2(b) show classification accuracy and objective values against various

dictionary sizes respectively, 2(c) and 2(d) show accuracy with fixed K = 20, but varying the atom rank R, and sparsity regularization λ.

in the wild from four general categories e.g., bark, fabric,

construction materials, and outer coat of animals. Each sub-

category contains 12 images taken at various scales. We

apply a leave-one-out evaluation protocol [22]. The PAS-

CAL VOC07 set consists of 5011 images for training and

4952 for testing, 20 classes of objects of varied nature e.g.,

human, cat, chair, train, bottle, etc.

8.2. Experimental Setup

TOSST descriptors. We evaluate the following variants

of the TOSST descriptor on the Brodatz dataset: linear de-

scriptor with first- and -second order derivatives as in (8, 9)

(i) but without luminance, and ii) with luminance. RBF de-

scriptor as in (8, 10) (iii) without luminance, and iv) with

luminance. Moreover, v) is a variant based on (iv) that uses

the opponent color cues for evaluations on the UIUC ma-

terials set [22]. Removing luminance for (i) and (iii) helps

emphasize the benefit of RBF over the linear formulation.

First though, we investigate our dictionary learning.

Dictionary learning. We evaluate several variants of our

dictionary learning approach on the Brodatz dataset. We

use the RBF descriptor without the luminance cue (iii) to

prevent saturation in performance. We apply patch size 40

with stride 20 to further lower computational complexity,

sacrificing performance slightly. This results in 49 TOSST

descriptors per block. We do not apply any whitening, thus

preserving the SPD structure of the TOSST slices.

Figures 2(a) and 2(b) plot the accuracy and the dictionary

learning objective against an increasing size K of the dic-

tionary. We analyze three different regularization schemes

on the second-order dictionary atoms in (18), namely

(1) with only SPD constraints, (2) with SPD and low-

rank constraints, and (3) without SPD but TRank(Bk) =
Rank(Bk) ≤ d. When we enforce Rank(Bk) ≤ R < d
for k = 1, ...,K to obtain low-rank atoms Bk by scheme

(2), the convexity w.r.t. Bk is lost because the optimization

domain in this case is the non-convex boundary of the PD

cone. However, the formulation (18) for schemes (1) and

(3) is convex w.r.t. Bk. The plots highlight that for lower

dictionary sizes, variants (1) and (2) perform worse than (3)

which exhibits the best performance due to a very low ob-

jective. However, the effects of overfitting start emerging

for larger K. The SPD constraint appears to offer the best

trade-off resulting in a good performance for both small

and large K. In Figure 2(c), we further evaluate the per-

formance for a Rank-R constraint given K = 20 atoms.

The plot highlights that imposing the low-rank constraint on

atoms may benefit classification. Note that for 15≤R≤30,

the classification accuracy fluctuates up to 2%, which is

beyond the standard deviation error (≤ 0.4%) despite any

significant fluctuation to the objective in this range. This

suggests that imposing some structural constraints on dic-

tionary atoms is an important step in dictionary learning.

Lastly, Figure 2(d) shows the classification accuracy for the

coding and pooling steps w.r.t. λ controlling sparsity and

suggests that the texture classification favors low sparsity.

8.3. Comparison to the State of the Art on Textures

In this experiment, descriptor variants were whitened as

in [18]. In each block, we extract 225 TOSST descriptors

with patch size 20 and stride 10, apply our dictionary learn-

ing given K=2000, followed by the sparse coding, and per-

form pooling as in [19] prior to classification with SVM. Ta-

ble 2 demonstrates our results which highlight that the RBF

variant outperforms the linear descriptor. This is even more

notable when the luminance cue is deliberately removed

from descriptors to degrade their expressiveness. Table 2

also demonstrates state-of-the-art results. With 99.9±0.08%
accuracy, our method is the strongest performer. Addition-

ally, Table 2 provides our results on the UIUC materials

obtained with descriptor variant (v) (described above) and

K = 4000 dictionary atoms. We used TOSST descriptors

(i) linear, no lum. (ii) linear, lum. (iii) RBF, no lum. (iv) RBF, lum. (v) RBF, lum., opp.

dataset Brodatz Brodatz Brodatz Brodatz UIUC materials
ten. size d 6 7 30 35 45

accuracy 93.9±0.2% 99.4±0.1% 99.4±0.2% 99.9±0.08% 58.0±4.3%2

Brodatz UIUC materials

ELBCM 98.72% [31] SD 43.5% [22]

L2ECM 97.9% [21] CDL 52.3±4.3% [40]
RC 97.7% [36] RSR 52.8±5.1% [11]

Table 2: Evaluations of the proposed TOSST descriptor (left) and comparisons to the state of the art (right).
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Figure 3: Impact of K in the signature compression on PASCAL

VOC07. Dictionary learning (DL) in 3(a) outperforms (Random

Dict.) formed by atoms sampled from a distribution of DL. In 3(b),

DL merged with Product Quantization (DL+PQ) is compared to

Product Quantization (PQ) w.r.t. compressed signature size K∗.

with patch size 40, stride 20 and obtained 58.0± 4.3%2

which outperforms other methods. Table 3 shows the com-

pression rates achieved with our coding prior to pooling of

sparse features [19], which could not be performed directly

on e.g., Product Quantized codes [14].

