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Abstract

Many non-rigid 3D structures are not modelled well

through a low-rank subspace assumption. This is problem-

atic when it comes to their reconstruction through Structure

from Motion (SfM). We argue in this paper that a more ex-

pressive and general assumption can be made around com-

pressible 3D structures. The vision community, however,

has hitherto struggled to formulate effective strategies for

recovering such structures after projection without the aid

of additional priors (e.g. temporal ordering, rigid substruc-

tures, etc.). In this paper we present a “prior-less” ap-

proach to solve compressible SfM. Specifically, we demon-

strate how the problem of SfM - assuming compressible 3D

structures - can be theoretically characterized as a block

sparse dictionary learning problem. We validate our ap-

proach experimentally by demonstrating reconstructions of

3D structures that are intractable using current state-of-the-

art low-rank SfM approaches.

1. Introduction

A 3D shape can often be well-approximated as a linear

combination of just a few elements from a set of basis or

dictionary. When this approximation is exact we say that

the 3D shape is sparse. In reality, few real-world 3D shapes

are truly sparse, rather they are “compressible” [7], mean-

ing they can be well-approximated by a sparse 3D shape.

A scenario often entertained in Sf M literature [5, 8] is that

the same few K dictionary bases can be employed for ap-

proximating a set of 3D shape instances (see Figure 1(a)) -

these fixed set of basis vectors form the canonical low-rank

3D assumption. We shall refer herein to the finite set of 3D

shape instances as the 3D structure.

In compressible Sf M we make a similar assumption to

classical low-rank Sf M [5, 8] where we assume each 3D

shape instance can be described using only K dictionary

bases, but a different set of K basis vectors can be employed

for each shape instance (see Figure 1(b)). These set of 3D

shape instances do not form a single linear subspace, they

Figure 1: In this paper we explore the problem of “compressible”

structure from motion (Sf M). In this approach we assume a set

of 3D shapes, stemming from a non-rigid 3D structure, can be

well approximated by a few (i.e. K) examples of elements from

an unknown basis or dictionary. Classical low-rank Sf M makes a

similar assumption but assumes that the same K elements within

the dictionary will be used to approximate all 3D shape instances

- see (a). Our approach differs in this regard, where we allow for

the employment of different K elements within the dictionary for

each 3D instance - see (b). We describe a novel algorithm, based

on block sparse dictionary learning, for obtaining Sf M reconstruc-

tions that were previously deemed intractable using the low-rank

assumption employed by current state-of-the-art methods [8].

can instead be thought of as existing in a union of
(

L

K

)

sub-

spaces where L is the total number of basis vectors avail-

able. An obvious advantage of this compressible 3D struc-

ture assumption is the ability to model a much broader set

of 3D structures. A drawback to the assumption, however,

is discovering which of the potentially very large number

of
(

L

K

)

subspaces best describes the actual 3D shape in-

stance - solely from its 2D projection. It is this dilemma

which is at the heart of our paper.
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Contributions: In this paper we make the following con-

tributions:

• We demonstrate that a compressible 3D structure

under weak perspective projection is 2 × 3 block-

compressible. Based on this insight, we re-interpret

compressible Sf M as a block sparse dictionary learn-

ing problem.

• We theoretically characterize the uniqueness of block

sparse dictionary learning. Further, we show how the

uniqueness of block sparse dictionary learning can be

utilized to efficiently recover the camera motion and

3D structures. We also propose the employment of dic-

tionary coherence as a measure of reconstructibility of

the 3D structures without ground truth.

• Finally, we show empirically the utility of our ap-

proach for reconstructing compressible 3D structures

using a block-sparse adaptation of the K-SVD algo-

rithm [18]. Impressive reconstruction results are re-

ported on both synthetic and real-world compressible

3D structures.

2. Background

Weak perspective Sf M deals with the problem of factor-

izing an image measurement matrix W as the product of

camera motion (projection) matrix M and a shape S, such

that,

W = MS (1)

where S is the 3D structure consisting of P points deform-

ing over F frames, resulting in a 3F × P concatenated ma-

trix of points[5].

