
Accurate Image Super-Resolution Using Very Deep Convolutional Networks

Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee

Department of ECE, ASRI, Seoul National University, Korea

{j.kim, deruci, kyoungmu}@snu.ac.kr

Abstract

We present a highly accurate single-image super-

resolution (SR) method. Our method uses a very deep con-

volutional network inspired by VGG-net used for ImageNet

classification [19]. We find increasing our network depth

shows a significant improvement in accuracy. Our final

model uses 20 weight layers. By cascading small filters

many times in a deep network structure, contextual infor-

mation over large image regions is exploited in an efficient

way. With very deep networks, however, convergence speed

becomes a critical issue during training. We propose a sim-

ple yet effective training procedure. We learn residuals only

and use extremely high learning rates (104 times higher

than SRCNN [6]) enabled by adjustable gradient clipping.

Our proposed method performs better than existing meth-

ods in accuracy and visual improvements in our results are

easily noticeable.

1. Introduction

We address the problem of generating a high-resolution

(HR) image given a low-resolution (LR) image, commonly

referred as single image super-resolution (SISR) [12], [8],

[9]. SISR is widely used in computer vision applications

ranging from security and surveillance imaging to medical

imaging where more image details are required on demand.

Many SISR methods have been studied in the computer

vision community. Early methods include interpolation

such as bicubic interpolation and Lanczos resampling [7]

more powerful methods utilizing statistical image priors

[20, 13] or internal patch recurrence [9].

Currently, learning methods are widely used to model a

mapping from LR to HR patches. Neighbor embedding [4,

15] methods interpolate the patch subspace. Sparse coding

[25, 26, 21, 22] methods use a learned compact dictionary

based on sparse signal representation. Lately, random forest

[18] and convolutional neural network (CNN) [6] have also

been used with large improvements in accuracy.

Among them, Dong et al. [6] has demonstrated that a

CNN can be used to learn a mapping from LR to HR in an

slow running time(s) fast

10-210-1100101102

P
S

N
R

 (
d

B
)

36.4

36.6

36.8

37

37.2

37.4

37.6

 VDSR (Ours)

 SRCNN

 SelfEx RFL
 A+

Figure 1: Our VDSR improves PSNR for scale factor ×2 on

dataset Set5 in comparison to the state-of-the-art methods (SR-

CNN uses the public slower implementation using CPU). VDSR

outperforms SRCNN by a large margin (0.87 dB).

end-to-end manner. Their method, termed SRCNN, does

not require any engineered features that are typically neces-

sary in other methods [25, 26, 21, 22] and shows the state-

of-the-art performance.

While SRCNN successfully introduced a deep learning

technique into the super-resolution (SR) problem, we find

its limitations in three aspects: first, it relies on the con-

text of small image regions; second, training converges too

slowly; third, the network only works for a single scale.

In this work, we propose a new method to practically

resolve the issues.

Context We utilize contextual information spread over

very large image regions. For a large scale factor, it is often

the case that information contained in a small patch is not

sufficient for detail recovery (ill-posed). Our very deep net-

work using large receptive field takes a large image context

into account.

Convergence We suggest a way to speed-up the train-

ing: residual-learning CNN and extremely high learning

rates. As LR image and HR image share the same infor-

mation to a large extent, explicitly modelling the residual

image, which is the difference between HR and LR images,

is advantageous. We propose a network structure for effi-

11646

cient learning when input and output are highly correlated.

Moreover, our initial learning rate is 104 times higher than

that of SRCNN [6]. This is enabled by residual-learning

and gradient clipping.

Scale Factor We propose a single-model SR approach.

Scales are typically user-specified and can be arbitrary in-

cluding fractions. For example, one might need smooth

zoom-in in an image viewer or resizing to a specific dimen-

sion. Training and storing many scale-dependent models in

preparation for all possible scenarios is impractical. We find

a single convolutional network is sufficient for multi-scale-

factor super-resolution.

