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Abstract

A major goal of imaging studies such as the (ongoing)

Human Connectome Project (HCP) is to characterize the

structural network map of the human brain and identify its

associations with covariates such as genotype, risk factors,

and so on that correspond to an individual. But the set of

image derived measures and the set of covariates are both

large, so we must first estimate a ‘parsimonious’ set of re-

lations between the measurements. For instance, a Gaus-

sian graphical model will show conditional independences

between the random variables, which can then be used to

setup specific downstream analyses. But most such data

involve a large list of ‘latent’ variables that remain unob-

served, yet affect the ‘observed’ variables sustantially. Ac-

counting for such latent variables is not directly addressed

by standard precision matrix estimation, and is tackled via

highly specialized optimization methods. This paper offers

a unique harmonic analysis view of this problem. By casting

the estimation of the precision matrix in terms of a compo-

sition of low-frequency latent variables and high-frequency

sparse terms, we show how the problem can be formu-

lated using a new wavelet-type expansion in non-Euclidean

spaces. Our formulation poses the estimation problem in

the frequency space and shows how it can be solved by

a simple sub-gradient scheme. We provide a set of scien-

tific results on ∼500 scans from the recently released HCP

data where our algorithm recovers highly interpretable and

sparse conditional dependencies between brain connectiv-

ity pathways and well-known covariates.

1. Introduction

Consider a large scale neuroimaging study, e.g., the on-

going Human Connectome Project (HCP), where diffusion

weighted magnetic resonance images (diffusion MRI) are

acquired for a cohort of participants. Each subject provides

a variety of clinical and cognitive measures in addition to

1Won Hwa Kim and Hyunwoo J. Kim are joint first authors.

the images, as well as demographic information such as

age, gender, education status and so on. Such a rich data re-

source offers an unprecedented opportunity to answer many

scientific questions. For instance, how do brain networks

differ across gender, and does education or genotype have

an association with structural brain connectivity beyond the

expected effects of age? Until recently, the scientific com-

munity had limited means to answer such questions because

public datasets were either small, not well curated or the

imaging protocols used for acquisition were too heteroge-

neous. The recent public release of images (and covariates)

from the HCP study makes such an analysis possible if we

can address the associated modeling issues that arise in per-

forming inference on such a high dimensional dataset.

A fundamental scientific goal in statistical analysis of

HCP (and similar datasets) is to identify associations be-

tween the full set of variables and the entire spectrum of

image-derived measurements [1, 30, 26, 24]. For exam-

ple, are a subset of the clinical covariates highly predictive

of the inter-regional connectivity derived from the images?

The traditional approach here may proceed by estimating

a graphical model that best explains the data: where the

nodes correspond to the full set of covariates (image-derived

measures and clinical/cognitive scores) as jointly Gaussian

random variables. By estimating the inverse of the covari-

ance matrix between the variables, we precisely recover the

graphical model structure. This may then be used to setup

hypothesis driven structural equation models (SEM) or sim-

ple regression model based experiments. The difficulty is

that in many modern image analysis problems, the total

number of such covariates, say p, is far larger than the num-

ber of samples (subjects) n in the study. Classical model

selection is highly problematic in this high dimensional set-

ting since the empirical statistics are often poorly behaved.

The popular solution here is to impose a sparsity regulariza-

tion on the inverse of the covariance matrix Σ−1. Using a ℓ1
penalty on the entries of this matrix, under mild conditions,

one can guarantee that the maximum likelihood solution

will recover the true model [45, 13]. In the last five years,
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this idea has been extensively used in a broad spectrum of

applications in computer vision [15, 31], machine learning

[2, 35, 29, 44] and medical imaging [38, 43, 19, 11].

The formulation above, given its broad applicability, has

been heavily studied and we now have a comprehensive

treatment of efficient optimization routines [3, 7, 36, 33]

and regularization properties [35, 28]. These developments

notwithstanding, there are various situations in medical im-

age analysis, computational biology and other applications,

which are not an ideal fit for the standard sparse inverse co-

variance matrix estimation model. For instance, in many

real-world studies, there are a non-trivial number of latent

variables that either cannot be directly observed or can only

be measured at a high monetary cost or discomfort to the

subject. The incorporation of such latent variables in the es-

timated structural relationship, generally called “latent vari-

able graphical models”, is not as extensively studied.

Related Work. There is some degree of consensus that

a straightforward incorporation of such ‘latent’ variables

in the default construction described above is problematic.

