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Abstract

Controlled light conditions improve considerably the

performance of most computer vision algorithms. Dynamic

light conditions create varying spatial changes in color and

intensity across the scene. These condition, caused by a

moving shadow for example, force developers to create al-

gorithms which are robust to such variations. We suggest a

computational camera which produces images that are not

influenced by environmental variations in light conditions.

The key insight is that many years ago, similar difficulties

were already solved in radio communication; As a result

each channel is immune to interference from other radio

channels. Amplitude Modulated (AM) video camera sepa-

rates the influence of a modulated light from other unknown

light sources in the scene; Causing the AM video camera

frame to appear the same - independent of the light con-

ditions in which it was taken. We built a prototype of the

AM video camera by using off the shelf hardware and tested

it. AM video camera was used to demonstrate color con-

stancy, shadow removal and contrast enhancement in real

time. We show theoretically and empirically that: 1. the

proposed system can produce images with similar noise lev-

els as a standard camera. 2. The images created by such

camera are almost completely immune to temporal, spatial

and spectral changes in the background light.

1. Introduction

Many image and video analysis algorithms demonstrate

their performance in a dark room with no background lights

[1] [2]. Added dynamic background lights, which vary in

space, time, and spectra, force these algorithms to compen-

sate for the presence of additional lights. A camera, which

creates the same image (Fig.1) anywhere, could solve this

problem and promote the common use of many state of

the art algorithms in consumer products independent of dy-

namic light conditions.

An example for such dynamic light condition is a casted

shadow upon an object (Fig.2(a)). This generates video

Figure 1. AM video camera enable working in stable illumination

conditions independent of the background illumination

(a) Regular Camera (b) AM video camera

Figure 2. (a) Image with shadows, low contrast, and color cast.

(b) Proposed method with no shadows, correct color (white wall),

and improved contrast.

frames with changing intensity and color across space and

time. Removing these casted shadows is done by separating

the effect a singlet light source has on the scene. This light

13698



Figure 3. Pixel measurement is a superposition of the incident

light of the modulated light source and the background light.

Figure 4. Complex light conditions create multiple shadows.

source separation clears casted shadows, corrects color, and

enhances contrast (Fig.2(b)). Thus creating the same image

under any light condition is done by light source separation.

Light source separation on video can be performed by

one of the two approaches - passive solution or active so-

lution. Passive solutions compensate for the effect of the

unwanted background lights by assuming a pre-known be-

havior of light upon objects in the scene. Spatially vary-

ing light conditions, for example, raise the challenge bar on

color constancy algorithms [3][4][5][6]. Active solutions

use a controlled light source in order to clear the effect of

the background lights in the scene. Flash no flash [7][8][9],

for example, is a common active solution, which generates

results from two captured frames: first with flash on, sec-

ond with flash off. It assumes a static background [10] and

precise synchronization between flash and camera. Video

color correction [11] [12] and shadow removal [13] are usu-

ally treated as separate problems in the literature. There-

for shadow removal and color correction combined could

enhance the performance of many video analysis methods

such as object tracking [14] and face detection [15].

1.1. Contributions:

Our active solution proposes the following contributions:

• Light source separation: capture a frame that records

the contribution of a single light source, and clear

Figure 5. In radio communication (Left Side) the AM Carrier is

used to modulate the Sound signal into a Amplitude Modulated

(AM) Radio. Proposed method (Right Side) uses a Modulated

Light to illuminate a Patch Reflectance in the scene and create a

Reflected Light Onto a Single Pixel.

out the contributions of other lights, which change in

space, time, or spectra (subsection 2.1).

• Video shadow removal, contrast enhancement, and

color correction: perform all of the above using a low

complexity algorithm in real time video(subsection

2.3).

• Preserving the appearance of an object indepen-

dent of the light conditions: how to maximize re-

construction accuracy (by minimizing reconstruction

error) and minimize noise (subsection 2.2).

1.2. Problem formulation

Fig.3 shows a typical video scene with dynamic lights,

shadows, and objects. The background light conditions

may change unexpectedly in time and space creating non-

uniform color and intensity on the moving object. A non-

synchronized light is situated on top of the video camera.

We would like to know the impact of the non-synchronized

light on the scene in order to ease color correction and re-

move shadows created by the other lights (Fig. 4).