Throughout this paper we consider weak perspective

cameras, which is a reasonable assumption for objects

whose variation in depth is small compared to their dis-

tance from the camera. We further assume that the mea-

surement matrix is already centered, so the camera matrix

reduces to a 2F × 3F block diagonal matrix whose blocks

M1 . . .MF are each 2× 3 matrices. The weak perspective

camera assumption implies an orthonormal constraint such

that MfM
T
f = σ2I2. A common assumption [5, 23] is

to constrain the reconstructed 3D set to have fixed rank K
such that S♯ = C♯B♯ where B♯ ∈ R

K×3P , C♯ ∈ R
F×K

and S♯ is a F × 3P reshape of S such that

W = M(C♯ ⊗ I3)B = ΠB (2)

where I3 is a 3×3 identity matrix, B is the 3K×P reshape

of the matrix B♯ and Π = M(C♯ ⊗ I3).

Rigid SfM: For a rigid 3D structure,

S♯ =







sTx , sTy , sTz
...

...
...

sTx , sTy , sTz







S =
[

sx, sy, sz . . . sx, sy, sz
]T

(3)

it is clear that the rank of S♯ must be one (K = 1)

where sx, sy and sz are the P dimensional components

of the x−, y− and z− coordinates of the rigid 3D structure.

From Equation 3 this implies that S must have a rank of less

than or equal to three due to the reshaping operation on S♯.

This insight was used to great effect through the seminal

work of Tomasi & Kanade [19] who demonstrated that one

can compute the decomposition W = Π̂B̂ via an SVD by

preserving the first 3 modes of variation. Tomasi & Kanade

also noted that the decomposition is non-unique, such that

any nonsingular G can be inserted to form a valid factoriza-

tion W = Π̂B̂ = Π̂GG−1B̂ = ΠB. The matrix G is

referred to in literature as the corrective transformation [23].

Low-Rank SfM: Bregler et al. [5] extended the work of

Tomasi & Kanade by assuming that S♯ must be of fixed

rank K > 1 for non-rigid structure. Numerous innovations

have followed, most of them centered around introducing

additional “priors” to make the non-rigid Sf M problem less

ambiguous. Notable examples of additional priors include:

basis [23], temporal [3, 20, 25], articulation [15, 22], and

camera motion [13] constraints. These priors, although use-

ful for making the low-rank Sf M problem tractable, consid-

erably limit its applicability to scenarios where these con-

straints do not hold.

3. Related Work

“Prior-less” SfM: Of particular interest in this paper is

the recent work of Dai et al. [8], who asked the question:

what are the minimal set of constraints/priors required to

find a unique solution to the problem of low-rank Sf M?

The authors proposed an approach to whose only prior was

to assume that the non-rigid 3D structure could be rep-

resented by a linear subspace of known rank K. In this

work Dai et al. proposed a strategy for estimating the cor-

rective transformation matrix G whereby both the camera

motion M and the 3D structure S can be obtained. This

approach offered a practical breakthrough to the problem

of low-rank Sf M, which had previously been touted [23] as

being theoretically impossible to solve without additional

prior/constraints. In this paper we want to ask a similar

question: what are the minimal set of constraints/priors re-

quired to find a unique solution to the problem of compress-

ible Sf M?

Manifold SfM: Notable efforts have been previously un-

dertaken in literature to replace the low-rank linear subspace
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assumption with a manifold learning [16, 13]. Most no-

table is the recent work of Gotardo and Martinez [13] who

demonstrated how the “kernel trick” could be employed to

model 3D shape as a non-linear subspace. A drawback to

this approach, however, was its reliance on additional ba-

sis constraints limiting the approach’s applicability to the

prior-less Sf M problems of interest within this paper.

There is some overlap between our proposed method

here, as it has been demonstrated [9] that the field of mani-

fold learning has a strong link to the recovery of compressed

signals. Specifically, it has been demonstrated that a set

of K sparse signals forms a K-dimensional Riemannian

manifold. Further, it can be shown [9] that many manifold

models can be expressed as an infinite union of subspaces.