Therefore, existing approaches [10] must pre-specify the

number of such variables in an ad-hoc manner and proceed

with a bi-level non-convex scheme to estimate the param-

eters. There are other combinatorial heuristics [12] which

cluster the observed variables and assign them incremen-

tally to a latent variable. The practical effectiveness of such

algorithms varies and they offer few theoretical guarantees.

An interesting recent paper [5] resolves many of these prob-

lems and presents an algorithm where all variables (ob-

served and latent) are jointly Gaussian. The main idea is to

approximate the sample covariance matrix Σ in a way where

the corresponding Σ−1 is expressed as a sum of a sparse

matrix and a low-rank matrix. This recovers the influence

of the unobserved latent variables as well as the conditional

graphical model, as desired. This strategy works well as

long as the low rank requirement remains valid; however,

as the number of latent variables grow, the data will deviate

farther from the low rank assumption. Consequently, the

sparse term must explain a larger ‘mass’ of the data and the

estimated matrix becomes denser.

Motivating this paper. The above discussion suggests

that the means of regularizing the degrees of freedom (i.e.,

the low rank term) for the latent components may be less

than ideal from a numerical perspective as the number of

latent variables grow. This issue is, to our knowledge, does

not have a simple ‘fix’. To put this in perspective, notice

that the literature suggests that high rank matrix comple-

tion (columns of the matrix belong to a union of multiple

low-rank subspaces) uses a set of concepts that are quite

different from those used for completing low-rank matrices

(e.g., nuclear norm). So, a potential solution in our graphi-

cal model setting must also look for alternatives to the alge-

braic characterization (used in [5]). Certain classical tools at

the high level, express a closely related intuition. Consider

the following simple idea. If we think of the precision ma-

trix as the composition of low and high frequency terms, the

lower order terms may easily serve as a proxy for the latent

components. Then, by asking that the remaining contribu-

tion should be sparse yields a similar overall effect as [5]

but involves no spectral relaxations of the rank constraint.

Harmonic analysis offers a natural tool for such needs via

wavelets, which come with the full set of benefits of Fourier

analysis but without the global bases — undesirable in this

discrete setting. While wavelet expansions have tradition-

ally been studied only for Euclidean spaces, recent results

from [16, 6] provide mechanisms for wavelet (and Fourier)

transform of discrete (non-Euclidean) spaces such as graphs

as well. This discussion suggests that the potential ingredi-

ents for formulating our graphical model estimation prob-

lem in a dual space are available and provide at least a good

starting point for the current problem.

The main contribution of this work is to demonstrate

how this latent graphical model estimation problem can be

viewed via the lens of harmonic analysis. We show that

by operating on the inverse covariance matrix via its asso-

ciated graph (actually a wavelet transform of this graph),

it becomes an inference problem casted in the frequency

space. The actual optimization requires no sophisticated

solvers, we only need to perform a simple gradient descent

on one variable that controls the band-pass filtering prop-

erty of wavelets. Our motivating application is the analy-

sis of the Human Connectome Project (HCP) dataset which

includes more than ∼350 covariates (and therefore, many

latent variables) together with a rich set of imaging data.

Here, we obtain neuroscientifically meaningful sparse mod-

els relating image-derived brain connectivity to covariates

where alternative approaches yield uninterpretable results.

2. Multi-resolution Analysis of Euclidean/Non-

Euclidean Spaces via Wavelets

Our proposed framework relies heavily on a novel multi-

resolution perspective of the given data. Specifically, our

model will reformulate the statistical model estimation

problem utilizing the theory of wavelets to understand the

underlying structural associations in the given data. We

therefore briefly provide an overview of the wavelet trans-

form in both Euclidean and non-Euclidean spaces.

2.1. Continuous Wavelet Transform

The wavelet transform is similar to the Fourier transform

in that a function is decomposed as a linear combination of

coefficients and certain basis functions. While the Fourier

expansion uses sin() bases with infinite support, the wavelet

expansion instead uses a mother wavelet basis ψ which is

nicely localized in both time and frequency.
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A description of the classical wavelet transform must

start by defining a mother wavelet ψs,a with a scale param-

eter t and a translation parameter a as

ψs,a(x) =
1

s
ψ(
x− a

s
) (1)

where s (and a) control the dilation (and localization) of

ψs,a respectively. Using ψs,a as the bases, the wavelet

transform of a function f(x) is defined as the inner prod-

uct of the ψ and f , represented as

Wf (s, a) = 〈f, ψ〉 =
1

s

∫

f(x)ψ∗(
x− a

s
)dx (2)

where Wf (s, a) is the wavelet coefficient at scale s and at

location a, and ψ∗ is the complex conjugate of ψ. Together

with the wavelet coefficients and the wavelet bases, we ob-

tain a wavelet expansion. Observe the similarity of (2) to

the Fourier expansion given as

f̂(ω) =

∫

f(x)e−jωxdx

︸ ︷︷ ︸

〈f,basis〉

(3)

