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Abstract

Almost all of the current top-performing object detection

networks employ region proposals to guide the search for

object instances. State-of-the-art region proposal methods

usually need several thousand proposals to get high recal-

l, thus hurting the detection efficiency. Although the latest

Region Proposal Network method gets promising detection

accuracy with several hundred proposals, it still struggles

in small-size object detection and precise localization (e.g.,

large IoU thresholds), mainly due to the coarseness of its

feature maps. In this paper, we present a deep hierarchical

network, namely HyperNet, for handling region proposal

generation and object detection jointly. Our HyperNet is

primarily based on an elaborately designed Hyper Feature

which aggregates hierarchical feature maps first and then

compresses them into a uniform space. The Hyper Fea-

tures well incorporate deep but highly semantic, interme-

diate but really complementary, and shallow but naturally

high-resolution features of the image, thus enabling us to

construct HyperNet by sharing them both in generating pro-

posals and detecting objects via an end-to-end joint training

strategy. For the deep VGG16 model, our method achieves

completely leading recall and state-of-the-art object detec-

tion accuracy on PASCAL VOC 2007 and 2012 using only

100 proposals per image. It runs with a speed of 5 fps (in-

cluding all steps) on a GPU, thus having the potential for

real-time processing.

1. Introduction

Generic object detection methods are moving from dense

sliding window approaches to sparse region proposal frame-

work. High-quality and category-independent object pro-

∗This work was done when Tao Kong was an intern at Intel Labs China

supervised by Anbang Yao who is responsible for correspondence.
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Figure 1. HyperNet object detection overview. Topleft: top 10

object proposals generated by the network. Topright: detection

results with precision value. Down: object proposal generation

and detection pipeline.

posals reduce the number of windows each classifier needs

to consider, thus promoting the development of object de-

tection. Most recent state-of-the-art object detection meth-

ods adopt such pipeline [28][14][16][12][35]. A pioneer-

ing work is regions with convolutional neural network (R-

CNN)[14]. It first extracts ∼2k region proposals by Selec-

tive Search [33] method and then classifies them with a pre-

trained convolutional neural network (CNN). By employing

an even deeper CNN model (VGG16 [32]), it gives 30% rel-

ative improvement over the best previous result on PASCAL

VOC 2012 [9].

There are two major keys to the success of the R-CNN:

(a) It replaces the hand-engineered features like HOG [6] or

SIFT [25] with high level object representations obtained

from CNN models. CNN features are arguably more dis-

criminative representations. (b) It uses a few thousand-

s of category-independent region proposals to reduce the

searching space for an image. One may note that R-CNN

relies on region proposals generated by Selective Search. S-

elective Search takes about 2 seconds to compute proposals

for a typical 500×300 image. Meanwhile, feature compu-

tation in R-CNN is time-consuming, as it repeatedly applies
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the deep convolutional networks to thousands of warped re-

gion proposals per image [16].

Fast R-CNN [13] has significantly improved the efficien-

cy and accuracy of R-CNN. Under Fast R-CNN, the convo-

lutional layers are pooled and reused. The region of inter-

est (ROI) pooling strategy allows for extraction of high lev-

el feature on proposal windows much faster. Nevertheless,

one main issue of Fast R-CNN is that it relies on Selective

Search. The region proposal generation step consumes as

much running time as the detection network. Another issue

of Fast R-CNN is that the last layer output of a very deep

CNN is too coarse. So it resizes the image’s short size to

600. In this case, a 32×32 object will be just 2×2 when it

goes to the last convolutional layer of VGG16 [32] network.

The feature map size is too coarse for classification of some

instances with small size. Meanwhile, neighboring region-

s may overlap each other seriously. This is the reason why

Fast R-CNN struggles with small objects on PASCAL VOC

datasets.

Recently proposed Region Proposal Network (RPN, also

known as Faster R-CNN) combines object proposal and de-

tection into a unified network [28]. The authors add two ad-

ditional convolutional layers on top of traditional ConvNet

output to compute proposals and share features with Fast R-

CNN. Using 300 region proposals, RPN with Fast R-CNN

produces detection accuracy better than the baseline of Se-

lective Search with Fast R-CNN. However, because of the

poor localization performance of the deep layer, this method

still struggles with small instances and high IoU thresholds

(e.g.,> 0.8)[11]. Moreover, fewer proposals not only re-

duce running time but also make detection more accuracy.