Union of subspaces SfM: Recently, Zhu et al. [25] demon-

strated a strategy for utilizing a union of local subspaces as-

sumption within Sf M. Specifically, the authors utilized an

adaptation of Dai et al. [8] Sf M approach - which simul-

taneously reconstruct the 3D structure and affinity matrix.

The affinity matrix is of importance as it naturally encodes

the cluster/subspace membership of each projected shape

sample. Although exhibiting superior performance to Dai

et al.’s approach for 3D structures that do not adhere to the

low-rank assumption, the approach requires prior knowl-

edge of the camera motion. Our proposed approach shares

some commonalities with Zhu et al.’s work in that we are

also making a union of subspaces assumption. An impor-

tant difference, however, in our proposed approach is that

we do not rely on any additional priors other than that the

3D structure is compressible. Specifically, we are able to

automatically recover the camera matrices along with the

3D structure from a set of 2D projections.

Compressible SfM: The assumption that a 3D structure is

compressible has been previously explored in Sf M litera-

ture [26, 24]. Of particular note here is the work of Zhu

and Lucey [26] where the authors: (i) assumed that the 3D

structure is in a known temporal order, (ii) the camera mo-

tions are known, and (iii) the sparse basis is known a priori.

Although sharing a similar assumption of the 3D structure

being compressible, our work differs considerably to this

work in that we employ no prior/constraints.

4. Uniqueness of SDL

An important component of our paper is associated with

the uniqueness of Sparse Dictionary Learning (SDL) as it

is sometimes known in literature [14]. In general terms the

problem of SDL can be described as

argmin
D,Z
‖X −DZ‖2F s.t. ‖zi‖0 = K, i = 1 : N (4)

where we are trying to recover the concatenation of a sparse

coefficient matrix Z and dictionary basis D from a known

set of signals in X ∈ R
D×N . Specifically, the sparse co-

efficient matrix is the concatenation of K−sparse coeffi-

cient vectors Z =
[

z1, . . . , zD
]

, and concatenation of D =
[

d1, . . . ,dM

]

dictionary basis vectors. An important ques-

tion to ask in the context of applying SDL to Sf M is how

unique is the solution to Equation 4?

Hillar et al. [14] recently characterized theoretically the

answer to this question. The authors define that if any

valid solution {D̂, Ẑ} to the SDL objective in Equation 4

is ambiguous up to a M × M permutation matrix P and

a diagonal invertible weighting matrix Λ such that D̂ =
DPΛ, and Ẑ = Λ

−1P TZ, they say that X has a unique

SDL. Moreover, they proved theoretically that, given large

enough N 1, the uniqueness of SDL is achieved if and only

if the dictionary D satisfies the spark condition: 2:

Dz1 = Dz2 for K-sparse z1, z2 ∈ R
M ⇒ z1 = z2.

(5)

Coherence as a proxy: The spark condition provides a

complete characterization on the uniqueness of SDL. How-

ever, verifying whether a matrix D satisfies the spark con-

dition is an NP-hard problem, which has to visit all
(

M

K

)

subspaces. It is preferable in practice to use properties of D

that are easily computable such as coherence - which mea-

sures the largest absolute inner product between any two

column vectors in the matrix - and with high probability is

indicative of the spark condition of the matrix. In the exper-

imental portion of this paper we shall demonstrate how the

coherence of a matrix can be utilized to predict the recon-

structibility of a 3D structure solely from its 2D projections.

Block SDL: As we will discuss in the next section, there is

a strong connection between compressible Sf M and Block

SDL (BSDL). BSDL is a generalization of the SDL objec-

tive in Equation 4:

argmin
D,Z
||X −DZ||2F s.t.||Zi||0,α = K, i = 1 : N/β,

(6)

where Zi ∈ R
D×β is a submatrix of Z, i.e. Z =

[

Z1, ...,ZN/β

]

. Each Zi is divided into M/α blocks of

size α × β and ‖Zi‖0,α counts the number of blocks of

which at least one element is non-zero. α and β need to

be chosen such that D and M are perfectly divisible. One

of particular importance in our compressible Sf M problem

is 3×2 block-sparsity which we will describe in more detail

in the next section on compressible Sf M.