Interestingly, in the frequency domain, the mother

wavelets ψs at multiple scales behave as band-pass filters

corresponding to different bandwidths. Since these band-

pass filters do not cover the low-frequency components, an

additional low-pass filter is typically introduced: a scaling

function φ. We will shortly discuss the significant benefits

of this low-pass property to express the latent components

in our formulation. A wavelet transform with the scaling

function φ returns a smooth representation of the original

function f . Due to this selective filtering property, wavelets

offer a nice multi-resolution view of the given signal.

2.2. Wavelet Transforms in Non­Euclidean Spaces

The implementation of a mother wavelet and wavelet

transform in the Euclidean space (i.e., represented as a reg-

ular lattice) is convenient since one can easily define the

‘shape’ of a mother wavelet. This concept has been exten-

sively used within computer vision and image processing

for nearly three decades. However, in a non-Euclidean set-

ting where the domain is irregular (e.g., a graph), the no-

tions of scale and translation are not as easy to conceptu-

alize. For instance, in a graph, the distance between each

vertex and the number of connected edges is not uniform, it

is difficult to define a localized mother wavelet function at a

specific scale. Due to this difficulty, the wavelet transform

has not been traditionally suitable for analysis when the

domain has an arbitrary structure until very recently when

[6, 16] presented a result dealing with wavelet and Fourier

transform of graphs (and other non-Euclidean spaces).

High level summary. The key idea behind the non-

Euclidean wavelet transform in constructing a mother

wavelet ψ on the nodes of a graph G is to utilize a ker-

nel function and a set of orthonormal bases. Recall that

the wavelet behaves as a band-pass filter in the frequency

domain. So, if we construct a band-pass filter (a kernel

function) in the frequency domain and then localize it in the

original (i.e., native) domain using graph Fourier transform

in [16], it will exactly implement a mother wavelet ψ on the

original graph. The preferred representation of the graph

is its Laplacian whose eigenvectors provide the ‘bases’ for

transforming the graph to the frequency space.

Formally, a graph G = {V,E} is defined by a vertex

set V (where the number of vertices is N ) and a edge set

E. Such a graph G is generally represented as an adjacency

matrix A of size N × N where the elements aij denote

the edge weight between ith and jth vertices. Then a de-

gree matrix D is defined as a diagonal matrix where the ith
diagonal is the sum of edge weights connected to the ith
vertex. From these two graph matrices, a graph Laplacian

is defined as L = D − A. Here, L is self-adjoint and posi-

tive semi-definite, therefore the spectrum of L yields eigen-

values λl ≥ 0 and corresponding eigenvectors χl where

l = 0, 1, · · ·N − 1. The orthonormal bases χ allow one to

setup the graph Fourier transform as

f̂(l) =

N∑

n=1

χ
∗
l (n)f(n) and f(n) =

N−1∑

l=0

f̂(l)χl(n) (4)

where f̂(l) is the graph Fourier coefficient. Interestingly,

this transform offers a convenient means for transforming

a signal/measurement on graph nodes/vertices to the fre-

quency domain. Utilizing the graph Fourier transform, the

mother wavelet ψ can be constructed by first defining a ker-

nel function g(·) in the frequency domain and then local-

izing it by a delta function δ in the original graph via the

inverse graph Fourier transform. Since 〈δn, χl〉 = χ∗
l (n),

the mother wavelet ψs,n at vertex n at scale s is defined as

ψs,n(m) =

N−1∑

l=0

g(sλl)χ
∗(n)χl(m). (5)

Notice that the scale s is defined inside g by the scaling

property of Fourier transform [37] and the eigenvalues serve

as the analogs of frequency. Using ψ, the wavelet transform

of a function f at scale s can be expressed simply as

Wf (s, n) = 〈f, ψs,n〉 =

N−1∑

l=0

g(sλl)f̂(l)χl(n) (6)

resulting in wavelet coefficientsWf (s, n). Such a transform

offers a multi-resolution view of signals on graphs [25]. The

most important fact relevant to our formulation is that the

multi-resolution property can be easily captured by a single

parameter s in the kernel function g which controls the low-

pass properties of the transform entirely.
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3. A Harmonic Analysis of Latent Variable