2. Modulated Light Source Separation

Our suggested solution is inspired by Amplitude Mod-

ulation (AM) radio (left column of Fig.5), where the voice

- modulated by a radio wave - is received by the tuned ra-

dio receiver, which filters out all the other frequencies. In

photography the scene is modulated by the light source and

received by the camera. By tuning the camera to a specific

frequency, it should be possible to filter out the background

lights from a modulated light oscillating at that frequency

(right column of Fig.5). This system has the same limita-

tions as AM radio - where every station must transmit at a

separate frequency - the modulated light must oscillate at a

unique frequency, different from the background lights.
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Figure 6. Data of a patch/pixel across time. A patch affected by the modulated light Iω(t)(first line) having an amplitude A1, is also

affected by background lights Ib(t)(second line) and captured by a video camera I(t)(third line) in time. The captured values in time are

processed into a single reconstructed amplitude Â1(last line).

2.1. Mathematical Formulation

Modulated light source converts the objects in the scene

into modulated signals in time. Consider a light path (figure

3) that begins at the light sources, reflects from a patch, and

is measured by a camera pixel. Light sources divide into

two groups: 1.Background sources Lb(t) with an unknown

behavior in time and space 2. Ideal modulated light (non-

synchronized) source Lm(f1, t), which is modeled by the

following:

Lm(f1, t) = a0 + a1cos(2πf1t) (1)

where t represents time, a0 is the constant intensity over

time, a1 is the amplitude of the main harmonic oscillating

at f1 = 1
T1

.

Total light in the scene is reflected by the object patch

generates a radiance I(t) equal to:

I(t) = C +A1 · cos(2πf1t) + Ib(t) (2)

where C depends on the patch reflectance and constant part

of all the lights (modulated and background), radiance co-

efficient A1 depends on the patch reflectance and intensity

amplitude a1 from Eq. (1), and Ib(t) are the dynamic back-

ground lights.

Modulated radiance A1 · cos(2πf1t) has two important

properties: 1. The frequency f1 of cos(2πf1t) is the same

as the frequency of the modulated light source. 2. A1 is

constant in time. These properties help to separate the in-

fluence of the modulated light (A1) from the influence of the

dynamic background lights (Ib(t)) and constant part (C).

Radiance I(t) is sampled by a camera pixel at discrete

times n ∈ {0, 1, ..., N − 1}:

X[n] = C + Ib[nTs] +A1 · cos[2πf1nTs + ϕ1] (3)

where C is the measured radiance1 of constant part (mod-

ulated and background), Ib[nTs] is the intensity of the dy-

namic background radiance, Ts = 1
fs

is the sample time

of the camera (the sample frequency fs is also referred as

Frames Per Second (FPS)), A1 is the amplitude of the mod-

ulated radiance, cos[2πf1nTs + ϕ1] is a discrete sample of

cos(2πf1t), and ϕ1 is the unknown phase difference be-

tween modulated light and camera. Note that this sample

model is ideal without noise artifacts, which will be dis-

cussed in subsection 2.2

The aim of the AM video camera system is to reconstruct

A1 using pre-known information on the frequency of the

modulated light f1. This can be done by various methods,

one of which is the inner product using a Finite Impulse

Response (FIR) filter:

Â1 =

∣

∣

∣

∣

∣

2

N

N−1
∑

n=0

X[n]e−i2πf1Tsn)

∣

∣

∣

∣

∣

(4)

1Camera can measure radiance by normalizing its measurements with

Exposure Value(EV)
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This filter will attenuate all the terms in Eq. (3) except for

the amplitude of the oscillating part at the target frequency

f1 i.e. A1. The purpose of the absolute value is get rid of

the phase term eiϕ1 which is unknown.

In summary AM video camera creates a single pro-

cessed frame (last row of Fig.6) using Eq. (4) from N
captured frames (third row of Fig. 6), which are illumi-

nated by both modulated light (first row of Fig. 6) and a

random background light (second row of Fig.6). The pro-

cessed frame Â1 (right side of the last row of Fig. (6)) is a

reconstruction of the amplitude of the AM light source A1

up to a scale (second image from the left of the first row of

Fig. (6)).

