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Abstract

In this paper, we specifically examine the training of a

multi-label classifier from data with incompletely assigned

labels. This problem is fundamentally important in many

multi-label applications because it is almost impossible for

human annotators to assign a complete set of labels, al-

though their judgments are reliable. In other words, a multi-

label dataset usually has properties by which (1) assigned

labels are definitely positive and (2) some labels are ab-

sent but are still considered positive. Such a setting has

been studied as a positive and unlabeled (PU) classifica-

tion problem in a binary setting. We treat incomplete label

assignment problems as a multi-label PU ranking, which is

an extension of classical binary PU problems to the well-

studied rank-based multi-label classification. We derive the

conditions that should be satisfied to cancel the negative ef-

fects of label incompleteness. Our experimentally obtained

results demonstrate the effectiveness of these conditions.

1. Introduction

Multi-label classification treats a problem that allows

samples to take more than one label. Although the simplest

solution for multi-label classification is training an indepen-

dent classifier per class, a trained model is well known to

have low classification performance when there is a corre-

lation between classes [7]. For this reason, a multi-label

learning method, which incorporates label dependency, is

needed. In recent years, many studies have specifically ad-

dressed multi-label learning [7], [19], [6]. Furthermore,

there are widely diverse applications in many domains in-

cluding computer vision [5], [27], [18].

To collect a dataset for multi-label classification, re-

searchers generally use crowdsourcing. An alternative is

to collect data in a semi-automatic way as in [26]. In most

cases, the obtained labels will be incomplete but reliable be-

cause it is almost impossible to assign a full set of labels to

describe images completely in the real world. For instance,

let us consider the case in which human annotators attach
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Figure 1. Multi-label dataset tends to have partially labeled sam-

ples. Absent labels are regarded as negative, and it affects classifi-

cation performance.

labels to the leftmost image in Fig. 1. They might iden-

tify ”dog” and ”chair,” and then assign them because they

are the main components. However, besides these, ”sofa,”

”carpet,” and ”box” can also be used. In addition, numerous

other possible correct answers exist such as scene, breed of

dog, and attribute.

As in the example presented above, the obtained dataset

has properties by which (1) assigned labels are definitely

positive and (2) absent labels are not necessarily negative.

Because conventional multi-label learning models ignore

this incompleteness and because they regard unlabeled ob-

jects as negative, their performance will be affected as in the

case of the right-hand side of Fig. 1. Therefore, an incom-

plete label assignment problem is fundamentally important

and critical in multi-label learning, which should be solved.

Our goal in this paper is to propose a method that enables

us to train a classifier consistently from data with incom-

pletely assigned labels. We deal with the setting as follows:

1. Assigned labels are definitely positive.

2. Absent labels are not necessarily negative.
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3. Lastly, samples are allowed to take more than one la-

bel.

Settings (1) and (2) have been studied as positive and un-

labeled (PU) classification problems in a binary case [15],

[22]. Moreover, setting (3) is a multi-label classification

setting. In this work, we deal with a multi-label PU rank-

ing problem to treat the setting, which includes all of (1),

(2), and (3); then, by extending an analysis for binary PU

classification [10] to a multi-label problem, we derive the

conditions under which the loss function should be satisfied

to have consistency even if assigned labels are incomplete.

The main contributions of this work are as follows:

1. We derive the conditions that should be satisfied to

cancel the negative effects of label incompleteness in

multi-label PU ranking.

2. We demonstrate the effectiveness of these conditions

using experiments on several multi-label datasets.

In Sec.1, we describe the goals and contributions of this

work. We then discuss related works in Sec. 2. In Sec.

3, we describe the settings of multi-label rankings. In Sec.

4, we explain an extension of the analyses for binary PU

to multi-label problems and describe the conditions under

which the loss function is satisfied. Several experiments

on synthetic datasets and image annotation datasets are ex-

plained in Sec. 5 to investigate the efficacy of the derived

conditions. Experimental results are discussed in Sec. 6.

Then, we conclude our work in Sec. 7.

