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Abstract

We present an approach to matching images of objects in

fine-grained datasets without using part annotations, with an

application to the challenging problem of weakly supervised

single-view reconstruction. This is in contrast to prior works

that require part annotations, since matching objects across

class and pose variations is challenging with appearance

features alone. We overcome this challenge through a novel

deep learning architecture, WarpNet, that aligns an object in

one image with a different object in another. We exploit the

structure of the fine-grained dataset to create artificial data

for training this network in an unsupervised-discriminative

learning approach. The output of the network acts as a spa-

tial prior that allows generalization at test time to match real

images across variations in appearance, viewpoint and ar-

ticulation. On the CUB-200-2011 dataset of bird categories,

we improve the AP over an appearance-only network by

13.6%. We further demonstrate that our WarpNet matches,

together with the structure of fine-grained datasets, allow

single-view reconstructions with quality comparable to using

annotated point correspondences.

1. Introduction

Reconstructing an object from a single image is a signif-

icant challenge, that can be tackled by matching keypoints

to other instances in a fine-grained dataset. However, such

datasets exhibit large intra-class shape variations or inter-

class appearance variations, which cannot be handled by tra-

ditional features such as SIFT [20]. Recently, methods have

been proposed to match instances across categories, relying

on supervision in the form of part (keypoint) annotations

[7, 15, 29] or 3D CAD models [3, 8] to augment appearance

information with shape priors. Such annotations are labor-

intensive, thus, too sparse for reconstruction and not scalable.

Further, it can be quite difficult to obtain human-labeled an-

notations for parts that are not nameable. In contrast, this

paper presents a framework to match images of objects with

some degree of non-rigidity and articulation, across category

and pose variations, without requiring supervised annota-

tions. We then present an approach to the challenging novel

problem of unsupervised single-view object reconstruction.

We postulate that the structure of fine-grained datasets,
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Figure 1: Given a single image of an object, we propose a novel

deep learning framework for obtaining keypoint matches to other

objects in a fine-grained dataset, without using any part annotations.

The output of our network is used as spatial prior for matching

across variations in appearance, pose and articulation (bottom),

which is not possible with appearance features alone (top). Our

match quality is high enough to be propagated across images to

be used for single-view reconstruction without using any manually

annotated keypoints (right).

combined with the power of convolutional neural networks

(CNNs), allows matching instances of different categories

without supervised annotation. Fine-grained datasets for ob-

jects such as birds can be analyzed along two dimensions

– appearance and shape. Instances within the same cate-

gory that are imaged in different poses can be matched by

appearance similarity, while instances with similar pose or

viewpoint from different categories can be matched through

similarity in global shape. Instances with both appearance

and shape variations may then be matched by propagation

(Fig. 3). In Section 3, we demonstrate a practical realization

of this intuition by introducing a deep learning architecture,

WarpNet, that learns to warp points on one object into corre-

sponding ones on another (from a possibly different category

or pose), without requiring supervised annotations.

WarpNet is a Siamese network that accepts two images

as input (Section 3.2). To overcome the absence of anno-

tated keypoints, our training presents an image and a warped

version related by a known thin-plate spline (TPS) transfor-

mation, which yields artificial correspondences. We assume

the object bounding box and foreground segmentation are

known, which can be obtained through state-of-the-art seg-

mentation [10] or co-segmentation methods [17]. We experi-
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Figure 2: Overview of our framework. (a) Lacking part annotations, we exploit the fine-grained dataset to create artificial correspondences.

(b) These are used to train our novel deep learning architecture that learns to warp one object into another. (c) The output of the network is

used as a spatial prior to match across appearance and shape variations. (d) Our high-quality matches can be propagated across the dataset.

We use the WarpNet output and the structure of fine-grained categories to perform single-view reconstruction without part annotations.

ment using both ground truth and co-segmentation outputs.

In Section 3.1, we exploit neighborhood relationships within

the dataset through the pose graph of Krause et al. [17] to

compute exemplar TPS transformations between silhouettes,

from which our artificial transformations are sampled. A

point transformer layer inspired by [14] is used to compute

the warp that aligns keypoints without supervision, which

provides a spatial prior for matching (Section 4). We show

that WarpNet generalizes well to match real images with

distinct shapes and appearances at test time. In particular,

it achieves matching accuracy over 13.6% higher than a

baseline ILSVRC CNN [9].

Establishing matches between a given instance and other

objects in the dataset opens the door to a novel problem –

weakly supervised reconstruction in fine-grained datasets.