Definition 1. If any valid solution {D̂, Ẑ} to the objec-

tive in Equation 6 is ambiguous only up to a M × M
block permutation matrix Pα and a block-diagonal invert-

ible weighting matrix Λα such that D̂ = DPαΛα, and

Ẑ = Λ
−1
α P T

α Z, we say X has a unique BSDL.

1Hillar et al. offer a lower bound for N , refer to [14] for full discussion
2Refer to [14] for the proof.
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The block permutation matrix is actually defined

as Pα = P ⊗ Iα where P is an arbitrary (M/α)× (M/α)
permutation matrix and Iα is a α × α identity matrix. The

block-diagonal invertible weighting matrix Λα has a α× α
block structure. We now ask the same question: what is

the sufficient and necessary condition for the uniqueness of

BSDL?

Theorem 1. Given large enough N 3, the uniqueness of

BSDL holds if and only if the matrix D satisfies the block

spark condition:

DZ1 = DZ2 for K block-sparse Z1,Z2 ∈ R
M×β

⇒ Z1 = Z2. (7)

The complete mathematical proof of Theorem 1 is of-

fered in supplementary material.

5. “Prior-Less” Compressible SfM

One can view much of the literature of low-rank Sf M

drawing heavily upon the fact that one can obtain a solution

to the rank constrained factorization problem

argmin
Π,B
||W −ΠB||2F , s.t. rank(Π) = 3K (8)

through an SVD. Even though the SVD returns a unique

solution {Π̂, B̂} it is easy to demonstrate that this solution

is just one of many possible solutions to W = Π̂B̂ =
Π̂GG−1B̂ = ΠB where the corrective matrix G is any

non-singular matrix. The ambiguity of this factorization is

problematic for Sf M problems as additional constraints are

required to obtain a unique solution.

For rigid Sf M (i.e. K = 1) the application of cam-

era constraints [19] is typically sufficient in order to find

a correction matrix G that gives a unique solution. Xiao et

al. [23] famously demonstrated for K > 1 that one cannot

determine a unique G since the space of solutions lies in a

nullspace of rank 2K2 − K. Akhter et al. [2] additionally

demonstrated that even though G is not unique, any solution

to G that satisfies the camera constraints returns a valid 3D

shape and camera motion pair. In this paper we want to ex-

plore whether moving away from canonical rank constraints

and instead assuming that Π is block-sparse could result in

a far less ambiguous factorization thus resulting in an Sf M

algorithm that can circumvent current theoretical and prac-

tical limitations.

Why block-sparse?: Let us assume that the unknown 3D

structures S♯ are compressible, that is, the 3D structure in

each frame (each row of S♯) can be approximated by only

K basis shapes (K rows of B♯.) Therefore, the factoriza-

tion S♯ = C♯B♯ results in a set of coefficients C♯ ∈ R
F×L

3A lower bound of N can be established for BSDL, please refer to the

supplementary material for full discussion.

whose rows are each K-sparse. As pointed out in the pre-

vious section, one never has access to the 3D structure S♯

a priori only the 2D projections W . Interestingly, however,

if we know S♯ is compressible then from Equation 2 (i.e.

Π = M(C♯ ⊗ I3)) Π must be 2 × 3 block sparse as the

camera matrix M is 2× 3 block-diagonal. It is this insight

that forms the crucial component of our algorithm. From a

known measurement matrix W and desired K,L, one can

factorize W T through a 3×2 BSDL process. Note: for Sf M

W = ΠB, whereas for BSDL this would be expressed as

W T = BT
Π

T where X = W T ,D = BT , and Z = Π
T .