2.2. Performance Analysis

Performance of this reconstruction system is measured

by two factors: 1.Reconstruction Error 2.Noise levels. The

real modulated light source has unwanted harmonics -

which change Eq. (1) into

Lm(f1, t) = a0 + a1cos(2πf1t) +

∞
∑

k=2

akcos(2πfkt) (5)

where {ak}
M
k=2 are amplitudes of the parasitic harmonics,

and {fk}
M
k=2 are their frequencies.

This changes light radiance Eq. (2) into:

I(t) = C +
M
∑

k=1

Ak cos (2πfkt+ ϕk) , (6)

where the term C is a constant term of the illumination,

{Ak}
M
k=1 are the amplitudes of different harmonics (includ-

ing modulated light source and background illuminations).

A camera captures N frames of the scene at a frame rate

fs. Denote by {tn}
N−1
n=0 the acquisition time of frame num-

ber n ∈ {0, 1, ..., N − 1}. The time between consequent

frame acquisitions is not constant due to noise, and can be

described by:

tn = tn−1 + (1/fs)(1 + qn), (7)

where {qn}
N−1
n=0 is a zero mean white Gaussian noise with

variance σ2
q .

Non ideal radiance Eq. (6) change the ideal sampled sig-

nal, presented in Eq. (3), into

X[n] = C +

M
∑

k=1

Ak cos (ωkTs(n+ rn) + ϕk) + Zn, (8)

where A1 is the radiance amplitude of the modulated light

from Eq. (3), {Ak}
M
k=2 are the radiance amplitudes of

background lights and parasitic harmonics of the modu-

lated light, with their frequencies fk = ωk

2π , {rn}
N−1
n=0 is a

Gaussian random walk process defined by rn =
∑n

m=0 qm,

{ϕk}
M
k=2 are the random phases of the additional harmonics

distributed uniformly on the interval [0, 2π] and indepen-

dent of {rn}
N−1
n=0

2, and Zn is a zero mean additive noise.

Reconstruction error is important in many applications

such as spectral measurements and radiance evaluations,

which gather information from a digital camera or a pho-

tometric sensor. This creates the need to evaluate the recon-

struction error of our method in order to justify its use in

precise measurement tools. The reconstruction error can be

measured by:

MSE = E

[

∣

∣

∣
Â1 −A1

∣

∣

∣

2
]

(9)

where MSE is the Mean Square Error between the recon-

structed signal Â1, and the amplitude intensity A1.

Precise derivation of the MSE is difficult due to the non

linearity of the reconstruction formula (caused by the ab-

solute value operation). A simple bound, however, on the

MSE can be derived:

E

[

∣

∣

∣
Â1 −A1

∣

∣

∣

2
]

≤ MSEC +MSEA1
+MSEAk

+
2

N
E
[

Z2
n

]

(10)

where MSEC is due to the constant term C, MSEA1
is

due to the modulated light harmonic {A1, f1} , MSEAk

due to all the other harmonics {Ak, fk}
M
k=2, and E[Z2

n] is

the variance of the additive noise in Eq. (8).

• MSEC = C2
∣

∣

∣

2
N · sin(πNf1/fs)

sin(πf1/fs)

∣

∣

∣

2

.

• MSEAk
=

∑M
k=2 A

2
k(I

+
k + I−k ) where

I±k = 1
N2

∑N−1
n,m=0 e

i2π(n−m)(fk±f1)Ts−2|n−m|(σqπfkTs)
2

.

It can be shown that I±k decays as O(1/N)
if σq > 0. If σq = 0 then I±k simplifies to:

I±k =
∣

∣

∣

1
N · sin(πN(f1±fk)/fs)

sin(π(f1±fk)/fs)

∣

∣

∣

2

.

• MSEA1
= A2

1(I1 + I+1 ) where I1 = I−1 + 1 −
2
N

∑N−1
n=0 e−2n(πσqf1Ts)

2

is due to the unwanted phase

noise. I1 → 0 as (σqf1Ts)
2N → 0 and I1 → 1 as

(σqf1Ts)
2N → ∞.

Reconstruction error Eq. (10) explains several visible phe-

nomenons of its graph (Fig. 10): 1. Local minimums are

generated by the variance of MSEc → 0 when N ·f1/fs ∈
N and f1/fs is far from an integer. 2. MSE diminishes as

N gets larger up to a limit.