A proposal generator that can guarantee high recall with s-

mall number(e.g., 50) of region boxes is required for bet-

ter object detection system and other relevant applications

[18][19].

Issues in Fast R-CNN and RPN indicate that (a) Fea-

tures for object proposal and detection should be more in-

formative and (b) The resolution of the layer pre-computed

for proposal generation or detection should be reasonable.

The deep convolutional layers can find the object of inter-

est with high recall but poor localization performance due

to the coarseness of the feature maps. While the low layers

of the network can better localize the object of interest but

with a reduced recall [11]. A good object proposal/detection

system should combine the best of both worlds.

Recently, Fully Convolution Network (FCN) is demon-

strated impressive performance on semantic segmentation

task [24][15]. In [24], the authors combine coarse, high lay-

er information with fine, low layer information for seman-

tic segmentation. In-network upsampling enables pixelwise

prediction and learning. Inspired by these works, we devel-

op a novel Hyper Feature to combine deep, coarse informa-

tion with shallow, fine information to make features more

abundant. Our hypothesis is that the information of interest

is distributed over all levels of the convolution network and

should be well organised. To make resolution of the Hyper

Feature appropriate, we design different sampling strategies

for multi-level CNN features.

One of our motivations is to reduce the region propos-

al number from traditional thousands level to one hundred

level and even less. We also propose to develop an efficien-

t object detection system. Efficiency is an important issue

so that the method can be easily involved in real-time and

large-scale applications.

In this paper, we present HyperNet for accurate region

proposal generation and joint object detection as shown in

Figure 1. We demonstrate that proper fusion of coarse-to-

fine CNN features is more suitable for region proposal gen-

eration and detection. Our main results are:

• On object proposal task, our network achieves 95% re-

call with just 50 proposals and 97% recall with 100

proposals, which is significantly better than other ex-

isting top methods.

• On the detection challenges of PASCAL VOC 2007

and 2012, we achieve state-of-the-art mAP of 76.3%

and 71.4%, outperforming the seminal Fast R-CNN by

6 and 3 points, correspondingly.

• Our speeding up version can guarantee object proposal

and detection accuracy almost in real-time, with 5 fps

using very deep CNN models.

2. Related Work

In this section, we review existing object proposal and

detection methods most related to our work, especially deep

leaning based methods.

Object proposals [5][22][36][4] considerably reduce

the computation compared with sliding window method-

s [10][26] in detection framework. These methods can be

classified into two general approaches: traditional method-

s and deep learning based methods. Traditional methods

attempt to generate region proposals by merging multiple

segments or by scoring windows that are likely be included

in objects. These methods unusually adopt cues like super-

pixels [33], edges [36][5], saliency [1] and shapes [2][23]

as features . Recently, some researchers are using CNN to

generate region proposals. Deepbox [22] is trained with a

slight ConvNet model that learns to re-rank region propos-

als generated by EdgeBoxes [36]. RPN [28] has joined re-

gion proposal generator with classifier in one stage or two

stages. Both region proposal generation and detection re-

sults are promising. In DeepProposal [11], a coarse-to-fine

cascade on multiple layers of CNN features is designed for

generating region proposals.
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Figure 2. HyperNet object detection architecture. Our system (1) takes an input image, (2) computes Hyper Feature representation, (3)

genrates 100 proposals and (4) classifies and makes adjustment for each region.

Object detection aims to localize and recognize every ob-

ject instance with a bounding box [9][30]. The DPM [10]

and its variants [7][3] have been the dominating methods for

years. These methods use image descriptors such as HOG

[6], SIFT [25], and LBP [34] as features and sweep through

the entire image to find regions with a class-specific maxi-

mum response. With the great success of the deep learning

on large scale object recognition [21], several works based

on CNN have been proposed[31][35][13]. Girshick et al.