Theorem 2. If one can recover B̂ using a 3×2 BSDL such

that D = B̂T satisfies the block spark condition, then it can

be shown that the transpose of B̂♯ satisfies the canonical

spark condition, where B̂♯ is an L × 3P reshape of B̂.

Further, for such BSDL to be unique, K must be less than

or equal to P/3− 1.

Proof. Suppose two K-sparse vectors z1 and z2 such that

(B̂♯)T z1 = (B̂♯)T z2. Then from the reshape, it follows

that B̂T (z1 ⊗ I3) = B̂T (z2 ⊗ I3). As B̂T satisfies

the block spark condition, it follows that z1 = z2, there-

fore, (B♯)T satisfies the canonical spark condition. Fur-

ther, the uniqueness of the BSDL factorization requires B̂T

to satisfy the block spark condition. This implies that any

P×3(K+1) submatrices generated by concatenating K+1

block columns of B̂T needs to be full column rank4. There-

fore K need to be less than or equal to P/3− 1.

Theorem 2 actually tells us that the uniqueness of the

BSDL factorization on 2D projections automatically guar-

antees the uniqueness of the SDL factorization on the un-

known 3D structures. Interestingly, the converse is not al-

ways true. This result highlights a drawback in our pro-

posed approach, that is, we cannot recover all compress-

ible structures but the subsets where Π̂ is sufficiently sparse

(K ≤ P/3 − 1) and B̂ satisfies the block spark condition.

In the experiments section, we show a strategy that can be

utilized in practice to improve the incoherence of B̂ and

push it to satisfy the block spark condition.

6. Camera and Structure Recovery

As the scale of camera and size of structures are inher-

ently relative, we simply set the camera scale σ to unity,

such that MfM
T
f = I2. Assuming that W = Π̂B̂ has

a unique BSDL, from Definition 1, the corrective matrix G

must be of form G = (P ⊗ I3)Λ. As the permutation am-

biguity has no bearing on camera motion and 3D structure,

we set P to identity, therefore G = Λ.

4A counterexample for contradiction: if K = 2, and b1, b2, b3 are 3

linear dependent block columns of B̂T . In addition, suppose any 2 of them

are linear independent. Then subspace spanned by {b1, b2} are identical

to one by {b1, b3}, which breaks the block spark condition.
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Denote Gj as j-th block on diagonal of G, and

Π̂j ,Πj ∈ R
2F×3 as the j-th coloumn-triplet of Π̂,Π re-

spectively. From the structure of corrective matrix, it fol-

lows that Πj = Π̂jGj , for j = 1, ..., L. Define Ωj as the

set of indices pointing to the block Π̂ij ∈ R
2×3 that is ac-

tive, i.e. Ωj = supp(Π̂j) = {i|1 ≤ i ≤ F, Π̂ij 6= 0}. If

a certain Ωj is empty, it is implied that the corresponding

atom in the dictionary has never been used. We can then

decrease L, and re-learn the dictionary so that Ωj is never

empty.

From Equation 2 (i.e. W = M(C♯ ⊗ I3)B = ΠB), it

is known that Πij = cijMi, where cij is ij−th elements of

C♯. Thus, since Ωj can never be empty, Π̂ijGj = Πij =
cijMi, for each i ∈ Ωj . From camera constraints, it follows

that

Π̂ijGjG
T
j Π̂

T
ij = c2ijMiM

T
i = c2ijI2, i ∈ Ωj , (9)

and for convenience, let Qj = GjG
T
j . Since cij is un-

known, let us eliminate it and rewrite Equation 9 as

(Π̂ijQjΠ̂
T
ij)11 = (Π̂ijQjΠ̂

T
ij)22, (Π̂ijQjΠ̂

T
ij)12 = 0,

(10)

where (·)ij denotes the (i, j)-th elements. Now, de-

note qj = vec(Qj) as the vectorization of Qj . Let us

rewrite Equation 10 in a compact way with the fact that

vec(Π̂ijQjΠ̂ij) = (Π̂ij ⊗ Π̂ij)qj :

[

Π̂ij ⊗ Π̂ij(1, :)− Π̂ij ⊗ Π̂ij(4, :)

Π̂ij ⊗ Π̂ij(2, :)

]

qj = Aijqj = 0,

(11)

where Π̂ij ⊗ Π̂ij(k, :) denotes k-th row of Π̂ij ⊗ Π̂ij .