2. Related work

2.1. Multi-label ranking

Multi-label classification problems have been studied in

recent years. One of the most common approaches is based

on label ranking. Label ranking is aimed at ranking all pos-

itive classes higher than negative ones by minimizing rank

loss. Rank loss, originally proposed by [13], has been stud-

ied well [16]. Actually, [9] relaxed the constraint condition

to allow the application of the algorithm to large-scale data.

In the computer vision domain, many algorithms have been

proposed based on label ranking. [27] proposed a learn-

ing model, WSABIE, that embeds image and word features

to a common space by optimizing the weighted rank loss.

[4], [1] used rank loss for the object recognition task. In

addition, [17] trained a deep convolutional neural network

for a multi-label task by replacing the softmax loss with the

weighted rank loss proposed by [27]. However, all of these

works assume that all labels are assigned completely and do

not deal directly with label incompleteness.

2.2. PU Classification

The problem of training classifiers from positive samples

and unlabeled samples is called PU classification. Some

studies have addressed this problem [22]. Actually, [15]

constructed a probabilistic model only from observable

samples and estimated a proper classifier using it. In addi-

tion, [10] analyzed a binary PU classification problem and

revealed that PU classification can be cast as a cost-sensitive

learning, which changes the weight of the penalty per class.

Using a symmetric non-convex function as a surrogate loss

makes it possible to learn consistently. However, these stud-

ies emphasized only binary classification problems and did

not assume that samples take more than one label.

2.3. Learning from incompletely labeled data

Some works have attempted to address label incomplete-

ness in multi-label learning as label deficits. [3] tried to

eliminate the influence of label deficits in the optimization

process by adding a regularization term to rank loss, which

forces the difference between scores for positive and nega-

tive labels to be group sparse. Then, [20] extended [15] to

a multi-label setting by considering the label dependency.

[28] dealt with weak labels in a multiple-instance, multi-

label learning setting. Subsequently, [23] used a conditional

restricted Boltzmann machine to denoise the label deficit.

However, these studies did not mention that the condition

loss function should be satisfied.

3. Multi-label ranking

In this section, we describe the setting of the multi-label

ranking problem. Let X be a sample space and Y={0,1}m
be the possible set of labels, where m denotes the number of

classes. yi denotes the status of the sample in terms of the

i-th class: if yi=1, then the i-th class is positive for a given

sample, and if yi=0, then it is negative. A dataset hav-

ing N samples S={(x1,y1),(x1,y1),...,(xN ,yN )} is gen-

erated from an unknown distribution on X⇥Y . A score

function is defined as f(x)=(f1(x),f2(x),...,fm(x)) : X−!
R
m. In an empirical risk minimization framework, algo-

rithms are used to minimize the expectations of the loss

function over the (sample, label) space. In other words, the

following f⇤=argmin L(f) is computed:

L(f) =Exy[L(f(x),y)]. (1)

L(f(x),y) indicates the loss function that takes a label and a

score for the sample as input. Although some loss functions

including 0-1 subset loss and Hamming loss are proposed,

we treat the rank loss, which is commonly used in multi-

label learning.

3.1. Rank loss

Rank loss imposes a penalty on a classifier when a pair

of labels is incorrectly ranked. It can be defined as follows:

Lrank(f(x),y) =
X

{i,j:yi=1,yj=0}
[[fi<fj ]]+

1

2
[[fi=fj ]], (2)
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where i,j are the indices of the class. The i-th element of

f(x), which means the score for the i-th class, is denoted

by fi, omitting the dependency for x. [[·]] is the indicator

function that takes a value of 1 when the conditions inside

the brackets are met; otherwise, it is 0. From (1), the loss

function that should be minimized is

Lrank = Exy[Lrank(f(x),y)]

=
X

y2Y

P (y)Ex|y[Lrank(f(x),y)]

=
X

y2Y

P (y)
X

{i,j:yi=1,yj=0}
Ex|y



[[fi<fj ]]+
1

2
[[fi=fj ]]

]

. (3)

By swapping two summations, we can rewrite (3) as

Lrank

=
X

{i,j:yi=1,yj=0}
P (yi=1,yj=0)Ex|yi=1,yj=0



[[fi<fj]]+
1

2
[[fi=fj ]]

]

.