2For each pair of phases ϕj , ϕk the expected value E

[

e
i(ϕj−ϕk)

]

is

zero.
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The model can be generalized to contain additional ran-

dom processes (such as white/colorful noise), not neces-

sary periodic. If,for instance, a wide-sense-stationary noise

{b[n]} with a power spectral density Sb(θ) is added to X[n]
then its contribution to the MSE is

MSEb =
1

2π

∫

[−π,π]

Sb(θ)KN (2πf1Ts − θ)dθ, (11)

where KN (θ) =
∣

∣

∣

1
N · sin(θN/2)

sin(θ/2)

∣

∣

∣

2

. If the noise {b[n]}

does not contain high spectral power near the frequency

θ = 2πf1Ts then its contribution to the MSE will be small.

Noise Level is one of the important factors for measuring

the quality of an output color image [16].

Amplitude of the modulated intensity A1 should be big-

ger than the camera noise levels in order to have no apparent

noise artifacts [17]; meaning the radiance of the AM light

should be in the same order of magnitude as the background

light. In addition the noise level is inverse-proportional to

the number of captured frames N . Apparent noise levels

depend on intensity relation between AM light and back-

ground lights.

Zn is a zero mean additive noise. Its standard devia-

tion (STD) depends on many factors, such as the temper-

ature, exposure time and the average light intensity during

the frame acquisition. Since only the light intensity changes

from one frame to another, we can define a function g(µ) to

be the conditional STD of Zn given that X[n] − Z[n] is

equal to µ. Examples of the functions g(µ) for red, green

and blue pixels are shown in Fig. 11. The conditional mean

of Zn given that (X[n]− Z[n]) is equal to µ, is zero. The

noise terms {Zn}
N−1
n=0 are statistically independent of each

other.

2.3. Example Applications

Background lights generate shadows, which are captured

by the camera. A light source situated on-top of the camera

creates shadows that do not appear in the frame because

this light path is almost aligned with the optical axis of the

camera (Fig.4). Thus AM video camera removes shadows

by generating an image influenced only by the modulated

light (middle images of Fig. 8(b) and 8(d)).

Background light removal causes the output frames of

AM video camera to have a single light source. This sin-

gle light source helps color constancy algorithms to per-

form better since most of them assume a dominant light in

the scene [6]. Am video frame fixate the light source in

the scene - reducing the need for sophisticated color con-

stancy/white balance algorithms - and may be replaced by

a fixed color correction matrix. Color correction results are

better in AM video frames compared to the standard camera

(top two images in Fig. 8(d) and bottom image at Fig. 8(d).

Uneven light across the scene may generate low contrast

at some parts of the image even though the entire dynamic

Figure 7. The prototype - System diagram of the modulated light

source.

range of the camera is used (two button images of Fig. 8(c)).

Uniform light conditions, generated by the removed back-

ground lights and shadows, improve local image contrast

(two button images of Fig. 8(d)).

3. Live Modulated Light Source Separation

3.1. System Overview of the Prototype

An online video system was built using off the shelf

products, and includes three parts - usb3 camera, laptop,

and a modulated light source. The laptop controls the AM

light, captures the frame from the camera, and performs the

post-processing. The laptop sets the required frequency and

amplitude of the AM light (Fig.7) by configuring a PWM

sine generator, which is an input to a driver board of the

100W LED light. The system is capable of generating sine

waves from 1 Hz to 600 Hz with up to 256 points per cy-

cle and varying amplitude from 10% to 100% of the 100W

LED light source.

3.2. Constraints

AM light frequency should be unique enough to make

sure that the reconstructed frame contains only the AM light

source and no background lights. The required modulated

light f1 is set according to the available frequencies in the

captured scene. The system finds the required frequency f1
by capturing a set of N frames - prior to turning on the AM

light - and finding the minimal power on the FFT{X[n]}.

Camera exposure was set to 1 ms in order to be able to

capture up to 1000 FPS (our camera could effectively reach

700 FPS). This fast exposure time forces the lens aperture

to open at its maximum value - in order to get enough light

into the camera. Frames used in all of the experiments were

captured by a camera with 400 frames per second and a

resolution of 640x480.