Contribution In summary, in this work, we propose a

highly accurate SR method based on a very deep convolu-

tional network. Very deep networks converge too slowly

if small learning rates are used. Boosting convergence rate

with high learning rates lead to exploding gradients and we

resolve the issue with residual-learning and gradient clip-

ping. In addition, we extend our work to cope with multi-

scale SR problem in a single network. Our method is rel-

atively accurate and fast in comparison to state-of-the-art

methods as illustrated in Figure 1.

2. Related Work

SRCNN is a representative state-of-art method for deep

learning-based SR approach. So, let us analyze and com-

pare it with our proposed method.

2.1. Convolutional Network for Image Super­
Resolution

Model SRCNN consists of three layers: patch extrac-

tion/representation, non-linear mapping and reconstruction.

Filters of spatial sizes 9 × 9, 1 × 1, and 5 × 5 were used

respectively.

In [6], Dong et al. attempted to prepare deeper models,

but failed to observe superior performance after a week of

training. In some cases, deeper models gave inferior perfor-

mance. They conclude that deeper networks do not result in

better performance (Figure 9).

However, we argue that increasing depth significantly

boosts performance. We successfully use 20 weight lay-

ers (3 × 3 for each layer). Our network is very deep (20

vs. 3 [6]) and information used for reconstruction (recep-

tive field) is much larger (41× 41 vs. 13× 13).

Training For training, SRCNN directly models high-

resolution images. A high-resolution image can be de-

composed into a low frequency information (corresponding

to low-resolution image) and high frequency information

(residual image or image details). Input and output images

share the same low-frequency information. This indicates

that SRCNN serves two purposes: carrying the input to the

end layer and reconstructing residuals. Carrying the input

to the end is conceptually similar to what an auto-encoder

does. Training time might be spent on learning this auto-

encoder so that the convergence rate of learning the other

part (image details) is significantly decreased. In contrast,

since our network models the residual images directly, we

can have much faster convergence with even better accu-

racy.

Scale As in most existing SR methods, SRCNN is

trained for a single scale factor and is supposed to work

only with the specified scale. Thus, if a new scale is on de-

mand, a new model has to be trained. To cope with multiple

scale SR (possibly including fractional factors), we need to

construct individual single scale SR system for each scale

of interest.

However, preparing many individual machines for all

possible scenarios to cope with multiple scales is inefficient

and impractical. In this work, we design and train a sin-

gle network to handle multiple scale SR problem efficiently.

This turns out to work very well. Our single machine is

compared favorably to a single-scale expert for the given

sub-task. For three scales factors (×2, 3, 4), we can reduce

the number of parameters by three-fold.

In addition to the aforementioned issues, there are some

minor differences. Our output image has the same size as

the input image by padding zeros every layer during train-

ing whereas output from SRCNN is smaller than the input.

Finally, we simply use the same learning rates for all lay-

ers while SRCNN uses different learning rates for different

layers in order to achieve stable convergence.

3. Proposed Method

3.1. Proposed Network

For SR image reconstruction, we use a very deep convo-

lutional network inspired by Simonyan and Zisserman [19].

The configuration is outlined in Figure 2. We use d layers

where layers except the first and the last are of the same

type: 64 filter of the size 3× 3× 64, where a filter operates

on 3 × 3 spatial region across 64 channels (feature maps).

The first layer operates on the input image. The last layer,

used for image reconstruction, consists of a single filter of

size 3× 3× 64.

The network takes an interpolated low-resolution image

(to the desired size) as input and predicts image details.

Modelling image details is often used in super-resolution

methods [21, 22, 15, 3] and we find that CNN-based meth-

ods can benefit from this domain-specific knowledge.

In this work, we demonstrate that explicitly modelling

image details (residuals) has several advantages. These are

further discussed later in Section 4.2.

One problem with using a very deep network to predict

dense outputs is that the size of the feature map gets reduced

every time convolution operations are applied. For example,

when an input of size (n+1)×(n+1) is applied to a network

1647

ILR Conv.1 ReLu.1 HR Conv.D (Residual) Conv.D-1 ReLu.D-1

x r y

Figure 2: Our Network Structure. We cascade a pair of layers (convolutional and nonlinear) repeatedly. An interpolated low-resolution

(ILR) image goes through layers and transforms into a high-resolution (HR) image. The network predicts a residual image and the addition

of ILR and the residual gives the desired output. We use 64 filters for each convolutional layer and some sample feature maps are drawn

for visualization. Most features after applying rectified linear units (ReLu) are zero.

with receptive field size n× n, the output image is 1× 1.