Several sub-problems must be solved to achieve this goal,

such as match propagation and image subset selection. Prior

works such as [7, 29] approach these sub-problems, but the

absence of supervised annotations poses new challenges. In

Section 4.2, we suggest ways to overcome them through

the use of matches from our WarpNet, the pose graph and

heuristics that exploit the structure of fine-grained datasets.

We demonstrate reconstructions that are nearly as good as

those obtained using supervised annotations and better than

those from appearance-only CNNs or unsupervised baselines

such as deformable spatial pyramids [16].

To summarize, our key contributions are:

• A novel deep learning architecture, WarpNet, that pre-

dicts a warp for establishing correspondences between

two input images across category and pose variations.

• A novel exemplar-driven mechanism to train WarpNet

without requiring supervised keypoint annotations.

• An approach to unsupervised single-view object recon-

struction that exploits the structure of the fine-grained

dataset to yield reconstructions of birds nearly on par

with the method that uses supervised part annotations.

2. Related Work
Supervised matching Several recent approaches use deep

learning to learn a similarity metric between image patches
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Figure 3: Intuition for matching in fine-grained datasets without

supervised point annotations. Matching within a category exploits

appearance similarity, while matching instances across related cate-

gories is possible through global shape similarity. By propagation,

one may match across variations in both appearance and shape.

in a supervised manner [13, 33]. These works focus on

matching images of the same instance (for example, the

Statue of Liberty [31]) from various viewpoints, while we

match deformable objects of different instances exhibiting

a wide variety of appearances. Our task requires semantic

understanding of object shape, beyond just local appearance.

A CNN framework to predict dense optical flow on general

scenes is proposed by [12], but in a supervised manner.

Matching or keypoint localization may be improved by

augmenting appearance similarity with spatial priors. Super-

vised methods often use a dataset with labeled parts to ob-

tain a non-parametric prior on keypoint locations [4, 19, 28].

These priors may be learned from data [26], but require su-

pervised part annotations during training. Such annotation is

laborious and consequently available only for a few name-

able parts, which might be too sparse for reconstruction.

Unsupervised matching Also related to our approach are

methods that use unsupervised spatial priors for dense match-

ing [16, 27]. Unlike our work, these methods are purely

geometric and do not learn category-specific semantic prop-

erties. Recently, [34] proposes an unsupervised approach

for dense alignment of image sets. But while their focus is
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global consistency, our emphasis is on pairwise matching

through the WarpNet framework (for which they use flow).

Thus, our contribution is complementary and may be used by

their framework. We evaluate quantitatively on deformable

bird categories, while they use rigid categories on PASCAL.

Single-view reconstruction A new challenge in computer

vision is to reconstruct a target object from a single image,

using an image collection of similar objects. The seminal

work of [29] demonstrates the possibility of a solution, but

relies on ground truth part annotations to establish correspon-

dences. The subsequent works of [15, 7] take a step further

in using part annotations only during training. In contrast,

we do not require part annotations at either train or test time.

CNNs for learning transformations Similar to the recent

work of [2], we use a Siamese network to predict transforma-

tions. The key difference is that predicting the ego-motion

transformation in [2] is a pretext for feature learning, while

we directly use the predicted transformation as well as its ap-

pearance features for matching. Further, they require ground

truth transformation parameters in order to train their net-

work, while we use the structure of the fine-grained dataset

to generate artificial correspondences and implicitly opti-

mize the parameters. Finally, rigid transformations in [2]

are discretized in bins and the task is posed as classifica-

tion, while our network outputs continuous thin-plate spline

transformation parameters with a matching objective.

Our architecture is inspired by the recent spatial trans-

former network of Jaderberg et al. [14], which introduces

a deep learning module to predict a spatial transformation.

This acts as an attention mechanism driven by a classification

objective. We extend the idea further to predict a warping

function that aligns two object instances in an unsupervised

manner. Our approach is in line with the recent work of [1],

which demonstrates that CNNs can be trained without super-

vised labels by treating an image patch and its transformed

versions as a “surrogate” class. However similar to [2], the

unsupervised training objective of classifying the surrogate

class is geared towards learning good features, while we

show that the output of our network trained by an artificial

dataset actually generalizes to matching real image pairs.

3. Learning without Part Annotations
We present a deep learning framework, WarpNet, that

learns the correspondence from one image to another with-

out requiring part annotations. Given two images I1 and

I2, our network outputs a function that takes points in I1 to

points in I2. We parameterize this function as a thin-plate

spline (TPS) transformation since it can capture shape de-

formations well [5]. Inspired by Dosovitskiy et al. [1], we

generate artificial correspondences by applying known trans-

formations to an image. However, our approach is distinct

in using the structure afforded by fine-grained datasets and

dealing with non-rigidity and articulations. Our network

Figure 4: Sample exemplar-TPS warped images used for train-

ing our WarpNet. Left: original images, right: artificial versions

made by applying exemplar TPS warp + chromatic transformation.