[14] propose R-CNN. In this framework, a few thousand

category-independent region proposals are adopted for ob-

ject detection. They also develop a fast version with higher

accuracy and speed [16][13]. Spyros et al. [12] build a pow-

erful localization system based on R-CNN pipeline. They

add semantic segmentation results to enhance localization

accuracy. In MultiBox [8], region proposals are generated

from a CNN model. Different from these works, Redmon

et al. [27] propose a You Only Look Once (YOLO) frame-

work that predicts bounding boxes and class probabilities

directly from full images. Among these methods, R-CNN,

Fast-RCNN and MultiBox are proposal based methods. Y-

OLO is proposal free method. In practice, proposal based

methods completely outperform proposal free methods with

respect to detection accuracy. Some methods share similar-

ities with our work, and we will discuss them in more detail

in Section 4.

3. HyperNet Framework

Our HyperNet framework is illustrated in Figure 2. Ini-

tially, an entire image is forwarded through the convolution-

al layers and the activation maps are produced. We aggre-

gate hierarchical feature maps and then compress them into

a uniform space, namely Hyper Feature. Next, a slight re-

gion proposal generation network is constructed to produce

about 100 proposals. Finally, these proposals are classified

and adjusted based on the detection module.

3.1. Hyper Feature Production

Given an image, we apply the convolutional layers of a

pre-trained model to compute feature maps of the entire im-

age. As Fast R-CNN, we keep the image’s aspect ratio and

resize the short side to 600. Because of subsampling and

pooling operations in CNN, these feature maps are not at

the same resolution. To combine multi-level maps at the

same resolution, we carry out different sampling strategies

for different layers. We add a max pooling layer on the

lower layer to carry out subsampling. For higher layers,

we add a deconvolutional operation (Deconv) to conduc-

t upsampling. A convolutional layer (Conv) is applied to

each sampled result. The Conv operation not only extracts

more semantic features but also compresses them into a u-

niform space. Finally, we normalize multiple feature maps

using local response normalization (LRN)[20] and concate-

nate them to one single output cube, which we call Hyper

Feature.

Hyper Feature has several advantages: (a) Multiple lev-

els’ abstraction. Inspired by neuroscience, reasoning across

multiple levels has been proven beneficial in some computer

vision problems [15][16]. Deep, intermediate and shallow

CNN features are really complementary for object detec-

tion task as shown in experiments. (b) Appropriate resolu-

tion. The feature map resolution for a resized 1000×600

image will be 250×150, which is more suitable for detec-

tion. (c) Computation efficiency. All features can be pre-

computed before region proposal generation and detection

module. There is no redundant computation.

3.2. Region Proposal Generation

Designing deep classifier networks on top of feature ex-

tractor is as important as the extractor itself. Ren et al.

[29] show that a ConvNet on pre-computed feature map-

s performs well. Following their findings, we design a

lightweight ConvNet for region proposal generation. This

ConvNet includes a ROI pooling layer, a Conv layer and a
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Fully Connect (FC) layer, followed by two sibling output

layers. For each image, this network generates about 30k

candidate boxes with different sizes and aspect ratios.

The ROI pooling performs dynamic max pooling over

w × h output bins for each box. In this paper, both w and

h are set to 13 based on the validation set. On top of the

ROI pooling output, we add two additional layers. One en-

codes each ROI position into a more abstract feature cube

(13×13×4) and the other encodes each cube into a short

feature vector (256-d). This network has two sibling output

layers for each candidate box. The scoring layer computes

the possibility of an object’s existence and the bounding box

regression layer outputs box offsets.

After each candidate box is scored and adjusted, some

region proposals highly overlap each other. To reduce re-

dundancy, we adopt greedy non-maximum suppression (N-

MS) [14] on the regions based on their scores. For a

box region, this operation rejects another one if it has an

intersection-over-union (IoU) overlap higher than a given

threshold. More concretely, we fix the IoU threshold for N-

MS at 0.7, which leaves us about 1k region proposals per

image. After NMS, we select the top-k ranked region pro-

posals for detection. We train the detection network using

top-200 region proposals, but evaluate different numbers at

test time.