Stacking all such equations for all i ∈ Ωj , we obtain

Ajqj = 0. (12)

Circumventing the nullspace: One benefit of Equation 12

is that Aj ∈ R
2|Ωj |×9, where |Ωj | is the number of el-

ements in set Ωj , with high possibility will be overcom-

plete as F ≫ L. This result is important as it circum-

vents the nullspace issue faced by low-rank Sf M. This null

space issue can be problematic in many practical scenarios

due to its sensitivity to noise. Similar to Tomasi-Kanade’s

method [19], we simply pick up the eigenvector correspond-

ing to the least eigenvalue of AT
j Aj and then Qk ∈ S

3
+

holds automatically.

Once Qj is estimated, the absolute value of cij can be

computed by Equation 9. The sign of cij , however, is not

able to be determined, which actually is an inherent am-

biguity without assuming any temporal prior of camera or

structures. Considering equation W = MS, any block

diagonal matrix blkdiag(±I3) can be inserted between M

and S, but the compressibility assumption and camera con-

straint still hold. Dai et al. [8] breaks their “prior-free” as-

sertion by restricting the camera movement between frames

to at most ±90◦ to determine the sign of cij . In our paper,

however, we claim that the absolute sign of cij cannot be

determined by current assumption, but the relative sign in

each column can. Thus, the camera matrix and structures

can be recovered but up to a sign ambiguity.

Enforcing camera consistency: Let us consider the sub-

matrix Gj in isolation,

Π̂ijGj = cijMi, for i ∈ Ωj . (13)

One can recover the camera matrices {Mi}i∈Ωj
by solving

the system of equations above. Further, if one was to then

choose another Gk where j 6= k, such that one or more

indexes in Ωj are shared with Ωk, one can equally recover

the camera matrices {M∗
i }i∈Ωk

. An inconsistency arises,

however, such that we cannot guarantee that

M∗
i = Mi, for i ∈ Ωj ∩ Ωk. (14)

This inconsistency does not just occur across pairs of

submatrices within G, but actually across all possible sub-

matrices of G with overlapping active blocks. We attempt

to resolve this inconsistency in a recursive manner by solv-

ing for an orthonormal matrix Hk such that M∗
i Hk = Mi.

First, we choose an arbitrary Gj (typically the one with

most active blocks) and solve for the cameras {Mi}i∈Γ,

where we initially set Γ = Ωj . Then we choose a Gk whose

|Γ ∩ Ωk| is largest. We solve for the cameras {M∗
i }i∈Ωk

,

and then find an orthonormal Hk such that,

argmin
Hk,η

∑

i∈Γ∩Ωk

‖Mi − ηiM
∗
i Hk‖F

s.t. HT
k Hk = I, ηi = {+1,−1},

(15)

where ηi contains the relative sign of elements in C♯ for Γ.

For the element in C♯ that are not explicitly defined through

η, we set them arbitrarily to be positive. We then update

Γ ← Γ ∪ Ωk and repeat the process until all cameras and

relative signs in C♯ are known.

The structure matrix S is then recovered by (C♯ ⊗
I3)H

−1G−1B, where H is a matrix with H1, ...,HL on

main diagonal.

7. BSDL Algorithm

In this section, we describe our BSDL algorithm that

adapts K-SVD [18], OMP [21] and FOCUSS [11] to block

sparse situation respectively. However, any valid BSDL

method can be employed here as long as it returns a valid

factorization W = Π̂B̂.