8.4. Signature Compression on PASCAL VOC07

In this section, we evaluate our method on the PAS-

CAL VOC07 dataset. We use the setup in [18] to generate

Third-order Global Image Descriptors detailed in Section

4.2 with the goal of compressing them by our sparse cod-

ing framework. In detail, we use SIFT vectors extracted

from gray-scale images with radii 12, 16, 24, 32, and stride

4, 6, 8, 10, reduce SIFT size to 90D, append SPM codes of

size 11D [18], and obtain the global image signatures with

the baseline score of 61.3% MAP. Next, we learn dictionar-

ies using our setup as in equation (18) and apply our sparse

coding to reduce signature size from 176851 (upper simplex

of TOSST) to sizes from 2K to 25K. The goal is to regain

the baseline score. Figure 3(a) shows that a learned dictio-

nary (DL) of size 25K yields 61.2% MAP at 7× compres-

sion rate. A random dictionary is about 4.3% worse. For

completeness, Figure 3(b) shows results for Product Quan-

tization (PQ) [14]. PQ compressor requires partial decom-

pression (e.g., in SGD-based SVM) unlike sparse codes. In

the extreme case, it reduces the bit-rate of each dimension

. It is complementary to our dictionary learning. Combined

approach (DL+PQ) outperforms PQ by up to 3% MAP.

Complexity. On a 4-core CPU and using Matlab, our sparse

coding takes about 3.2s using d=30 and a dictionary with

2K atoms. Dictionary Learning converges in about 50 iter-

ations. We have observed that about 9× speedup is possi-

ble for SGD. The sparse coding sub-problem includes solv-

ing for the variables β and α alternately – which are non-

negative (ℓ1 constrained) least squares problems; each al-

ternating iteration of which costs O(S(K2S + K3)) time

for K atoms and S slices. As for dictionary learning, each

dictionary update takes O(KS3) time.

2Note that we use for simplicity a single scale/size descriptor. With

multiple scales/sizes, this result will improve further as UIUC materials

exhibit large intraclass scale variations.

9. Conclusions

We presented a novel formulation and an efficient algo-

rithm for sparse coding third-order tensors using a learned

dictionary consisting of both first- and second-order atoms.

Our experiments demonstrate that our scheme leads to sig-

nificant compression of the input tensors, while not sacri-

ficing accuracy. Further, we proposed a novel tensor de-

scriptor for texture recognition, which when sparse-coded

by our approach, achieves state-of-the-art accuracy on two

benchmark datasets. Our approach is general and useful for

a variety of other applications, e.g., action recognition [17].

Appendix

A. Derivation of the Third-order Aggregation.

Rising Krbf to the power r and applying the outer prod-

uct ↑⊗r of order r to vxy yield a higher-order tensor of rank

one denoted as Vxy:

Kr
rbf ((x, y, I

a), (x
′

, y
′

, Ib))≈
〈
V

a
xy,V

b
x′y′

〉
, V i

xy=↑⊗rv
i
xy,

where i ∈ {a, b}. Next, tensors Vxy are aggregated over

image regions Ra and R
b as:

∑

(x,y)∈Ra

Kr
rbf ((x, y, I

a), (x
′

, y
′

, Ib)) ≈
〈
V̄

a
, V̄

b
〉
,

where V̄
i
= Avg
(x,y)∈Ri

V
i
xy, (21)

and (x
′

, y
′

)∈R
b : x

′

=x−xa
0+xb

0 ∧ y
′

=y−ya0+yb0. (22)

The aggregation step in (21) is analogous to (2-3) and step

(ii) in Section 5. We shift the origin xa
0 to xb

0 and obtain x
′

in R
b corresponding to x in R

a. Next, higher-order auto-

correlation tensors V̄ are formed, which are whitened using

(4-7). Our experiments use r = 3. Using dictionary learn-

ing and sparse coding, we generate mid-level features, one

per region. Given a test image and a set of overlapping re-

gions, we perform pooling [19] over such mid-level features

to obtain a descriptor that is then used in a classifier.
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Brodatz UIUC PASCAL VOC07

d 30 35 45 101

sig. size 4960 7770 16215 176851

K 100–2000 2000 4000 25000

compr. 49.6×–2.48× 3.88× 4.05× 7.07×

Table 3: Compression rates (sig. size – number of unique coeffi-

cients per tensor, d – side dimension, K – vocabulary size).
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