4. Experimental Results

This section presents experimental results showing ap-

plications and analysis of AM video camera output.
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(a) Original image (b) Proposed method (c) Original image (d) Proposed method

Figure 8. (a) and (c) Original scene (b) and (d) AM video camera frames performing real time video contrast enhancement, color correction,

and shadow removal

4.1. Applications

The application part shows color correction, shadow re-

moval, and contrast enhancement under different types of

background illumination conditions and objects. Dynamic

background light varied between natural (sunlight) and arti-

ficial (tungsten), while scene type varied between static and

dynamic - shadows and objects. The analysis part assessed

noise and reconstruction error on the output.

AM video camera output shows several example applica-

tions in Fig.8, where captured frames are presented in Fig.

8(a) and Fig. 8(c) and processed frames are presented in

Fig. 8(b) and Fig. 8(d). Contrast enhancement occurs when

the input image has high intensity differences between the

modulated light and the background light as in the second

row of Fig. 8(a) and fourth and third rows of Fig. 8(c).

Color correction occurs when the background light and the

modulated light have large color differences, as in the last

row of Fig. 8(a) and first and second row of Fig. 8(c).

Shadow caused by the background lights are removed in

all of the resulting AM frames. 3.

3Real time videos available in the paper site

4.2. Performance Measurements

This part compares noise and reconstruction error of

the AM video camera, presented in 2.2, with the standard

camera. A static scene was captured at a frame rate of

fs = 704Hz with different constant light illuminations

and modulated light with a frequency of f1 = 105Hz.

Fig.9 presents the values of a single pixel as a function of

time, and demonstrates how its values are only due to the

modulated illumination. The blue curve shows the pixel

value captured by the camera when no background lights

are present. The green and the red curves show the pro-

cessed pixel’s values Â1. N = 20 frames were used to

calculate the green curve Â1, and N = 67 frames was used

to calculate the red curve. For these values of N the value

of Nf1/fs is close to an integer and the value of MSEC in

Eq. (10) is very small. Note N = 67 and N = 20 were cho-

sen according to the local minima of the relative root mean

squared error (RRMSE) defined by

√

E[Â1−A1]
2

A1

(Fig. 10).

Performance of the reconstruction system was evaluated

by the following features:
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Figure 9. Pixel values for different times. In blue: the captured

by the camera pixel values, without background light. In green

and red: the processed pixel values Â1 for N = 20 and N = 67,

respectively.

Figure 10. The green curve: the empirical RRMSE of Â1. The

red curve: a theoretical upper bound for the RRMSE of Â1. The

blue curve: the empirical coefficient of variation of Â1.

• Standard deviation of a reconstructed pixel Â1 when

the scene is static.

• Coefficient of variation defined by
STD(Â1)

µ
Â1

, where

µÂ1
is the expected value of Â1.

• RRMSE

Fig. 10 shows the RRMSE as a function of N (num-

ber of frames for calculation of Â1). The green curve rep-

resents the empirical RRMSE, The red curve represents a

theoretical upper bound - based on Eq. (10) - and the blue

curve represents the empirical coefficient of variation. To

calculate the theoretical upper bound for the RRMSE the

following parameters were estimated from the blue curve in

Fig. 9: C
A1

= 1.23, A2

A1

= 0.13, A3

A2

= 0.03, where A2, A3

are the amplitudes of additional harmonics of our modu-

lated illumination. The frequencies of these harmonics are

fk = k · f1, for k = 2, 3. The value of (σqf1Ts)
2

is taken

to be 1.6 · 10−3. The function g(µ) used to estimate the last

term of Eq. (10) is the g(µ) for blue pixels shown in Fig. 11

Since σq is not zero, Â1 tends to zero and the RRMSE

tends to 1 as N tends to infinity. The reason is because

Figure 11. In red/green/blue: the STD of a red/green/blue pixel

in a standard camera as a function of its mean value. In black and

magenta: the STD of a both red, green and blue pixels in AM video

camera (the STD of Â1) as a function of its mean value, when no

background illumination is present.

in the inner product
∑N−1

n=0 X[n]e−i2πf1Tsn the component

of X[n] that should be proportional to ei2πf1Tsn contains a

phase noise. That noise makes this component to be in the

same phase as ei2πf1Tsn for some times and in the opposite

phase for other times. The sum of these terms would cancel,

leading the whole sum to grow slower then N . The multi-

plication of the whole sum by 2/N makes it tend to zero as

N tends to infinity. If, on the other hand, σq = 0 then Â1

would tend to A1 and the RRMSE would tend to zero, since

the upper bound in Eq. (10) would tend to zero.