This is in accordance with other super-resolution meth-

ods since many require surrounding pixels to infer cen-

ter pixels correctly. This center-surround relation is use-

ful since the surrounding region provides more constraints

to this ill-posed problem (SR). For pixels near the image

boundary, this relation cannot be exploited to the full extent

and many SR methods crop the result image.

This methodology, however, is not valid if the required

surround region is very big. After cropping, the final image

is too small to be visually pleasing.

To resolve this issue, we pad zeros before convolutions

to keep the sizes of all feature maps (including the output

image) the same. It turns out that zero-padding works sur-

prisingly well. For this reason, our method differs from

most other methods in the sense that pixels near the image

boundary are also correctly predicted.

Once image details are predicted, they are added back to

the input ILR image to give the final image (HR). We use

this structure for all experiments in our work.

3.2. Training

We now describe the objective to minimize in order to

find optimal parameters of our model. Let x denote an in-

terpolated low-resolution image and y a high-resolution im-

age. Given a training dataset {x(i),y(i)}Ni=1, our goal is to

learn a model f that predicts values ŷ = f(x), where ŷ is

an estimate of the target HR image. We minimize the mean

squared error 1
2 ||y − f(x)||2 averaged over the training set

is minimized.

Residual-Learning In SRCNN, the network must pre-

serve all input detail since the image is discarded and the

output is generated from the learned features alone. With

many weight layers, this becomes an end-to-end relation

requiring very long-term memory. For this reason, the van-

ishing/exploding gradients problem [2] can be critical. We

can solve this problem simply with residual-learning.

As the input and output images are largely similar, we

define a residual image r = y − x, where most values are

likely to be zero or small. We want to predict this resid-

ual image. The loss function now becomes 1
2 ||r − f(x)||2,

where f(x) is the network prediction.

In networks, this is reflected in the loss layer as follows.

Our loss layer takes three inputs: residual estimate, network

input (ILR image) and ground truth HR image. The loss

is computed as the Euclidean distance between the recon-

structed image (the sum of network input and output) and

ground truth.

Training is carried out by optimizing the regression ob-

jective using mini-batch gradient descent based on back-

propagation (LeCun et al. [14]). We set the momentum

parameter to 0.9. The training is regularized by weight de-

cay (L2 penalty multiplied by 0.0001).

High Learning Rates for Very Deep Networks Train-

ing deep models can fail to converge in realistic limit of

time. SRCNN [6] fails to show superior performance with

1648

more than three weight layers. While there can be various

reasons, one possibility is that they stopped their training

procedure before networks converged. Their learning rate

10−5 is too small for a network to converge within a week

on a common GPU. Looking at Fig. 9 of [6], it is not easy to

say their deeper networks have converged and their perfor-

mances were saturated. While more training will eventually

resolve the issue, but increasing depth to 20 does not seems

practical with SRCNN.

It is a basic rule of thumb to make learning rate high to

boost training. But simply setting learning rate high can

also lead to vanishing/exploding gradients [2]. For the rea-

son, we suggest an adjustable gradient clipping for maximal

boost in speed while suppressing exploding gradients.

Adjustable Gradient Clipping Gradient clipping is a

technique that is often used in training recurrent neural net-

works [17]. But, to our knowledge, its usage is limited in

training CNNs. While there exist many ways to limit gra-

dients, one of the common strategies is to clip individual

gradients to the predefined range [−θ, θ].
With clipping, gradients are in a certain range. With

stochastic gradient descent commonly used for training,

learning rate is multiplied to adjust the step size. If high

learning rate is used, it is likely that θ is tuned to be small

to avoid exploding gradients in a high learning rate regime.

But as learning rate is annealed to get smaller, the effective

gradient (gradient multiplied by learning rate) approaches

zero and training can take exponentially many iterations to

converge if learning rate is decreased geometrically.