(4)

Here, we define the mis-rank rate as

R(i,j) = Ex|yi=1,yj=0



[[fi<fj ]]+
1

2
[[fi=fj ]]

]

= P (fi<fj | yi=1, yj=0)+
1

2
P (fi=fj | yi=1,yj=0).

(5)

The mis-rank rate R(i,j) is the probability that the com-

puted score of a sample for the positive label is smaller

than that for the negative label. Using this, we express the

rank loss Lrank as

Lrank =
X

{i,j:yi=1,yj=0}
P (yi=1,yj=0)R(i,j)

=
X

1i<jm

P (yi=1,yj=0)R(i,j)+P (yi=0,yj=1)R(j,i).

(6)

We can consider rank loss Lrank as the expectation of the

mis-rank rate R(i,j) over all possible pairs of labels. Our

interest is to minimize it in the PU setting.

4. Multi-label PU ranking

As described above, multi-label PU ranking is a problem

of training a label-ranking-based multi-label classifier from

a dataset, which has properties in which (1) labels assigned

to samples are definitely positive and (2) absent labels are

not necessarily negative.

In this section, we extend the analysis for binary PU clas-

sification [10] to a multi-label setting and derive the follow-

ing:

1. A multi-label PU ranking problem can be cast as a

cost-sensitive learning using positive and unlabeled

data.

2. Applying a surrogate loss for optimization with incom-

pletely labeled data leads to error from a correct one,

which can be cancelled by selecting a symmetric sur-

rogate loss function such as a ramp loss or a sigmoid

loss.

4.1. Appropriately weighted cost

In this section, we explain how a multi-label PU rank-

ing problem can be cast as a cost-sensitive learning, which

means that we should weight the loss function appropri-

ately. Cost-sensitive learning [14] is a type of learning

method that incorporates the mis-classification cost. Cost-

sensitive “ranking” using rank loss is given naturally as

Lrank

=
X

1i<jm

cijP (yi=1,yj=0)R(i,j)+cjiP (yi=0,yj=1)R(j,i).

(7)

where cij is the weight of the penalty for mis-ranking for

the pair yi=1,yj=0. We aim at minimizing (6) with incom-

pletely labeled samples. In our PU setting, the mis-rank

rate R(i,j) in (6) cannot be estimated directly from the data

because there are no negative labels. For this reason, we in-

troduce a pseudo-mis-rank rate RX(i,j), which can be esti-

mated from the data, and then consider the optimization of

(6) via this quantity. Here, we define the pseudo-mis-rank

rate RX(i,j) as

RX(i,j)

=P (fi<fj | si=1,sj=0)+
1

2
P (fi=fj | si=1,sj=0). (8)

Therein, si2{0,1} shows whether the label of the i-th class

is assigned or not. si=1 and si=0 respectively mean that

the i-th class is labeled and not labeled. The pseudo-mis-

rank rate RX(i,j) represents the possibility that the ranking

score of a sample for an assigned label is smaller than that

for an absent label. We can estimate this quantity from in-

completely labeled data. If we ignore label incompleteness,

then the expected loss as actually minimized is not (6) but

L̂rank

=
X

1i<jm

P (si=1,sj=0)RX(i,j)+P (si=0,sj=1)RX(j,i).

(9)

Similarly to [10], we assume that unlabeled data are gener-

ated from a marginal distribution. This is called the “case-

controlled” setting in PU classification [25]. This condition

is expressed as P (yi=1|si=0)=P (yi=1). Furthermore,
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we make the assumption that the deficit of a positive la-

bel is not biased on the sample space. This condition is

represented as P (x|si=1)=P (x|yi=1). By these assump-

tions, the pseudo-mis-rank rate RX(i,j) can be written us-

ing R(i,j) as follows (see Appendix A):

RX(i,j)=(1−πij)R(i,j)+πijR-X(i,j), (10)

where

R-X(i,j)