Notice changes in shape and articulations at the head and the tail.

generalizes well to instances of different categories at test

time and we use its output as a spatial prior in computing a

match between two objects. Figure 2 gives an overview of

our approach. We discuss each step in detail below.

3.1. Generating Unsupervised Correspondences

Since we do not have annotated point correspondences,

we create artificial ones by applying random spatial and chro-

matic transformations to images. The key requirement is

that the spatial transformations applied are complex enough

to learn meaningful correspondences, while producing trans-

formed images that are reflective of actual image pairs to

match at test time. For instance, affine transformations are

not expressive enough to capture non-rigid deformations and

articulations in birds. Instead, we use TPS transformations

and exploit the fine-grained dataset to generate exemplar

warps that span a realistic range of transformations.

We use the pose graph of Krause et al. [17], whose edge

weights are determined by the cosine distance of the fourth-

layer of a pre-trained ILSVRC CNN, which captures abstract

concepts such as class-independent shape. We compute

shape context TPS warps [5] between the silhouettes of im-

ages that are within 3 nearest-neighbors apart on the pose

graph. We sort the TPS warps using the mean of their bend-

ing and affine energy, retaining only those between the 50th

and 90th percentiles to avoid warps that are too trivial or too

drastic. We create m transformed versions of every image

by sampling from this set of TPS warps. We sample n points

uniformly on the foreground, which we use as correspon-

dences. Figure 4 shows the effect of transformations sampled

from the exemplar-TPS warps. The images on the left are the

originals and the ones on the right are transformed versions.

Notice how the transformation induces changes in shape and

articulations around the head and the tail, which validates

the utility of our exemplar TPS warps.

3.2. WarpNet Architecture

Our proposed WarpNet is a Siamese network [11] that

takes two images related by an exemplar TPS transformation,

I1 and I2, along with the corresponding n keypoint locations,
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Figure 5: WarpNet architecture. Visual features are extracted from

two input images using a Siamese CNN. They are combined to

predict a deformed grid that parameterizes a TPS transformation.

The network objective is to minimize the distance between corre-

sponding points p1 and p2 of the image pair after applying the

predicted transformation to p2.

as inputs during training (at test time, the input consists only

of two images from possibly different categories and poses

that must be matched). The main objective of WarpNet is

to compute a function that warps points p2 in I2 to image

coordinates in I1, such that after warping the L2 distance to

the corresponding points p1 in I1 is minimized. Figure 5

illustrates the architecture of WarpNet.

First, the input images are passed through convolution

layers with tied weights. The extracted features are then

combined by element-wise subtraction of the feature maps.

We subtract rather than concatenate the feature maps along

the channels, since concatenation significantly increases the

number of parameters in the network making it unstable to

train. The combined feature maps are passed through a point

transformer, similar to [14], which regresses on the (x, y)
coordinates of a deformed K × K grid. The output grid,

normalized to a range of [−1, 1]× [−1, 1], acts as the control

points for computing a grid-based TPS transformation from

I2 to I1. This involves solving a system of linear equations,

handled by the TPS layer. Please see the supplementary

materials for details. The predicted TPS transformation is

applied to the keypoints of I2 generating the transformed

version Tθ(p2), which finally gets sent to the L2 loss layer

along with p1. Since every step consist of linear operations,

the whole network can be trained with backpropagation.

We implicitly train the warp parameters in terms of dis-

tance between corresponding points rather than direct super-

vision against the TPS warp coefficients. This provides a

natural distance between warps, where we can train the net-

work without knowing the exact transformation parameters

used.

Figure 6 illustrates the output of the trained network given

two real images as input, denoted source and target. Despite

the fact that the network has never seen objects of different

instances, it is able to compute warps between the two ob-

jects. Note that WarpNet accounts for variations in shape

(fat to skinny, small to large birds), articulation (such as the

orientation of the head or the tail) and appearance.

Network$Output$Warped$Source$Target$Source$

Figure 6: Visualizations of the network output. WarpNet takes two

images, source and target, as inputs and produces a 10x10 deformed

lattice (last column) that defines a TPS warp from target to source.

The third column shows the warped source image according to the

network output. Notice how the network accounts for articulations

at the tail and the head as well as differences in shape of the birds.