3.3. Object Detection

The simplest way to implement object detection is to

take the FC-Dropout-FC-Dropout pipeline [13][28][29].

Based on this pipeline, we make two modifications. (a) Be-

fore FC layer, we add a Conv layer (3×3×63) to make the

classifier more powerful. Moreover, this operation reduces

half of the feature dimensions, facilitating following com-

putation. (b) The dropout ratio is changed from 0.5 to 0.25,

which we find is more effective for object classification. As

the proposal generation module, the detection network also

has two sibling output layers for each region box. The dif-

ference is that there are N+1 output scores and 4×N bound-

ing box regression offsets for each candidate box (where N

is the number of object classes, plus 1 for background).

Each candidate box is scored and adjusted using the out-

put layers. We also add a class specific NMS to reduce re-

dundancy. This operation suppresses few boxes, as most

boxes have been filtered at the proposal generation step.

3.4. Joint Training

For training proposals, we assign a binary class label (of

being an object or not) to each box. We assign positive label

to a box that has an IoU threshold higher than 0.45 with any

ground truth box. We assign negative label to a box if its

IoU threshold is lower than 0.3 with all ground truth boxes.

We minimize a multi-task loss function.

L(k, k∗, t, t∗) = Lcls(k, k
∗) + λLreg(t, t

∗) (1)

where the classification loss Lcls is Softmax loss of two

classes. And the second task loss Lreg is bounding box

regression for positive boxes. k∗ and k are the true and pre-

dicted label separately. Lreg(t, t
∗) = R(t − t∗) where R

is the smoothed L1 loss defined in [13]. At proposal gener-

ation step, we set regularization λ = 3 , which means that

we bias towards better box locations. At detection step, we

optimize scoring and bounding box regression losses with

the same weight. t = (tx, ty, tw, th) and a predicted vec-

tor t∗ = (t∗x, t
∗

y, t
∗

w, t
∗

h) are for positive boxes. We use the

parameterizations for t given in R-CNN.

tx = (Gx − Px)/Pw ty = (Gy − Py)/Ph

tw = log(Gw/Pw) th = log(Gh/Ph)
(2)

where P i = (Px, Py, Pw, Ph) specifies the pixel coordi-

nates of the center of proposal P ’s bounding box togeth-

er with P ’s width and height in pixels. Each ground-truth

bounding box G is specified in the same way.

It is not an easy story to design an end-to-end network

that includes both region proposal generation and detection,

and then to optimize it jointly with back propagation. For

detection, region proposals must be computed and adjusted

in advance. In practice, we develop a 6-step training process

for joint optimization as shown in Algorithm 1.

Algorithm 1 HyperNet training process. After 6 steps, the

proposal and detection modules form a unified network.

Step 1: Pre-train a deep CNN model for initializing basic

layers in Step 2 and Step 3.

Step 2: Train HyperNet for region proposal generation.

Step 3: Train HyperNet for object detection using region

proposals obtained from Step 2.

Step 4: Fine-tune HyperNet for region proposal genera-

tion sharing Hyper Feature layers trained in Step 3.

Step 5: Fine-tune HyperNet for object detection using re-

gion proposals obtained from Step 4, with shared Hyper

Feature layers fixed.

Step 6: Output the unified HyperNet jointly trained in

Step 4 and Step 5 as the final model.

Before step 4, object proposal and detection networks are

trained separately. After fine-tune of step 4 and step 5, both

networks share Network for Hyper Feature Extraction mod-

ule as seen in Figure 2. Finally, we combine two separate

networks into a unified network. For proposal/detection, we

used a learning rate of 0.005 for the first 100k mini-batches,

and 0.0005 for the next 50k mini-batches both in training

and fine-tuning. At each mini-batch, 64 RoIs were sampled

from a image. We used the momentum term weight 0.9 and

the weight decay factor 0.0005. The weights of all new lay-

ers were initialized with “Xavier”. In [28], Ren et al. devel-

op a 4-step training strategy to share Region Proposal Net-

work with Fast R-CNN. However, we train region proposal
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generation and detection networks with more powerful fea-

tures. In addition, the detection module is also redesigned.