For maximal speed of convergence, we clip the gradients

to [− θ
γ
, θ
γ
], where γ denotes the current learning rate. We

find the adjustable gradient clipping makes our convergence

procedure extremely fast. Our 20-layer network training is

done within 4 hours whereas 3-layer SRCNN takes several

days to train.

Multi-Scale While very deep models can boost perfor-

mance, more parameters are now needed to define a net-

work. Typically, one network is created for each scale fac-

tor. Considering that fractional scale factors are often used,

we need an economical way to store and retrieve networks.

For this reason, we also train a multi-scale model. With

this approach, parameters are shared across all predefined

scale factors. Training a multi-scale model is straightfor-

ward. Training datasets for several specified scales are com-

bined into one big dataset.

Data preparation is similar to SRCNN [5] with some dif-

ferences. Input patch size is now equal to the size of the

receptive field and images are divided into sub-images with

no overlap. A mini-batch consists of 64 sub-images, where

sub-images from different scales can be in the same batch.

We implement our model using the MatConvNet1 pack-

age [23].

1http://www.vlfeat.org/matconvnet/

Epoch 10 20 40 80

Residual 36.90 36.64 37.12 37.05

Non-Residual 27.42 19.59 31.38 35.66

Difference 9.48 17.05 5.74 1.39

(a) Initial learning rate 0.1

Epoch 10 20 40 80

Residual 36.74 36.87 36.91 36.93

Non-Residual 30.33 33.59 36.26 36.42

Difference 6.41 3.28 0.65 0.52

(b) Initial learning rate 0.01

Epoch 10 20 40 80

Residual 36.31 36.46 36.52 36.52

Non-Residual 33.97 35.08 36.11 36.11

Difference 2.35 1.38 0.42 0.40

(c) Initial learning rate 0.001

Table 1: Performance table (PSNR) for residual and non-residual

networks (‘Set5’ dataset, ×2). Residual networks rapidly ap-

proach their convergence within 10 epochs.

4. Understanding Properties

In this section, we study three properties of our proposed

method. First, we show that large depth is necessary for

the task of SR. A very deep network utilizes more con-

textual information in an image and models complex func-

tions with many nonlinear layers. We experimentally verify

that deeper networks give better performances than shallow

ones.

Second, we show that our residual-learning network con-

verges much faster than the standard CNN. Moreover, our

network gives a significant boost in performance.

Third, we show that our method with a single network

performs as well as a method using multiple networks

trained for each scale. We can effectively reduce model

capacity (the number of parameters) of multi-network ap-

proaches.

4.1. The Deeper, the Better

Convolutional neural networks exploit spatially-local

correlation by enforcing a local connectivity pattern be-

tween neurons of adjacent layers [1]. In other words, hidden

units in layer m take as input a subset of units in layer m−1.

They form spatially contiguous receptive fields.

Each hidden unit is unresponsive to variations outside of

the receptive field with respect to the input. The architecture

thus ensures that the learned filters produce the strongest

response to a spatially local input pattern.

However, stacking many such layers leads to filters that

become increasingly global (i.e. responsive to a larger re-

gion of pixel space). In other words, a filter of very large

support can be effectively decomposed into a series of small

1649

 http://www.vlfeat.org/matconvnet/

Depth

5 10 15 20

P
S

N
R

 (
d
B

)

36.4

36.5

36.6

36.7

36.8

36.9

37

37.1

(a) Test Scale Factor 2

Depth

5 10 15 20

P
S

N
R

 (
d
B

)

32.5

32.6

32.7

32.8

32.9

33

33.1

33.2

33.3

(b) Test Scale Factor 3

Depth

5 10 15 20

P
S

N
R

 (
d
B

)

30.3

30.4

30.5

30.6

30.7

30.8

30.9

31

(c) Test Scale Factor 4

Figure 3: Depth vs Performance

Epochs

0 20 40 60 80

P
S

N
R

 (
d
B

)

18

20

22

24

26

28

30

32

34

36

38

Residual

Non-Residual

Bicubic

(a) Initial learning rate 0.1

Epochs

0 20 40 60 80

P
S

N
R

 (
d
B

)

22

24

26

28

30

32

34

36

38

Residual

Non-Residual

Bicubic

(b) Initial learning rate 0.01

Epochs

0 20 40 60 80

P
S

N
R

 (
d
B

)

20

22

24

26

28

30

32

34

36

38

Residual

Non-Residual

Bicubic

(c) Initial learning rate 0.001

Figure 4: Performance curve for residual and non-residual networks. Two networks are tested under ‘Set5’ dataset with scale factor 2.