Block K-SVD: Similar to regular K-SVD, block K-SVD

is an iterative algorithm with 2 steps: 1) Fixing dictionary,

solve block-sparse representation by block OMP or block
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FOCUSS, and 2) Fixing block-sparse pattern, update dic-

tionary by SVD. The only alternation from regular K-SVD

is to keep the first α singular values instead of one when

updating each block columns of the dictionary. For com-

pressible Sf M α = 3. The techniques to get rid of local

minimal reported in [18] are also valid and serve in block

K-SVD.

Block OMP: To solve block sparse approximation problem,

we extend regular Orthogonal Matching Pursuit (OMP) [21]

to block OMP. Both of them are greedy algorithms pick-

ing the first K atoms in dictionary describing the signal

best. Specifically, in each iteration, block OMP computes

the inner product of residual and each dictionary atoms left,

and picked the atoms corresponding to least inner product

value. Then it computes coefficients, associates with cho-

sen atoms, updates residual and repeats until the number of

chosen atoms hits the known number K. Block OMP is

efficient compared to block FOCUSS, but it succeeds only

when the dictionary is sufficient incoherent.

Block FOCUSS: Serving the same function as block OMP,

we adapt FOcal Underdetermined System Solver (FO-

CUSS) [11] to block FOCUSS to estimate the block sparse

approximation. Block FOCUSS and FOCUSS are iterative

algorithms solving the ℓp-norm (p < 1) relaxation of block

sparse approximation and regular sparse approximation re-

spectively. The only difference between them is the design

of the weight matrix Wpk (refer to [11] for more detail.)

Other than letting Wpk = diag(xk−1), block FOCUSS up-

dates Wpk by the Frobenius norm of each block in xk−1,

which promotes elements in one block to be either all ac-

tive or all zeros. A regularization technique [17] serves also

in block FOCUSS balancing the approximation error and

sparsity of estimated coefficients. Block FOCUSS can often

achieve successful block-sparse estimation even in circum-

stances where block OMP fails. One drawback, however, is

its speed as it is dramatically slower than block OMP.

Initialization: The BSDL factorization itself is inherently

an NP-hard problem, therefore it is important to have a good

initialization. We relax the BSDL objective using a block

ℓ1-norm, and solve the relaxed problem by Alternating Di-

rection Method of Multipliers (ADMM) [4, 1, 10, 6]. Even

though the relaxed problem is not convex either, ADMM

splits the objective into several small convex sub-problems

by introducing several auxiliary variables. A stationary

point can be achieved for our ADMM initialization through

the judicious choice of parameters [6].

8. Experiments

MATLAB code has been released, check ci2cv.net/paper

for further information.

Compressibility: Our first experiment explores the com-

pressibility of real 3D structures from the CMU Motion

Capture dataset, where we learned various dictionaries with

different dictionary size L and sparsity level K. Figure 2

clearly shows that the real 3D structures are modelled well

by our compressibility assumption and the coherence of the

learned dictionary is being controlled by balancing the ap-

proximation error. This result offers a strategy to achieve

a unique BSDL factorization at the cost of approximating

structures less precisely, which extends the application of

our method.

Figure 2: The results of SDL factorization for Motion-4 by

Subject-5 in CMU Motion Capture. Left: The approximation er-

ror. Right: The coherence of learned dictionary. With the decrease

of K and L, the coherence of learned dictionary becomes better at

the cost of approximating structures less precisely.

Recovering temporal order: In Figure 4 we demonstrated

that the sparse codes recovered using our method have a

natural temporal coherence. This indicates our prior-less

approach could be useful for the recovery of the temporal

order of 3D structures in future applications. The full anal-

ysis of this phenomena is outsize of the scope of this paper.

High-rank performance: To verify the performance of the

proposed method on high-rank and full-rank structures, we

conducted experiments with synthetic data where the rank

of structures is easily controlled. We utilized Dai et al.’s

work5 as a baseline, which demonstrated that it outperforms

other low-rank Sf M methods in [8].

Figure 3: Left: The error of estimated camera matrix. Right: The

error of estimated structures. The error matrices follows [3, 12, 8].

Our methods obtained nearly perfectly results irrespective to rank

of structures.