Graphical Models

With the aforementioned wavelet concepts in hand, we

can now describe our formulation for estimating a preci-

sion matrix while concurrently taking into account the ef-

fect of an unknown but large number of latent compo-

nents. Our procedure below will parameterize the to-be-

inferred graphical model not in terms of its precision ma-

trix directly, rather via its low and high frequency compo-

nents. Operating on these latent (low-frequency) and sparse

(high-frequency) pieces will model the structural associa-

tions within the graph. Recall that recent developments

in wavelet analysis on discrete spaces such as graphs have

overwhelmingly been used to analyze signals defined on

the nodes where the graph has a “fixed” (known) structure.

In order to apply wavelet analysis to our problem, we will

need to introduce a few key technical results that are sum-

marized below, and described in detail in this section. (a)

First, we will introduce multi-resolution analysis for mod-

eling the graph structure and not just the measurement at

individual graph nodes. We will define a new set of basis

functions for estimating the graph structures and provide

theoretical conditions which guarantee its validity. (b) Sec-

ond, we will introduce an information theoretic “closeness”

measure for graph structure (i.e., precision matrices). Here,

we will identify an additional condition which will yield

a valid symmetric positive definite matrix at each scale s.
(c) Finally, we will discuss our optimization scheme in the

dual space (i.e., frequency domain) with a simple gradient

descent method.

3.1. Multi­scale Analysis of a Precision Matrix

Let us assume we are given a positive definite covariance

matrix Σ of size n × n. Now, Σ can be easily decomposed

in terms of its eigenvector and eigenvalues as,

Σ = V ΛV T =

n∑

ℓ=1

λℓVℓV
T
ℓ (7)

where the ℓth column vector of V is the ℓth eigenvector and

the ℓth diagonal of Λ is the corresponding ℓth eigenvalue of

Σ which are all positive. Then, the precision matrix Θ is

given as the inverse of the covariance matrix as

Θ =

n∑

ℓ=1

1

λℓ

VℓV
T
ℓ =

n∑

ℓ=1

σℓVℓV
T
ℓ (8)

where σ = 1
λ

and σ are positive since λ are positive. Notice

that both Σ and Θ are positive definite and self-adjoint, so

their eigenvectors can be used for defining a Fourier type

of transform which is analogous to the graph Fourier trans-

form as in (4). For multi-resolution analysis of the precision

matrix Θ, we first define our basis functions as

ψℓ,s(i, j) = g(sσℓ)V
∗
ℓ (i)Vℓ(j), ∀ℓ ∈ {1, . . . , n} (9)

at scale s and along the ℓth basis. Since we deal only
with real valued functions, to avoid notational clutter, we
will omit the conjugate operation for the eigenfunctions,
i.e., V ∗(i) = V (i). These basis functions are analogous
to mother wavelets and yield a nice result which we will
present shortly. Now, we can easily setup a transform of the
precision matrix using our basis above. This yields wavelet-
like coefficients as

WΘ,s(ℓ) = 〈Θ, ψℓ,s〉 (10)

=

n,n∑

i,j

n∑

ℓ′=1

σℓ′Vℓ′(i)Vℓ′(j)g(sσℓ)Vℓ(i)Vℓ(j)

= σℓg(sσℓ).

Using WΘ,s(ℓ), the multi-resolution reconstruction with a

non-constant weight ds/s is obtained by

Θ̃(i, j) =
1

Cg

∫ ∞

0

1

s

n∑

ℓ=1

WΘ,s(ℓ)ψℓ,s(i, j)ds. (11)

Roughly speaking, this can be viewed as the weighted aver-

age of multi-resolution reconstruction over scale s.
A natural question here is whether we can guarantee if

the reconstruction in (11) is identical to the original preci-

sion matrix Θ. To address this issue, we define the admis-

sibility condition for the function defined on the structure

(or edges) of the graph. A kernel g(x) is said to satisfy the

admissibility condition if the following condition holds

∫ ∞

0

g2(x)

x
dx =: Cg <∞ (12)

when the reconstruction is defined with a non-constant

weight dx/x as (11). Lemma 1 below shows that using

the bases we constructed in (9), if g(x) satisfies admissibil-

ity condition, the matrix reconstruction in (11) is identical,

namely, Θ̃(i, j) = Θ(i, j).