Residual networks quickly reach state-of-the-art performance within a few epochs, whereas non-residual networks (which models high-

resolution image directly) take many epochs to reach maximum performance. Moreover, the final accuracy is higher for residual networks.

filters.

In this work, we use filters of the same size, 3×3, for all

layers. For the first layer, the receptive field is of size 3×3.

For the next layers, the size of the receptive field increases

by 2 in both height and width. For depth D network, the

receptive field has size (2D + 1) × (2D + 1). Its size is

proportional to the depth.

In the task of SR, this corresponds to the amount of

contextual information that can be exploited to infer high-

frequency components. A large receptive field means the

network can use more context to predict image details. As

SR is an ill-posed inverse problem, collecting and analyz-

ing more neighbor pixels give more clues. For example, if

there are some image patterns entirely contained in a recep-

tive field, it is plausible that this pattern is recognized and

used to super-resolve the image.

In addition, very deep networks can exploit high nonlin-

earities. We use 19 rectified linear units and our networks

can model very complex functions with moderate number

of channels (neurons). The advantages of making a thin

deep network is well explained in Simonyan and Zisserman

[19].

We now experimentally show that very deep networks

significantly improve SR performance. We train and test

networks of depth ranging from 5 to 20 (only counting

weight layers excluding nonlinearity layers). In Figure 3,

we show the results. In most cases, performance increases

as depth increases. As depth increases, performance im-

proves rapidly.

4.2. Residual­Learning

As we already have a low-resolution image as the in-

put, predicting high-frequency components is enough for

the purpose of SR. Although the concept of predicting resid-

uals has been used in previous methods [21, 22, 26], it has

not been studied in the context of deep-learning-based SR

framework.

In this work, we have proposed a network structure that

learns residual images. We now study the effect of this mod-

ification to a standard CNN structure in detail.

First, we find that this residual network converges much

faster. Two networks are compared experimentally: the

1650

Test / Train ×2 ×3 ×4 ×2,3 ×2,4 ×3,4 ×2,3,4 Bicubic

×2 37.10 30.05 28.13 37.09 37.03 32.43 37.06 33.66

×3 30.42 32.89 30.50 33.22 31.20 33.24 33.27 30.39

×4 28.43 28.73 30.84 28.70 30.86 30.94 30.95 28.42

Table 2: Scale Factor Experiment. Several models are trained with different scale sets. Quantitative evaluation (PSNR) on dataset ‘Set5’

is provided for scale factors 2,3 and 4. Red color indicates that test scale is included during training. Models trained with multiple scales

perform well on the trained scales.

×1.5 ×2 ×2.5 ×3 ×3.5 ×4

×1.5 ×2 ×2.5 ×3 ×3.5 ×4

Figure 5: (Top) Our results using a single network for all scale factors. Super-resolved images over all scales are clean and sharp. (Bottom)

Results of Dong et al. [5] (×3 model used for all scales). Result images are not visually pleasing. To handle multiple scales, existing

methods require multiple networks.

residual network and the standard non-residual network.

We use depth 10 (weight layers) and scale factor 2. Perfor-

mance curves for various learning rates are shown in Figure

4. All use the same learning rate scheduling mechanism that

has been mentioned above.

Second, at convergence, the residual network shows su-

perior performance. In Figure 4, residual networks give

higher PSNR when training is done.

Another remark is that if small learning rates are used,

networks do not converge in the given number of epochs. If

initial learning rate 0.1 is used, PSNR of a residual-learning

network reaches 36.90 within 10 epochs. But if 0.001 is

used instead, the network never reaches the same level of

performance (its performance is 36.52 after 80 epochs). In

a similar manner, residual and non-residual networks show

dramatic performance gaps after 10 epochs (36.90 vs. 27.42

for rate 0.1).