3.5. Speeding up

In region proposal generation module, the number of

ROIs to be processed is large and most of the forward time is

spent in it (about 70% of the total time). This module needs

repeatedly evaluate tens of thousands of candidate boxes as

shown in Figure 3 top.

scoring

bbox reg

Hyper Feature maps Speeding up

Object Detection

scoring

bbox reg

3X3X4

conv

256

fc
ROI Pooling

Object Detection

Hyper Feature maps

3X3X4

conv
ROI 

Pooling

256

fc

Figure 3. HyperNet speed up. We move the 3×3×4 convolutional

layer to the front of ROI pooling to accelerate test speed.

Recognizing this fact, we make a minor modification to

speed up this process. As shown in Figure 3, we move the

3×3×4 convolutional layer to the front of ROI pooling lay-

er. This change has two advantages: (a) The channel num-

ber of Hyper Feature maps has been significantly reduced

(from 126 to 4). (b) The sliding window classifier is more

simple (from Conv-FC to FC). Both two characteristics can

speed up region proposal generation process. As we show in

experiments, with a little bit drop of recall, the region pro-

posal generation step is almost cost-free (40× speed up).

We also speed up the object detection module with similar

changes.

4. Comparison to Prior Works

Here, we compare HyperNet with several existing state-

of-the-art object proposal and detection frameworks and

point out key similarities and differences between them.

Fast R-CNN Fast R-CNN [13] is the best performing ver-

sion of R-CNN [14]. HyperNet shares some similarities

with Fast R-CNN. Each candidate box predicts a potential

bounding box and then scores that bounding box using Con-

vNet features. However, HyperNet produces object propos-

al and detection results in a unified network. And the num-

ber of region proposals needed is far less than that of Fast

R-CNN (100 vs 2000). HyperNet also gets more accurate

object detection results.

Faster R-CNN Unlike Fast R-CNN, the region proposals

in Faster R-CNN [28] are produced by RPN. Both Faster

R-CNN and the proposed HyperNet have joined region pro-

posal generator with classifier together. Main differences

are: (a) Faster R-CNN still relies on Fast R-CNN for ob-

ject detection while our system unifies region proposal gen-

eration and detection into a redesigned network. (b) Our

system achieves bounding box regression and region scor-

ing in a different manner. By generating Hyper Feature, our

system is more suitable for small object discovery. (c) For

high IoU thresholds (e.g.,>0.8), our region proposals still

perform well.

Deepbox and DeepProposal Deepbox [22] is a ConvNet

model that re-ranks region proposals generated by Edge-

Boxes [36]. This method follows R-CNN manner to score

and refine proposals. Our model, however, firstly computes

the feature map of an entire image and then applies de-

tection. DeepProposal [11] is based on a cascade starting

from the last convolutional layer of AlexNet [21]. It goes

down with subsequent refinements until the initial layers

of the network. Our network uses in-net sampling to fuse

multi-level CNN features. Using 100 region proposals with

IoU=0.5, HyperNet gets 97% recall, 14 points higher than

DeepProposal on PASCAL VOC 2007 test dataset.

Multi-region & Seg-aware Gidaris et al. [12] propose a

multi-region & semantic segmentation-aware CNN model

for object detection. They enrich candidate box represen-

tations by additional boxes. They also use semantic seg-

mentation results to enhance localization accuracy. Using

these tricks, they get high localization accuracy on PAS-

CAL VOC challenges. However, firstly this method relies

on region proposals generated from Selective Search. Sec-

ondly, it is time-consuming to evaluate additional boxes and

to add semantic segmentation results. In this paper, we pro-

pose to develop a unified, efficient, end-to-end training and

testing system for proposal generation and detection. Hy-

perNet also gets state-of-the-art object detection accuracy

on corresponding benchmarks .

5. Experimental Evaluation

We evaluate HyperNet on PASCAL VOC 2007 and 2012

challenges[9] and compare results with other state-of-the-

art methods, both for object proposal [33][36][28] and de-

tection [13][14]. We also provide deep analysis of Hyper

Feature affection to object proposal and detection perfor-

mances.