Lemma 1 If Θ ≻ 0,Θ = ΘT and kernel g satisfies the

admissibility condition

∫ ∞

0

g2(sσ)

s
ds =: Cg <∞ (13)

then,

1

Cg

∫ ∞

0

1

s

n∑

ℓ=1

WΘ,s(ℓ)ψℓ,s(i, j)ds = Θ(i, j) (14)

The full proof of this lemma is available in the supplement.

We can derive a stronger result showing that using the

bases in (9), the admissibility condition holds for two pa-

rameter kernels as well, i.e., g(s, σ). This allows defining

a kernel, if desired, that separately handles the influence of

the eigen value σ and a scale parameter s.
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Lemma 2 If kernel g satisfies the admissibility condition

∫ ∞

0

g2(s, σ)

s
ds =: Cg <∞ (15)

then,

1

Cg

∫ ∞

0

1

s

n∑

ℓ=1

WΘ,s(ℓ)ψℓ,s(i, j)ds = Θ(i, j) (16)

This two parameter kernel result can be used for functions

defined on either nodes (commonly used in non-Euclidean

Wavelets) or edges (graph structure). The proof is available

in the supplement. The admissibility condition for the clas-

sical SGWT (one parameter kernel for the functions defined

on nodes) is studied in [16] and consistent with our result.

Based on this harmonic analysis of graphical models, we

next describe our main estimation algorithm to recover the

sparse precision matrix by explicitly taking into account the

contribution of the latent components.

4. Estimating the Optimal Scale for Θ̃

In this subsection, we describe the optimization scheme

to estimate Θ̃ which satisfies two properties: i) it is consis-

tent with the empirical Θ and ii) satisfies sparsity properties

(in the sense of the multi-resolution characterization)

The reconstruction of Θ at level s is given by

Θ̃ =

n∑

ℓ=1

σℓg
2(sσℓ)VℓV

T
ℓ =

n∑

ℓ=1

K(s, σℓ)VℓV
T
ℓ (17)

where K(s, σℓ) := σℓg
2(sσℓ). To keep notations concise,

we will often use K as shorthand in this subsection. To per-

form the reconstruction at every level s, the kernel function

g should satisfy the condition, g2(x) > 0, ∀x ≥ 0. Then,

one can easily check that Θ̃ is symmetric positive definite,

i.e., Θ̃ ∈ SPD, exactly as desired.

At a high level, we seek for a Θ̃ which is similar to the

empirical (potentially non-sparse) estimate, Θ. To do so,

we need to define “closeness” between our estimate Θ̃ and

Θ. Instead of using a metric directly for SPD matrices, i.e.,

Riemannian metric used in [22, 23], in this paper, we regard

them as two corresponding Gaussian distributions with zero

mean, but with covariance matrices Σ̃ and Σ.

Using KL-divergence KL(·‖·) between the two Gaussian

densities, we can measure “closeness” by

KL(p(x; Σ̃)‖p(x; Σ)) =
1

2
Dld(Σ, Σ̃) =

1

2
Dld(Θ̃,Θ) (18)

The last two identities express closeness by Bregman diver-

gence using the log determinant, Dld(·‖·) as in [8].
With this fidelity measure, our objective is to find the op-

timal scale s which minimizes the Bregman divergence us-
ing logdet(·)) between the empirical precision matrix Θ and

the sparse reconstruction Θ̃. We impose a sparsity penalty
in the usual way using the ℓ1-norm of the matrix. Then, our
optimization problem is given as,

max
s≥0

tr(Θ̃Θ−1)− logdet(Θ̃Θ−1)− n+ γ|Θ̃|1 (19)

subject to Θ̃ =

n∑

ℓ=1

σℓg
2(sσℓ)VℓV

T
ℓ . (20)

Substituting in the identity from (7) for Θ, we obtain an

almost unconstrained optimization model (which only in-

volves one non-negativity constraint),

max
s≥0

n∑

ℓ=1

λℓK(s, σℓ)−

n∑

ℓ=1

log(λℓK(s, σℓ))− n

+ γ

n∑

i=1

n∑

j=1

∣
∣
∣
∣
∣

n∑

ℓ=1

K(s, σℓ)Xℓ(i, j)

∣
∣
∣
∣
∣

(21)

where Xℓ = VℓV
T
ℓ and Xℓ(i, j) is i, jth element in X . The

optimal (sparse) precision matrix will then correspond to

some s which minimizes (20) or (21).