5In all our experiments, we visit all possible rank k in [8] to get a final

estimation
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Figure 4: Top: 10 learned basis structures for Motion-4 by Subject-5 in CMU Motion Capture when K = 2, L = 10. These bases

are learned from 3D shape sequences and identical to those learned from 2D image sequences, due to the uniqueness of BSDL. Bottom:

The visualization of coefficients. The coefficients of each atoms varies gradually in a shape of Gaussian distribution, which reveals the

temporal information of video sequence. It is not used in Sf M, but may be useful for recovering the temporal order of 3D structure in

future applications.

The compressible structure S, with 100 frames and 30

points in each frames, are generated by random dictionary

of size L, such that rank(S) = 3L. We repeat the proposed

method as well as Dai et al.’s method 50 times for each

L from 3 to 12. The results are summarized in Figure 3.

It is seen that our method works perfectly and robustly on

structures with any rank, while the low-rank Sf M fails in

high-rank and full-rank situations. Moreover, even in low-

rank situation, the proposed method outperforms the Dai et

al.’s method.

Noise performance: To evaluate the performance under

noise, we repeat the experiments on low-rank structures

(with L = 5) at different noise ratios, defined as
‖W−W0‖F

‖W0‖F
.

The Figure 5 demonstrates that our method is sensitive to

noise. However, it still works no worse than Dai et al.’s

method even at high noise ratios.

Figure 5: Left: The error of estimated camera matrix. Right: The

error of estimated structures. Both x- and y-axis are in logarithm

space. Our method is sensitive to noise, while it still works no

worse than the baseline even at high noise.

Practical performance: The proposed method is evalu-

ated on real compressible structures: Motion-4, -5, -6, -7,

-8 by Subject-5, and Motion-2, -4 by Subject-1, Motion-5

by Subject-2, Motion-3, -4 by Subject-3 and Motion-13 by

Subject-6 in CMU Motion Captures, and a Shark sequence

in [20]. The visual evaluation is summarized in Figure 7,

Figure 6: Coherence of learned dictionaries corresponding to the

4 sequences in Figure 7. The coherence for (d) is too poor to

guarantee the uniqueness of BSDL. In addition, it also shows that

checking the coherence of learned dictionary beforehand is a good

way to predict the performance especially when ground truth are

not accessible.

which shows that our method obtains impressive results in

Figure 7a, 7b, 7c, while it fails in Figure 7d. Actually, this

failure is able to be forecast even without ground truth. As

shown in Figure 6, the coherence of the learned dictionary

for sequence Shark is too poor to guarantee the uniqueness

of the BSDL factorization. This insight offers an effective

way to predict the reconstructibility of 3D structure when

the ground truth structure are not available in practice.

9. Conclusion

In this paper, we demonstrated that a compressible 3D

structure under weak perspective projection is 2× 3 block-

compressible. Moreover, if a 2× 3 unique BSDL factoriza-

tion can be obtained (of the 2D projections), we showed that

the compressible 3D structure and camera motion can be re-

covered solely by the assumption of compressibility. Supe-

rior reconstruction results using our method are achieved in

comparison to Dai et al.’s low-rank Sf M method. Impres-

sive results were demonstrated on both synthetic and real-

world compressible 3D structures. Finally, we proposed the

use of dictionary coherence as a measure of reconstructibil-

ity of the projected 3D structures without ground truth -

4129



(a) Random Sampled frames from Motion-4,-5,-6 by Subject-5.

(b) Random Sampled frames from Motion-3,-4 by Subject-3 and Motion-13 by Subject-6.

(c) Random Sampled frames from Motion-2,-4 by Subject-1 and Motion-5 by Subject-2.

(d) Random Sampled frames from Shark sequence.

Figure 7: Visual evaluation of estimated structures. Red dots: The proposed method. Blue circles: Ground Truth. Green dots: Dai et

al.’s method. The proposed method obtained an impressive performance for compressible structures. However it fails in Shark sequences

due to the poor coherence of learned dictionary.

which adds practical utility of our approach.
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