5.1. Analysis for Region Proposal Generation

In this section, we compare HyperNet against well-

known, state-of-the-art object proposal generators. Follow-

ing [36][33][28], we evaluate recall and localization accu-

racy on PASCAL VOC 2007 test set, which consists of
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Figure 4. Recall versus IoU threshold on the PASCAL VOC 2007 test set. Left: 50 region proposals. Middle: 100 region proposals.

Right: 200 region proposals.
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Figure 5. Recall versus number of proposals on the PASCAL VOC 2007 test set. Left: IoU=0.5. Middle: IoU=0.6. Right: IoU=0.7.

4,952 images with bounding box annotation for the object

instances from 20 categories.

We compare HyperNet with Selective Search, EdgeBox-

es and the most recently proposed RPN methods. Curves

of recall for methods at different IoU thresholds are plotted.

IoU is defined as w∩b
w∪b

where b and w are the ground truth

and object proposal bounding boxes. We evaluate recall vs.

overlap for a fixed number of proposals, as shown in Figure

4. The N proposals are the top-N ranked ones based on the

confidence generated by these methods.

The plots show that our region proposal generation

method performs well when the region number drops from

2k to one hundred level and even less. Specifically, with 50

region proposals, HyperNet gets 95% recall, outperforming

RPN by 11 points, Selective Search by 42 points and Edge-

boxes by 39 points with IoU = 0.5 (Figure 4 left). Using

100 and 200 region proposals, our network exceeds RPN

by 6 and 4 points correspondingly. HyperNet also surpass-

es Selective Search and EdgeBoxes by a significant margin.

Both RPN and HyperNet achieve promising detection re-

sults compared with methods without CNN. However, for

high IoU thresholds(e.g., > 0.8), the recall of RPN drops

sharply compared with our method. RPN’s features used for

regression at an anchor are of the same spatial size (3×3),

which means different boxes of scales at the same position

share features. It makes sense with loose IoU (e.g., 0.5). But

cannot achieve high recall with strict thresholds [28]. Hy-

perNet achieves good results across a variety of IoU thresh-

olds, which is desirable in practice and plays an important

role in object detectors’ performance [1].

Figure 5 shows recall versus number of proposals for d-

Recall SelectiveSearch Edgeboxes RPN HyperNet HyperNet-SP

50% 300 100 30 5 7

75% 1400 800 250 20 30

Table 1. Region proposal number needed for different recall rate

with IoU=0.7

ifferent methods. Hosang et al. [17] show that this criteria

correlates well with detection performance. An object pro-

posal with 0.5 IoU threshold is too loose to fit the ground

truth object, which usually leads to the failure of later ob-

ject detectors. In order to achieve good detection results,

an object proposal with higher IoU thresholds such as 0.7 is

desired. We also show higher IoU threshold results (Table

1). Achieving a recall of 75% requires 20 proposals using

HyperNet, 250 proposals using RPN, 800 proposals using

EdgeBoxes and 1400 proposals using Selective Search with

IoU=0.7.

5.2. PASCAL VOC 2007 Results

We compare HyperNet to Fast R-CNN and Faster R-

CNN for generic object detection on PASCAL VOC 2007.

This dataset covers 20 object categories, and the perfor-

mance is measured by mean average precision (mAP) on

the test set. All methods start from the same pre-trained

VGG16 [32] network and use bounding box regression. We

refer to VGG16 based HyperNet if not explain specially.