=P (fi<fj | yi=1,yj=1)+
1

2
P (fi=fj | yi=1,yj=1),

(11)

and

πij=P (yj=1 | yi=1). (12)

R-X(i,j) denotes the penalty imposed on mistakes at-

tributable to the existence of positive labels contained in

absent labels. To be more specific, in the case of learn-

ing from samples with incompletely assigned labels, rank

loss imposes a penalty not for (positive, negative) but for

(assigned, not assigned) label pairs. However, these pairs

contain (positive, positive) pairs, which should not be in-

cluded in the penalty. Here, we represent this excessively

imposed penalty and its ratio as R-X(i,j) and πij , respec-

tively. Therefore, (10) can be interpreted as a decomposi-

tion into two losses: the loss that should be given and the

loss that should not be given. Transforming (10), we obtain

R(i,j)=
1

1−πij

(RX(i,j)−πijR-X(i,j)). (13)

By substituting this into (6) and using the relation

R-X(i,j)+R-X(j,i)

=P (fi>fj or fi=fj or fi<fj | yi=1,yj=1)

=1, (14)

we can obtain the following equation (see Appendix B):

Lrank

=
X

P (yi=1)RX(i,j)+P (yj=1)RX(j,i)−P (yi=1,yj=1)

=
X

cijP (si=1,sj=0)RX(i,j)+cjiP (si=0,sj=1)RX(j,i)

−P (yi=1,yj=1). (15)

Here,

cij=
P (yi=1)

P (si=1,sj=0)
. (16)

Compared with (9), the multi-label PU ranking problem can

be cast as a cost-sensitive learning. In fact, minimizing the

rank loss function weighted by cij with incompletely la-

beled data implies that the rank loss with completely la-

beled data, which should be originally minimized, can be

Figure 2. (a) Ramp loss (red dashed line) and sigmoid loss (blue

solid line) meet the described condition, while (b) exponential loss

(red dashed line) and hinge loss (blue solid line) do not.

minimized. P (si=1,sj=0) is the ratio of the samples in a

dataset that meets the condition si=1,sj=0. This can be

estimated from the training dataset. In addition, P (yi=1)
can be estimated using the methods proposed in [11], [2].

4.2. Symmetric surrogate loss

In this section, we derive the condition for surrogate loss

used in the optimization process. Mis-rank rate R can be

written as the expectation of the 0-1 function over the sam-

ple space as described below:

R(i,j)=Ex|yi=1,yj=0[l0-1(fi−fj)], l0-1(x)=

8

>

<

>

:

1 (if x<0)
1
2 (if x=0)

0 (otherwise)

Similarly,

RX(i,j)=Ex|si=1,sj=0[l0-1(fi−fj)].

Because direct optimization of this expectation including

the 0-1 loss is intractable, the surrogate loss function l0(x)
is generally used instead of the 0-1 loss. For example, the

pseudo-mis-rank rate is written as follows by applying the

hinge loss function l0H, which is used in many popular mod-

els (e.g., support vector machines), as the surrogate loss.

RX(i,j)⇡Ex|si=1,sj=0[l
0
H(fi−fj)], l

0
H(x)=

(

1−x (if x<1)

0 (otherwise)

When fully labeled data are used, by applying surrogate loss

to rank loss (6), we obtain

L0
rank

=
X

P (yi=1,yj=0)Ex|yi=1,yj=0[l
0(fi−fj)]

+P (yi=0,yj=1)Ex|yi=0,yj=1[l
0(fj−fi)]. (17)

By replacing RX in (15) with the expectation of surrogate

loss,
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L00
rank

=
X

P (yi=1)Ex|si=1,sj=0[l
0(fi−fj)]

+P (yj=1)Ex|si=0,sj=1[l
0(fj−fi)]−P (yi=1,yj=1)

=
X

P (yi=1,yj=0)Ex|yi=1,yj=0[l
0(fi−fj)]

+P (yi=0,yj=1)Ex|yi=0,yj=1[l
0(fj−fi)]

−P (yi=1,yj=1)
(

1−Ex|yi=1,yj=1[l
0(fi−fj)+l0(fj−fi)]

)

(18)

is obtained. From the two equations (17) and (18), we ob-

serve the relation L00
rank=L0

rank+(Error). It means that

utilizing surrogate loss in the optimization process with in-

completely labeled data causes an error. If we select the sur-

rogate loss function l0(·) to meet l0(fi−fj)+l0(fj−fi)=1,

then this error is cancelled and L00
rank=L0

rank is obtained.