In short, this simple modification to a standard non-

residual network structure is very powerful and one can ex-

plore the validity of the idea in other image restoration prob-

lems where input and output images are highly correlated.

4.3. Single Model for Multiple Scales

Scale augmentation during training is a key technique to

equip a network with super-resolution machines of multi-

ple scales. Many SR processes for different scales can be

executed with our multi-scale machine with much smaller

capacity than that of single-scale machines combined.

We start with an interesting experiment as follows: we

train our network with a single scale factor strain and it is

tested under another scale factor stest. Here, factors 2,3 and

4 that are widely used in SR comparisons are considered.

Possible pairs (strain,stest) are tried for the dataset ‘Set5’

[15]. Experimental results are summarized in Table 2.

Performance is degraded if strain 6= stest. For scale factor

2, the model trained with factor 2 gives PSNR of 37.10 (in

dB), whereas models trained with factor 3 and 4 give 30.05

and 28.13, respectively. A network trained over single-scale

data is not capable of handling other scales. In many tests,

it is even worse than bicubic interpolation, the method used

for generating the input image.

We now test if a model trained with scale augmentation

is capable of performing SR at multiple scale factors. The

same network used above is trained with multiple scale fac-

tors strain = {2, 3, 4}. In addition, we experiment with the

cases strain = {2, 3}, {2, 4}, {3, 4} for more comparisons.

We observe that the network copes with any scale used

during training. When strain = {2, 3, 4} (×2, 3, 4 in Ta-

ble 2), its PSNR for each scale is comparable to those

achieved from the corresponding result of single-scale net-

1651

Ground Truth A+ [22] RFL [18] SelfEx [11] SRCNN [5] VDSR (Ours)

(PSNR, SSIM) (22.92, 0.7379) (22.90, 0.7332) (23.00, 0.7439) (23.15, 0.7487) (23.50, 0.7777)

Figure 6: Super-resolution results of “148026” (B100) with scale factor ×3. VDSR recovers sharp lines.

Ground Truth A+ [22] RFL [18] SelfEx [11] SRCNN [5] VDSR (Ours)

(PSNR, SSIM) (27.08, 0.7514) (27.08, 0.7508) (27.02, 0.7513) (27.16, 0.7545) (27.32, 0.7606)

Figure 7: Super-resolution results of “38092” (B100) with scale factor ×3. The horn in the image is sharp in the result of VDSR.

Dataset Scale
Bicubic A+ [22] RFL [18] SelfEx [11] SRCNN [5] VDSR (Ours)

PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time

Set5

×2 33.66/0.9299/0.00 36.54/0.9544/0.58 36.54/0.9537/0.63 36.49/0.9537/45.78 36.66/0.9542/2.19 37.53/0.9587/0.13

×3 30.39/0.8682/0.00 32.58/0.9088/0.32 32.43/0.9057/0.49 32.58/0.9093/33.44 32.75/0.9090/2.23 33.66/0.9213/0.13

×4 28.42/0.8104/0.00 30.28/0.8603/0.24 30.14/0.8548/0.38 30.31/0.8619/29.18 30.48/0.8628/2.19 31.35/0.8838/0.12

Set14

×2 30.24/0.8688/0.00 32.28/0.9056/0.86 32.26/0.9040/1.13 32.22/0.9034/105.00 32.42/0.9063/4.32 33.03/0.9124/0.25

×3 27.55/0.7742/0.00 29.13/0.8188/0.56 29.05/0.8164/0.85 29.16/0.8196/74.69 29.28/0.8209/4.40 29.77/0.8314/0.26

×4 26.00/0.7027/0.00 27.32/0.7491/0.38 27.24/0.7451/0.65 27.40/0.7518/65.08 27.49/0.7503/4.39 28.01/0.7674/0.25

B100

×2 29.56/0.8431/0.00 31.21/0.8863/0.59 31.16/0.8840/0.80 31.18/0.8855/60.09 31.36/0.8879/2.51 31.90/0.8960/0.16