Fast R-CNN with Selective Search achieves a mAP of

70.0%. Faster R-CNN’s result is 73.2%. HyperNet achieves

a mAP of 76.3%, 6.3 points higher than Fast R-CNN and

3.1 points higher than Faster R-CNN. As we have shown

above, this is because proposals generated by HyperNet are

more accurate than Selective Search and RPN. HyperNet
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Approach mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster R-CNN 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

HyperNet(AlexNet) 65.9 70.8 75.2 58.2 57.7 40.5 77.6 76.9 74.9 41.3 71.8 66.9 73.7 79.8 75.9 70.9 35.2 62.4 69.2 74.9 63.6

HyperNet 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5

HyperNet-SP 74.8 77.3 82.0 75.4 64.1 63.5 82.5 87.4 86.6 55.1 79.3 71.5 81.4 84.2 77.6 78.4 45.5 77.4 73.2 78.7 74.8

Table 2. Results on PASCAL VOC 2007 test set (with IoU = 0.5). Rows 3-5 present our HyperNet performance. HyperNet-SP denotes the

speeding up version. The entries with the best APs for each object category are bold-faced

Approach mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

MR-CNN[12] 36.6 49.5 50.5 29.2 23.5 17.9 51.3 50.4 48.1 20.6 38.1 37.5 38.7 29.6 40.3 23.9 15.1 34.1 38.9 42.2 52.1

MR-CNN-Best[12] 48.4 54.9 61.3 43.0 31.5 38.3 64.6 65.0 51.2 25.3 54.4 50.5 52.1 59.1 54.0 39.3 15.9 48.5 46.8 55.3 57.3

HyperNet 58.2 64.9 64.7 52.8 47.9 50.6 73.1 69.8 66.8 34.1 61.8 53.8 61.4 66.4 56.6 57.2 28.5 64.8 60.0 64.5 64.4

HyperNet-SP 57.9 62.7 63.4 52.9 48.3 50.4 75.7 72.5 67.4 33.5 59.3 53.8 60.0 64.9 56.2 57.2 26.1 64.9 60.3 64.1 65.2

Table 3. Results on PASCAL VOC 2007 test set (with IoU = 0.7). Rows 1-2 present Multi-region & Seg-aware methods[12] for comparison.

Rows 3-4 present our HyperNet performance.

is elaborately designed and benefits from more informative

Hyper Feature.

Reasonable resolution of Hyper Feature makes for better

object localization, especially when the object size is small.

For object of small size, our detection network outperforms

Faster R-CNN by a significant margin as seen in Table 2.

For bottle, HyperNet achieves 62.4% AP, 10.3 points im-

provement and for potted plant, HyperNet achieves 51.2%

AP, 12.4 points higher than Faster R-CNN. The speed up

version also keeps up effectiveness. Table 3 shows the de-

tection results with IoU = 0.7, we outperform the best result

of [12] by about 10 points with respect to mAP.

We also present a small network trained based on the

AlexNet architecture[21], as shown in Table 2 (row 3). This

network gets a 65.9% mAP. For small instances such as bot-

tle and potted plant, the detection performance is in compa-

rable with that of the very deep Fast R-CNN model. These

results demonstrate that a light weight HyperNet can give

excellent performance for small object detection.

5.3. PASCAL VOC 2012 Results

We compare against top methods on the comp4 (outside

data) track from the public leaderboard on PASCAL VOC

2012. As the data statistics are similar to VOC 2007, the

training data is the union set of all VOC 2007, VOC 2012

train and validation dataset, following [13]. Networks on

Convolutional feature maps(NoC) [29] is based on SPPNet

[16]. HyperNet achieves the top result on VOC 2012 with a

mAP of 71.4% (Table 4). This is 3.0 points and 1.0 points

higher than the counterparts. For small objects (‘bottle’,

‘chair’, and ‘plant’), our network still outperforms other-

s. The speed up version also gets state-of-the-art mAP of

71.3% with efficiency.

5.4. The Role of Hyper Feature

An important property of HyperNet is that it combines

coarse-to-fine information across deep CNN models. How-

ever, does this strategy really help? We design a set of ex-
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Figure 6. Recall versus number of proposals for different layer

combinations using AlexNet (IoU = 0.5).

periments to elucidate this question. Starting from AlexNet,

we separately train different models and see their perfor-

mances. Firstly, we train a single layer for object proposals

(layer 1, 3 and 5). Secondly, we combine layer 3 and 5

together and finally, layer 1, 3 and 5 are all assembled to

get results. For fairness, feature maps are normalized to the

same resolution and all networks are trained with the same

configuration.