Convex functions such as hinge loss and exponential loss

(Fig. 2(b)) do not meet this condition. Symmetric non-

convex functions such as ramp loss and sigmoid loss (Fig.

2(a)) satisfy it.

For example, let us consider a case in which data

are completely labeled and separable. In other words,

min Lrank=0. In this case,

argmin L0
rank-hinge=argmin L0

rank-ramp.

Completely identical hyperplanes are obtained for both the

ramp loss and the hinge loss. Considering the PU setting,

from the discussion presented above, we obtain

argmin L00
rank-ramp=argmin L0

rank-ramp.

On the other hand,

argmin L00
rank-hinge 6=argmin L0

rank-hinge

This relation indicates that the obtained boundary differs

from the optimal one when using hinge loss.

5. Experiment

To investigate the efficacy of the conditions stated in

the previous section, we conducted experiments on three

datasets: synthetic dataset, MSCOCO [24], and NUS-

WIDE [8].

5.1. Setting

Classifiers were trained from data containing a deficit on

positive labels at a rate from 0% to 80%. The accuracy was

evaluated on fully labeled data. The label deficit is given

from the following steps:

1. Determine the total number of deficit labels Nnoise by

multiplying the deficit rate by the total number of pos-

itive labels.

Table 1. Methods used in the experiments. Each method corre-

sponds to whether condition 1 (use of weighted loss function) and

condition 2 (use of symmetric loss function) are met or not.

Baseline Method 1 Method 2
Method 3
(proposed)

Condition 1
(weighted loss) X X

Condition 2
(symmetric loss) X X

2. Determine the number of deficit samples N c
noise for

class c from a multinomial distribution to meet

Nnoise=
P

cN
c
noise.

3. Choose N c
noise samples labeled as c at random and re-

move their label.

We used the mean average precision in terms of sam-

ples as an evaluation criterion. Through all the experiments,

hinge loss and ramp loss were used in the non-symmetric

and symmetric surrogate loss function, respectively. Score

functions were linear, and their weights were updated using

stochastic gradient descent. Specifically for the score func-

tion f(x)=WTx and loss function 1
N

PN
n=1l(f(xn),yn),

models were updated as

W(t+1)=W(t)−η(τ)
∂l(f(xn),yn)

∂W
,

where N denotes the number of training samples, and η(τ)

and τ denote the learning rate and the number of iterations,

respectively. In this experiment, we reduced the learning

rate as η(τ)=η(0)/
p
τ .

5.2. Synthetic dataset

A synthetic dataset was generated as in the following

procedure, which was performed for each sample:

1. The number of relevant labels n is sampled from a

Poisson distribution.

2. For n times, relevant class c is sampled from a multi-

nomial distribution.

3. The number of feature samplings k is sampled from a

Poisson distribution.

4. For k times, feature x is sampled from a multinomial

distribution parametrized per class and their summa-

tion is used as a feature of the sample.

Ten thousand samples were generated and then divided

into 8,000 for training and 2,000 for testing. The param-

eters of the multinomial distributions were sampled from

a uniform distribution. In addition, L2 normalization was

applied to all samples.

Experiment A. First, to show the influence of the de-

rived condition on classification accuracy, we evaluated four

methods, corresponding to whether condition 1 (use of ap-

propriately weighted loss function) and condition 2 (use of
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Figure 3. Results of Experiment A on a synthetic dataset. Each figure from the left corresponds to a different mean number of labels (2, 4,

8, 12, 16, 32). The method that meets both conditions has robustness to the label deficit.

symmetric loss function) are met or not (Table 1). In this

experiment, the prior P (yi=1) in (16) was given from fully

labeled training samples. We fixed the number of classes to

40 and the dimension of a feature to 100. The mean number

of labels for each sample was chosen from (2,4,8,12,16,32).
The result is presented in Fig. 3. In all settings, Method 3,

which satisfies both conditions, could learn most robustly.