×3 27.21/0.7385/0.00 28.29/0.7835/0.33 28.22/0.7806/0.62 28.29/0.7840/40.01 28.41/0.7863/2.58 28.82/0.7976/0.21

×4 25.96/0.6675/0.00 26.82/0.7087/0.26 26.75/0.7054/0.48 26.84/0.7106/35.87 26.90/0.7101/2.51 27.29/0.7251/0.21

Urban100

×2 26.88/0.8403/0.00 29.20/0.8938/2.96 29.11/0.8904/3.62 29.54/0.8967/663.98 29.50/0.8946/22.12 30.76/0.9140/0.98

×3 24.46/0.7349/0.00 26.03/0.7973/1.67 25.86/0.7900/2.48 26.44/0.8088/473.60 26.24/0.7989/19.35 27.14/0.8279/1.08

×4 23.14/0.6577/0.00 24.32/0.7183/1.21 24.19/0.7096/1.88 24.79/0.7374/394.40 24.52/0.7221/18.46 25.18/0.7524/1.06

Table 3: Average PSNR/SSIM for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, B100 and Urban100. Red color indicates the best

performance and blue color indicates the second best performance.

1652

work: 37.06 vs. 37.10 (×2), 33.27 vs. 32.89 (×3), 30.95

vs. 30.86 (×4).

Another pattern is that for large scales (×3, 4), our multi-

scale network outperforms single-scale network: our model

(×2, 3), (×3, 4) and (×2, 3, 4) give PSNRs 33.22, 33.24

and 33.27 for test scale 3, respectively, whereas (×3) gives

32.89. Similarly, (×2, 4), (×3, 4) and (×2, 3, 4) give 30.86,

30.94 and 30.95 (vs. 30.84 by ×4 model), respectively.

From this, we observe that training multiple scales boosts

the performance for large scales.

5. Experimental Results

In this section, we evaluate the performance of our

method on several datasets. We first describe datasets used

for training and testing our method. Next, parameters nec-

essary for training are given.

After outlining our experimental setup, we compare our

method with several state-of-the-art SISR methods.

5.1. Datasets for Training and Testing

Training dataset Different learning-based methods use

different training images. For example, RFL [18] has two

methods, where the first one uses 91 images from Yang et al.

[25] and the second one uses 291 images with the addition

of 200 images from Berkeley Segmentation Dataset [16].

SRCNN [6] uses a very large ImageNet dataset.

We use 291 images as in [18] for benchmark with other

methods in this section. In addition, data augmentation (ro-

tation or flip) is used. For results in previous sections, we

used 91 images to train network fast, so performances can

be slightly different.

Test dataset For benchmark, we use four datasets.

Datasets ‘Set5’ [15] and ‘Set14’ [26] are often used for

benchmark in other works [22, 21, 5]. Dataset ‘Urban100’,

a dataset of urban images recently provided by Huang et

al. [11], is very interesting as it contains many challeng-

ing images failed by many of the existing methods. Finally,

dataset ‘B100’, natural images in the Berkeley Segmenta-

tion Dataset used in Timofte et al. [22] and Yang and Yang

[24] for benchmark, is also employed.

5.2. Training Parameters

We provide parameters used to train our final model. We

use a network of depth 20. Training uses batches of size 64.

Momentum and weight decay parameters are set to 0.9 and

0.0001, respectively.

For weight initialization, we use the method described in

He et al. [10]. This is a theoretically sound procedure for

networks utilizing rectified linear units (ReLu).

We train all experiments over 80 epochs (9960 iterations

with batch size 64). Learning rate was initially set to 0.1 and

then decreased by a factor of 10 every 20 epochs. In total,

the learning rate was decreased 3 times, and the learning is

stopped after 80 epochs. Training takes roughly 4 hours on

GPU Titan Z.

5.3. Benchmark

For benchmark, we follow the publicly available frame-

work of Huang et al. [21]. It enables the comparison of

many state-of-the-art results with the same evaluation pro-

cedure.

The framework applies bicubic interpolation to color

components of an image and sophisticated models to lumi-

nance components as in other methods [4], [9], [26]. This is

because human vision is more sensitive to details in inten-

sity than in color.