Unsurprisingly, we find that the combination of layer 1,

3 and 5 works the best, as shown in Figure 6. This result

indicates two keys: (a) The multi-layer combination works

better than single layer, both for proposal and detection. (b)

The last layer performs better than low layers. This is the

reason why most systems use the last CNN layer for region

proposal generation or detection [11][14][13]. The detec-

tion accuracy with respect to mAP is shown in Table 5.

5.5. Combine Which Layers?

Hyper Feature is effective for region proposal generation

and detection, mainly because of its richness and appropri-

ate resolution. But it also raises another question: which

layers should we combine to get the best performance?
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Approach mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster R-CNN 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

NoC 68.8 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1

HyperNet 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

HyperNet-SP 71.3 84.1 78.3 73.3 55.5 53.6 78.6 79.6 87.5 49.5 74.9 52.1 85.6 81.6 83.2 81.6 48.4 73.2 59.3 79.7 65.6

Table 4. Results on PASCAL VOC 2012 test set reported by the evaluation server. Rows 4-5 present our HyperNet performance. HyperNet-

SP denotes the speeding up version.

Layers Proposal recall Detection mAP

1 82.15% 62.8%

3 93.19% 63.8%

5 94.98% 64.2%

3+5 95.00% 64.4%

1+2+3 94.79% 63.8%

3+4+5 95.43% 64.7%

1+3+5 96.16% 65.9%

Table 5. Proposal and detection performance with different layer

combination strategies. The region proposal number is 100 for

evaluation (IoU = 0.5).

To answer this question, we train three models based on

AlexNet. The first model combines layer 1, 3 and 5. The

second network combines layer 1, 2 and 3 and the final

model combines layer 3, 4 and 5. In this section, all net-

works are trained with the same configuration.

Figure 6 shows region proposal performances for differ-

ent models. There is no sharp difference within these re-

sults. However, combining layer 1, 3 and 5 outperforms

other networks. Because adjacent layers are strongly corre-

lated, combinations of low layers or high layers behave not

that excellent. This indicates that the combination of wider

coarse-to-fine CNN features is more important.

We evaluate the detection performance on PASCAL

VOC 2007 for these models (see Table 5). Combining layer

1, 3 and 5 also gets the best detection result (mAP=65.9%).

These detection results demonstrate the effectiveness of the

low-to-high combination strategy.

5.6. Hyper Feature Visualization

Figure 7 shows visualizations for Hyper Features. The

feature maps involve not only the strength of the responses,

but also their spatial positions. We can see that the feature

maps have the potentiality of projecting objects. The area

with obvious variation in visualization is more likely to be

or part of an object with interest. For example, the particular

feature map focuses on cars, but not the background build-

ings in the first picture. These objects in the input images

activate the feature maps at the corresponding positions.

5.7. Running Time

We evaluate running time for methods on PASCAL VOC

2007 test dataset, as shown in Table 6. For Selective Search,

we use the ’fast-mode’ as described in [13]. Our basic Hy-

perNet system takes 1.14 seconds in total, which is 2×

Figure 7. Hyper Feature visualization. Row 1 and 3: input images.

Row 2 and 4: corresponding Hyper Feature maps

faster than Fast R-CNN. With shared Conv features, the

speed up version only takes 20 ms to generate proposals.

The total time is 200 ms, which is on par with Faster R-

CNN (5 fps) [28].

Method Conv(shared) Proposal Detection Total

Fast R-CNN 140 2260 170 2570

HyperNet 150 810 180 1140

HyperNet-SP 150 20 30 200

Table 6. Timing (ms) on an Nvidia TitanX GPU, except Selective

Search proposal is evaluated in a single CPU.

6. Conclusion

We have presented HyperNet, a fully trainable deep ar-

chitecture for joint region proposal generation and objec-

t detection. HyperNet provides an efficient combination

framework for deep but semantic, intermediate but comple-

mentary, and shallow but high-resolution CNN features. A

highlight of the proposed architecture is its ability to pro-

duce small number of object proposals while guaranteeing

high recalls. Both the basic HyperNet and its speed up ver-

sion achieve state-of-the-art object detection accuracy on s-

tandard benchmarks.
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