Fig. 11 shows the STD of the pixels as a function of

their mean value for standard and AM video camera. The

red, green and blue curves represent the function g(µ) (for

red, green and blue pixels), which is the STD of a pixel in

a standard camera given that its mean value is µ. The STD

of Â1 are shown in the magenta curve (for N = 20) and the

black curve (for N = 67) for the scenario when there is no

background illumination. These graphs are the same for the

red,green and blue colors, and graw linearly as a function of

µ. This can be explained by Eq. (10), since all terms in that

bound, except for the last term that is much smaller than the

others, are proportional to A2
1.

5. Discussion

Our AM video camera system demonstrates a low com-

plexity and effective system performing shadow removal,

color correction, and contrast enhancement on real time

video frames (Fig. 8). Performance analysis demonstrated

how precision of the AM video camera grows as number of

sampled frames N is higher up to a limit - which was proven

analytically and experimentally (Fig. 10). AM video cam-

era is unaffected by the intensity of the background assum-

ing the modulated amplitude A1 is bigger than the camera

noise values. In practice, AM light intensities surpassing 20

percent of background light level gave appreciable results.

For cases of very high intensities of background light our
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Figure 12. A sampled pixel in time showing flash points Lmax

and no-flash points Lmin creating an image with low contrast

Fnf (middle bottom part) using Flash No-Flash method. A spec-

tral analysis of the sampled pixel is shown at bottom right.

Figure 13. Inconsistency of Flash No-Flash when the background

light changes compared with our method

system could work in sunlight using method such as [18],

with some minor adjustments to work with a rolling shut-

ter camera. Reconstruction analysis proved that there is an

analytical and experimental upper bound to the MSE (Fig.

10). Noise levels of AM video camera resemble the noise

level of the standard camera (Fig. 11) and get closer to its

performance as N grows.

This paper differs from Schechner et. al [19] by assum-

ing a dynamic background light. Our work is closely re-

lated to [20], but in our case non-synchronized light was

used without any spatial patterns. It also improves [21] by

capturing dynamic video scenes outside the lab, using less

frames to generate a single reconstruction, and no need for

synchronization between the light source and the camera.

Flash no flash assume constant illumination between two

subsequent frames. Therefore when such techniques apply

to indoor video with changing background lights, such as

incandescent/flourecent light, they may produce a video se-

quence with

1. Low contrast output (Fig. 12) - due to negative

change in the background lights between two subse-

quent frames.

2. Inconsistent flickering video (Fig. 13) - due to incon-

sistent changes in the background lights between two

subsequent frames.

The AM camera technique actively eliminate the influence

of illumination changes. Therefore the video produced by

the AM camera is much more consistent than the one pro-

duced by flash no flash techniques.

6. Conclusions and Future work

The highlights of the AM video camera are:

• We used a principle from the AM radio field and

applied it to computational photography. AM de-

modulation filtered out all of the background lights and

reconstructed the scene illuminated only by the AM

light source.

• Light source separation can be used as an application

for shadow removal, color correction, and contrast en-

hancement. The shadows in the reconstructed image

are minimized by placing the modulated light source

near the camera. Color correction is easier to perform

because the reconstructed AM frame contains a single

light source. Contrast is enhanced due to uniform light

conditions in the AM frame.

• A highly parallelizable algorithm, which has good po-

tential to work on currently available smart phones,

was presented. The algorithm works separately on

each pixel and its results are non-dependent on neigh-

boring pixels.

• The presented method requires no synchronization be-

tween light and video camera, thus needing less hard-

ware, and is simpler to implement.

• Prototype was built and tested extensively under differ-

ent light conditions showing real time video color cor-

rection, shadow removal, and contrast enhancement.

The suggested technique can be implemented directly on

available hardware using software alone. Future work will

include methods for integration of the processing stage into

the sensor, improved control of the AM light source, and

mitigating the edge artifacts 4.
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