This framework crops pixels near image boundary. For

our method, this procedure is unnecessary as our network

outputs the full-sized image. For fair comparison, however,

we also crop pixels to the same amount.

5.4. Comparisons with State­of­the­Art Methods

We provide quantitative and qualitative comparisons.

Compared methods are A+ [22], RFL[18], SelfEx [11] and

SRCNN [5]. In Table 3, we provide a summary of quantita-

tive evaluation on several datasets. Our methods outperform

all previous methods in these datasets. Moreover, our meth-

ods are relatively fast. The public code of SRCNN based

on a CPU implementation is slower than the code used by

Dong et. al [6] in their paper based on a GPU implementa-

tion.

In Figures 6 and 7, we compare our method with top-

performing methods. In Figure 6, only our method perfectly

reconstructs the line in the middle. Similarly, in Figure 7,

contours are clean and vivid in our method whereas they are

severely blurred or distorted in other methods.

6. Conclusion

In this work, we have presented a super-resolution

method using very deep networks. Training a very deep

network is hard due to a slow convergence rate. We use

residual-learning and extremely high learning rates to opti-

mize a very deep network fast. Convergence speed is max-

imized and we use gradient clipping to ensure the train-

ing stability. We have demonstrated that our method out-

performs the existing method by a large margin on bench-

marked images. We believe our approach is readily appli-

cable to other image restoration problems such as denoising

and compression artifact removal.

References

[1] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning.

Book in preparation for MIT Press, 2015. 4

1653

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. Neural Net-

works, IEEE Transactions on, 5(2):157–166, 1994. 3, 4

[3] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L.

Morel. Super-resolution using neighbor embedding of back-

projection residuals. In Digital Signal Processing (DSP),

2013 18th International Conference on, pages 1–8. IEEE,

2013. 2

[4] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In CVPR, 2004. 1, 8

[5] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In ECCV.

2014. 4, 6, 7, 8

[6] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. TPAMI, 2015.

1, 2, 3, 4, 8

[7] C. E. Duchon. Lanczos filtering in one and two dimensions.

Journal of Applied Meteorology, 18(8):1016–1022, 1979. 1

[8] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-

ing low-level vision. International journal of computer vi-

sion, 40(1):25–47, 2000. 1

[9] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a

single image. In ICCV, 2009. 1, 8

[10] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. CoRR, abs/1502.01852, 2015. 8

[11] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution using transformed self-exemplars. In CVPR, 2015.

7, 8

[12] M. Irani and S. Peleg. Improving resolution by image reg-

istration. CVGIP: Graphical models and image processing,

53(3):231–239, 1991. 1

[13] K. I. Kim and Y. Kwon. Single-image super-resolution using

sparse regression and natural image prior. TPAMI, 2010. 1

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 3

[15] C. G. Marco Bevilacqua, Aline Roumy and M.-L. A.

Morel. Low-complexity single-image super-resolution based

on nonnegative neighbor embedding. In BMVC, 2012. 1, 2,

6, 8

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 8

[17] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. In ICML, 2013. 4

[18] S. Schulter, C. Leistner, and H. Bischof. Fast and accu-

rate image upscaling with super-resolution forests. In CVPR,

2015. 1, 7, 8

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 2, 5

[20] J. Sun, Z. Xu, and H.-Y. Shum. Image super-resolution using

gradient profile prior. In CVPR, 2008. 1

[21] R. Timofte, V. De, and L. V. Gool. Anchored neighborhood

regression for fast example-based super-resolution. In ICCV,

2013. 1, 2, 5, 8

[22] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted

anchored neighborhood regression for fast super-resolution.

In ACCV, 2014. 1, 2, 5, 7, 8

[23] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. CoRR, abs/1412.4564, 2014. 4

[24] C.-Y. Yang and M.-H. Yang. Fast direct super-resolution by

simple functions. In ICCV, 2013. 8

[25] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. TIP, 2010. 1, 8

[26] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representations. In Curves and Surfaces, pages

711–730. Springer, 2012. 1, 5, 8

1654