Deriving the first derivative to optimize (21). To optimize

(20), we compute the first derivative of D with respect to s,
which can be written as

d

ds
tr(Θ̃Θ−1)−

d

ds
logdet(Θ̃Θ−1) +

d

ds
γ|Θ̃|1 (22)

Here, we calculate d
ds

tr(
∑n

ℓ=1 λℓK(s, σℓ)VℓV
T
ℓ ) taking a

derivative of each element and then taking the sum of the

diagonal elements of Θ̃Θ−1 and we obtain,

d

ds
tr(

n∑

i=1

λℓK(s, σℓ)VℓV
T
ℓ ) =

n∑

ℓ=1

λℓK
′(s, σℓ) (23)

where K ′(s, σℓ) := ∂K/∂s. The derivative of the second

term takes the form,

d

ds
logdet(Θ̃Σ) =

n∑

i=1

K′(s, σi)

K(s, σi)
(24)

Notice that the third term involves the ℓ1 norm which is

not differentiable, so we approximate its search direction

instead as
n∑

i=1

n∑

j=1

sign(Θ̃(i, j))

n∑

ℓ=1

K
′(s, σℓ)Xℓ(i, j). (25)

Combining all three terms together yields a direction to op-

timize (20). The actual optimization then only involves a

simple gradient descent-like method.

Remarks. Observe that a precision matrix always has

non-zero diagonal elements. So, the sparsity regularization

may not be meaningful for diagonal elements. One can im-

pose sparsity for only the off-diagonal elements with minor

changes in the third term (21) and its search direction (25),

namely,
∑

i 6=j |Θ̃(i,j)| and its search direction is

n,n∑

i 6=j

sign(Θ̃(i, j))

n∑

ℓ=1

K
′(s, σℓ)Xℓ(i, j). (26)
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Figure 1. Comparison of results from estimation of statistical dependencies between observed variables (when there are at least a few latent components)

using synthetic brain network data. Left/right blocks show results for 5 and 10 latent variables respectively, and the top/bottom rows show estimated

dependencies in the data (correct estimation in blue and false positive in red) and corresponding precision matrices. First column: sample precision

matrix, Second column: result using GLasso, Third column: result using [5], Fourth column: our result. We can observe that while the sample precision

matrix is dense, the results in the second, third and fourth column show sparse and more accurate results.

5. Experimental Results

We demonstrate two sets of experiments, one on syn-

thetic brain network data to validate our framework where

the ground truth is available, and the other on the Human

Connectome Project (HCP) data. The first experiment eval-

uates precision matrix estimation results using our frame-

work by comparing it to the estimations from other methods

and the ground truth. In the second experiment, we analyze

an exquisite recently released imaging dataset of ∼ 500 in-

dividuals from the Human Connectome Project. We obtain

brain connectivity pathways by processing Diffusion Tensor

Images (DTI) and analyze this connectivity data jointly with

a rich set of covariates. Among the many inter-regional fiber

bundles, we focus our analysis on 17 major connections and

identify which of the covariates are statistically associated

with these major pathways. In both experiments, the objec-

tive is to estimate true dependencies between the observed

variables when the latent variables are unobserved.

5.1. Statistical Dependency Estimation on Synthetic
Brain Connectivity Data

In this section, we demonstrate results of precision ma-

trix estimation using synthetic brain connectivity data. Con-

sider a case where we observe a set of np+nc random vari-

ables, i.e., a set of np structural brain connections (i.e., path-

ways) and nc covariates. We add additional nh number of

latent variables that are assumed to be unobserved but sta-

tistically influence the full set of observed variables. Then,

the statistical model estimation task is to find the true condi-

tional dependencies between the observed variables alone,

i.e., properly taking into account the effect of latent factors.

In other words, we want to identify which brain connec-

tions are statistically associated with the covariates as well

as how these pathways are related to one another.