As the number of labels increased, the difference in ac-

curacy between Method 3 and the other methods became

large.

Experiment B. Then, we evaluated the accuracy of

Method 3 when combined with prior estimation, which is

necessary for application to a real problem. To this end,

we compared three methods: Method 1 (baseline), Method

3 with a prior given from a fully labeled dataset (denoted

as optimal in result), and Method 3 with an estimated prior

(denoted as estimated). To estimate class prior P (yi=1) for

class i, we applied [11] based on distribution matching [12]

for every class. Because we cannot know negative sam-

ples, this algorithm is designed to estimate prior θ=p(y=1)
by partially matching marginal distribution p(x) and class

conditional distribution p(x|y=1) weighted by prior prob-

ability. To this end, the algorithm attempts to minimize the

Pearson (PE) divergence in terms of θ. Formally, we obtain

θ⇤=argmin PE

=argmin
1

2

Z
✓

θp(x|y=1)

p(x)
−1

◆2

p(x)dx. (19)

Instead of a direct minimization of the PE divergence, the

tightest lower bound is minimized. For more details, please

see [11]. We changed the synthetic dataset from three points

of view: (1) the number of classes, (2) the number of labels,

and (3) the dimension of the features. Each setting is de-

scribed as follows:

• Choose the number of labels from (2, 4, 8), while the

number of classes and the dimension of the features

are fixed respectively to 80 and 100.

• Choose the number of classes from (40, 80, 160),

while the number of labels and the dimension of the

features are fixed respectively to 4 and 100.

• Choose the dimension of the features from (50, 100,

150), while the number of classes and the number of

labels are fixed respectively to 80 and 4.

The results of each setting correspond respectively to

Fig. 4, Fig. 5, and Fig. 6. As shown in Fig. 4, when few

labels were assigned for a fixed number of classes (2 labels

out of 80 classes), and when the label deficit rate was low,

the performance of the method with the estimated prior was

high, sometimes even better than that with the optimal prior,

and it worsened as the deficit rate increased. The result of

the experiment using samples with more labels (4 labels out

of 80 classes) showed that, although the performance was

low when the label deficit rate was low, it was comparable

to the method with the optimal prior as the deficit increased.

If many labels were attached (8 labels out of 80 classes),

the prior estimation failed and high accuracy could not be

achieved. A similar tendency was observed from an experi-

ment in which the number of classes varied (Fig. 5). These
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Figure 4. Results of Experiment B. Each figure from the left corresponds to a different mean number of labels (2, 4, 8).

Figure 5. Results of Experiment B. Each figure from the left corresponds to a different number of classes (40, 80, 160).

results implied that the rate of (the number of labels)/(the

number of classes) in the data is a key to the success of

our method combined with prior estimation. From the re-

sults of the experiment of changing the dimension of the

features shown in Fig. 6, it is apparent that the accuracy

of the estimated method approached the optimal one as the

dimensions increased.

5.3. Image Annotation Dataset

We conducted experiments on the image annotation

datasets MSCOCO [24] and NUS-WIDE [8]. The settings

of each experiment are given as follows:

MSCOCO: This dataset contains segmentation infor-

mation and captions in addition to object labels. In this

experiment, we used only images and object tags attached

to them. We eliminated duplicated tags to a single image.

We used 82,783 samples for training and 40,504 samples

for testing. The number of classes was 80. The average

number of labels was 2.95 per sample.

NUS-WIDE : This dataset includes Flickr images with

5,018 types of tags. We used 81 classes predetermined in

the dataset and 161,789 samples for training and 107,859

samples for testing. The average number of labels was 1.76

per sample.

As the image feature, we used the activation of the 7th

layer of AlexNet [21] pre-trained with the ILSVRC2012

dataset. The dimensions of the visual features were 4,096.