Design. We set np = 50 and nc = 10, so the total

number of observed variables no = 60. We run multi-

ple replicates, each for a different setting for the number

of latent variables nh. The dependencies between the brain

connections are arbitrarily chosen such that 5% of the el-

ements in the true precision matrix (i.e., ground truth) are

non-zeros. We set each covariate to be dependent on the

brain connections in a pattern (i.e., first five connections de-

pend on the first covariate, next five connections depend on

the second covariate, etc.). These dependencies between

observed variables are the ground truth and can be visual

checked to see if we estimate the same pattern. The la-

tent variables are then connected to all observed variables

with random weights; this ensures that our measurements

of the observed variables include an effect from all latent

variables. This yields a precision matrix Θ of size n× n
and its corresponding covariance matrix Σ. Synthetic data

are sampled from a multi-variate normal distribution using

Σ. We draw samples only from the observed variables to

construct a sample covariance matrix Σo, which serves as

the input for estimating Θ̃o.

Experimental results with nh = 5 and nh = 10 la-

tent variables are shown in the left/right blocks of Fig. 1

respectively. Fig. 1 (top row) shows the estimated depen-

dencies between the full set of connections (covariates are

not shown in the top row). The small spheres represent the

physical centers of each brain connection and the edges in

blue/red denote correct/incorrect estimation of the condi-

tional dependency. The bottom row shows the estimated

Θ̃o including the covariates. In each block, the first column

shows Σ−1
o as the estimated precision matrix Θ̃o (i.e., sam-

ple precision matrix). Here, both sample precision matrices

are dense due to the effect from the latent variables, lead-

ing to a solution which is far from Θo. In the second and

third column in both blocks, we include results from graph-

ical Lasso [13] and the method from [5]. When nh = 5,

the sparsity pattern in the estimated precision matrices for

both baselines and our algorithm are quite similar to the

ground truth (few red edges). In the second row, we see that

the oblique patterns expressing the relationship between the

connectivity and the covariates is also recovered. When the

number of latent variables grows, the low rank assumption
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Figure 2. The subset of connections (from the seventeen presented in Table 1) that are statistically associated to non-imaging covariates.

in [5] becomes weaker and the data deviates from the as-

sumptions of graphical lasso (which assumes all variables

are observed). For nh = 10, neither of the baselines are

able to recover the conditional dependencies between the

connections and covariates (oblique patterns in the preci-

sion matrix). On the other hand, the fourth columns (second

row) shows that our algorithm recovers Θo with a sparsity

pattern that is highly consistent with the ground truth Θo.

Limitations. These results suggest that our algorithm is

effective in identifying the true precision matrix even when

there are diffusive effects of unobserved variables. How-

ever, in situations where we have a large number of latent

variables and each affects only a small number of observed

variables (i.e., high-frequency effect), our algorithm may

not be able to identify the correct associations. This situa-

tion is very challenging and we are not aware of any other

methods that can model such data.

5.2. Experiments on Human Connectome Data

Dataset. The HCP2 project recently made available

high-quality imaging and clinical data ([40, 14]) for over

500 healthy adults [18]. We analyzed the high angular reso-

lution diffusion MR imaging (dMRI) dataset, consisting of

489 images [39, 41]. We obtained DTI from the dMRI data

via standard fitting procedures which were then spatially

normalized [47]. Seventeen major white matter connectiv-

ity measures were obtained by registering (using ANTS) the

publicly available IIT atlas [42] to the HCP template. The

average fractional anisotropy (FA) in each pathway was a

proxy for the connection strength. Table 1 lists the seven-

teen connectivity pathways.

Non-imaging covariates. Besides the imaging data,

HCP provides several categories of non-imaging covariates

for the subjects [17] covering factors such as cognitive func-

tion, demographic variables, education and so on. In our

experiments, we chose 22 variables related to demograph-

ics, physical health, sleep, memory, cognitive flexibility and

2Data were provided [in part] by the Human Connectome Project, WU-

Minn Consortium (Principal Investigators: David Van Essen and Kamil

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers

that support the NIH Blueprint for Neuroscience Research; and by the Mc-

Donnell Center for Systems Neuroscience at Washington University.

Connection name Description (count)

Forceps major (FMa) inter-hemispheric (1)

Forceps minor (FMi) inter-heispheric (1)

Fornix inter-hemispheric (1)

Cingulum bundle frontal (CBf) bi-lateral (2)

Cingulum bundle hippocampal (CBh) bi-lateral (2)

Cortico-spinal tracts (CST) bi-lateral (2)

Inferior fronto-occipital (IFO) bi-lateral (2)

Inferior longitudinal fasciculus (ILF) bi-lateral (2)

Superior longitudinal fasciculus (SLF) bi-lateral (2)

Uncinate fasciculus (UF) bi-lateral (2)

Table 1. These pathways span connections between all major lobes of

the brain (frontal, parietal, occipital and temporal) with several important

regions such as amygdala, hippocampus, pre-frontal cortex.

etc. These covariates span a wide range high-level human

behavior and highly relevant physiological measurements

and the full list is included in the supplement.

Experiment 1) Figures 2–4 summarize the results of our

experiments on the HCP data. The matrix shown in Fig. 3

lists the full set of connections and covariates used in our

analysis, along the axes. Our goal was to recover a sparse

(and interpretable) precision matrix explaining the condi-

tional dependencies among these variables. It is clear from

the figure that our algorithm indeed finds a parsimonious

set of statistical relations, among the non-imaging covari-

ates, among the brain pathways as well as across these two

groups of variables. As we can expect, several connectivity

pathways seem to be involved in several different categories

of behavioral measures. These many-to-many dependencies

are shown in Fig. 4 and the major pathways that show strong

associations with non-imaging measures are displayed visu-

ally (overlaid on a standard brain template) in Fig. 2. Note

that similar to the simulation setup, in this case, results from

the baseline algorithms were non-sparse and hence harder

to interpret. Part of the reason is that none of the measure-

ments were controlled for various (observed or unobserved)

nuisance variables. One advantage of our algorithm is to

precisely take into account the effect of such latent nuisance

variables automatically.

Finally, since there is no ‘ground truth’ available for

these results, we checked if our findings are corroborated

by independent results in the literature. We found that many

of the associations in Figs. 3–4 appear as standalone find-
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Figure 3. Estimated precision matrix on HCP dataset. Notice that the

matrix shows sparse connections between the pathways and covariates, and

those identified dependencies are demonstrated in Fig. 4.

Figure 4. Discovered conditional dependencies between brain connectiv-

ity pathways and covariates. Blue circles are connectivity pathways and

the green circles are non-imaging covariates.

ings in multiple papers [34, 4]. For example, the association

between the cingulum bundle and processing speed was the

focus of [32], whereas [21, 27] identified a relation between

longitudinal fasciculus and cognitive/verbal ability and [46]

demonstrated that forceps major and gender were related.

Significant associations have also been found between in-

tegrity of the uncinate fasciculus and spatial working mem-

ory [9]. This is not definitive evidence that we identify the

real underlying precision matrix, but promising that most of

the identified associations have precedence in the literature.

Experiment 2) A recent result last year [20] demon-

strated structural connectome differences across gender

suggesting that men and women are ‘wired’ differently.

Since the data used in our experiments provides connectiv-

ity information jointly with a full set of covariates, it offers

an opportunity to ask a similar question as [20] but instead

analyze second order effects — that is, are associations of

structural connectivity with cognitive/behavioral covariates

different across genders on a large well characterized co-

hort? We used the aforementioned seventeen brain connec-

tion pathways, divided our dataset into male/female groups

and estimated precision matrices for each group separately.

Ideally, each precision matrix will automatically control for

the latent factors that contribute to the connectivity mea-

surement independent of gender, and comparisons between

the two matrices will suggest how statistical associations

between structural connections and cognitive scores vary

between men and women. We found at least a few con-

ditional associations that had large differences across the

two groups. For example, the associations between the Left

IFO/Right ILF, Left ILF/Right IFO and FMa/Left UF were

stronger in men whereas the Right IFO/Right ILF, Left IFO/

Left ILF and Left ILF/Right ILF were stronger in women.

(A full table is included in the supplement).

6. Conclusion

Undirected graphical models are used to address a va-

riety of needs in in computer vision and machine learn-

ing. While existing methods for estimating statistical con-

ditional independence between a set of random variables

are quite effective, this analysis becomes problematic when

there are multiple latent (unobserved) variables that non-

trivially affect our measurements of the observed variables.

This situation is becoming more frequent in many mod-

ern medical image analysis and computer vision datasets,

where the latent variables cannot be measured due to cost

or privacy reasons. We propose a novel perspective on this

sparse inverse covariance matrix estimation problem (which

involves latent variables) using non-Euclidean wavelet anal-

ysis. The experimental results using synthetic brain net-

work data demonstrates that our algorithm provides sub-

stantial improvement over other graphical model selection

methods. We present an extensive set of results on the re-

cently released HCP imaging data set showing statistical de-

pendencies between brain connectivity pathways and cog-

nitive/behavioral covariates. Our result are consistent with

independent findings in the neuroscience literature.
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