We compared the same methods as those used in the pre-

vious experiment: Method 1 (baseline), Method 3 (opti-

mal), and Method 3 (estimated). In these experiments, we

estimated the prior using a naive method, which uses the

ratio of a labeled sample per class in the training dataset.

The experimental results for MSCOCO and NUS-WIDE

are presented in Fig. 7 and Fig. 8, respectively. In both

datasets, Method 3 with the estimated prior was able to im-

prove slightly the accuracy in every deficit rate even though

the prior estimation was naive.

6. Discussion

The results of Experiment A on the synthetic dataset

showed that, as both (A) the label deficit rate and (B) the

number of labels assigned to the samples increased, the dif-

ference in accuracy between the methods with condition 1

(Method 1 and Method 3) and those without it (baseline and

Method 2) increased. This result can be explained using the

following analysis. As provided in (9), let L̂rank denote the

loss function when we do not change the weight per class.

The error from true loss Lrank−L̂rank can be decomposed

into the following: (a) A term proportional to the proba-

bility that samples are unlabeled even if they are positive.

(b) A term proportional to the probability that both labels

within a pair of labels are assigned (see Appendix C). (a)

and (b) respectively correspond to (A) and (B).

Furthermore, if condition 1 is met, the difference in accu-

racy between the method with condition 2 and that without

it becomes large when samples have many labels. That re-

sult derives from the error caused by surrogate loss in the

PU setting data, where L00
rank−L0

rank (provided in (17)

and (18)) is proportional to the probability that both labels
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Figure 6. Results of Experiment B. Each figure from the left corresponds to a different number of features (50, 100, 150).

Figure 7. Experimental result for the MSCOCO dataset. Figure 8. Experimental result for the NUS-WIDE dataset.

are positive from every pair.

The reason for the low performance of Method 1, even

when the label deficit rate was low, can be attributed to the

fact that an error occurs when the “case-controlled” condi-

tion is not satisfied, which we assumed to derive the con-

ditions. In contrast to Method 1, Method 3 still showed

high performance because the error was low when symmet-

ric loss was used. Particularly, when a label’s deficit rate is

0%, or the labels are assigned completely, this error can be

cancelled using symmetric loss (see Appendix D).

In many situations with Experiment B on the synthetic

dataset, the accuracy near a 0% deficit rate was low because

the prior estimation method we used did not assume that

the labels were complete. Our method works when the label

deficit rate is greater than about 20%, which is likely in real-

istic data. To treat both complete and incomplete labels us-

ing the same method, it is necessary to invent more flexible

prior estimation methods, which is a subject for our future

work. We conjecture that the reason for the prior estimation

failing when numerous labels were attached is that positive

samples and negative samples for one class tend to share

other class’s label, which causes low separability in feature

space. For a task of classifying (dog, cat, human), if we

collect images in which they exist together with high prob-

ability, the sample labeled as (cat, human) and (dog, cat,

human) might have similar features. The rate of such a sam-

ple in a dataset increases as the number of labels increases

for a fixed number of classes. It is extremely difficult to

estimate the prior from such low-separability data. The per-

formance of a method with prior estimation that sometimes

overcomes the optimal one can be thought to estimate the

distribution from which data are generated more accurately

than taking a ratio of the samples in a dataset without a label

deficit.

In the experiments on image annotation datasets, we es-

timated the class prior in a naive manner because the com-

putational costs of existing algorithms are high. Despite

its simplicity, our method slightly improved the accuracy,

but an efficient estimation algorithm is needed for more im-

provement when applied to large-scale data.

7. Conclusion

In this paper, we specifically examined the training of a

multi-label classifier from incompletely labeled data, which

is essential for multi-label training. Regarding this problem

as a multi-label PU classification problem, we extended the

binary PU classification to label-ranking-based multi-label

learning. By analyzing this problem, we derived two con-

ditions for training classifiers consistently even if only parts

of the relevant labels are obtained: (1) use of appropriately

weighted loss function and (2) use of symmetric surrogate

loss. We conducted experiments on several datasets and

also demonstrated the efficacy of these conditions.
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