WarpNet is trained in an unsupervised manner and none of these

images were seen by the network during training.
Matches$with$classifica@on$CNN$ Matches$with$WarpNet$

Figure 7: Sample matches obtained by ILSVRC trained CNN

versus WarpNet, where WarpNet’s relative robustness to variations

in appearance, pose and articulation may be noted.

4. Matching and Reconstruction

4.1. Matching with WarpNet

Given two images Ii and Ij , a match for a point ui in Ii
is the most similar point vj in Ij using the similarity score

consisting of an appearance term and a spatial term:

s(ui, vj) = exp

✓

−df (ui, vj)

σf

◆

+λ exp

✓

−dw(ui, vj)

σw

◆

,

(1)
where df (u, v) is the L2 distance of appearance features

extracted at ui and vj , while dw is a symmetric spatial prior:

dw(u, v) =
1

2
(||xu

i −Tθij (x
v
j )||+ ||xv

j −Tθji(x
u
i )||). (2)

We use WarpNet to compute Tθ
·,·

in both directions.

The matches are then ranked by the ratio-test strategy

[20], which allows discarding points in Ii that are similar to

many other points in Ij . Since the keypoints are extracted

densely on the foreground, we compute the similarity score

ratio between the first and second nearest neighbors that are

at least 10 pixels away. Figure 7 shows a few qualitative

matching results comparing the baseline CNN and WarpNet.
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4.2. Single-View Object Reconstruction

Obtaining good matches is a critical first step towards

3D reconstruction. While single-view 3D reconstruction

methods in the past have relied on expensive supervised

inputs such as part annotations or CAD models, our matching

enables a first approach towards a challenging new problem,

namely, part annotation free single-view reconstruction. We

discuss initial approaches to variants of existing supervised

methods or structure from motion (SFM) pipelines that may

be used to solve this problem without requiring annotations.

Propagating correspondences In the CUB-200-2011

dataset, there are only 60 images for each category. More-

over, birds are often imaged from preferred viewpoints, but

it is critical for reconstruction to obtain matches across a

well-distributed set of viewpoints. On the other hand, de-

formations may be very high even within a category (open

wings as opposed to closed), which makes straightforward

matching within a category challenging. Inspired by the

work of Carreira et al. [7], we use a shortest path method

to propagate matches across objects of similar shapes in the

dataset, in order to obtain a denser set of tracks. However,

note that we lack the initial set of point annotations as well

as the camera poses obtained through part annotations in

[7, 29], who also manually select a subset of keypoints to

eliminate articulations. Instead, we determine unsupervised

matches purely through our WarpNet and rely on the pose

graph to determine nearest neighbors for propagation.

Choosing a subset for reconstruction A key problem we

encounter is the choice of images for reconstruction. In pre-

vious works on reconstruction within PASCAL VOC [7, 29],

it has been possible to use the entire dataset since it contains

less than 1000 images for birds. In contrast, CUB-200-2011

contains nearly 12000 images, which poses computational

challenges and requires greater vigilance against outliers.

Moreover, annotations in [7, 29] preclude the need for al-

gorithmic considerations on baseline or shape variations in

choosing the image set. For instance, to reconstruct a sitting

bird imaged from a frontal view, we must propagate matches

to side views of sitting birds in other categories to ensure a

good baseline, while avoiding images of flying birds.

Given a collection of images, several heuristics have been

proposed for selecting the right subset or order for multi-

view rigid-body reconstruction [24, 25]. However, those

are not directly applicable for single-view reconstruction of

deformable objects. Instead, we propose three heuristics that

utilize the structure of fine-grained bird datasets:

• Use images from categories that share a keyword (for

example, all “warblers”, or all “sparrows”).

• Use images from categories that are related by an or-

nithological taxonomy, as defined by [23].

• Use images from the five nearest neighbor subcate-

gories on a similarity tree of bird species [6].

The above heuristics perform comparably and address the

same goal – introduction of matched keypoints from more

than one subcategory to ensure good viewpoint coverage.

Reconstruction Given an image of a target object from

one particular class, we consider images from several other

categories using one of the above heuristics. We compute

pairwise matches at 85% precision threshold between all

pairs of images whose distance on the pose graph is less

than 4. We ignore pairs that have less than 50 surviving

matches. We then set up a virtual view network [7] to propa-

gate matches across all the selected images. We use scores

from (1), bounded between [0, 1], as weights on the graphs

connecting the keypoints. After propagation, we discard as

spurious any propagated matches with shortest path distance

more than 0.4 and remove all images that have less than 30
matches with the target object. We then create the measure-

ment matrix of tracked keypoints of the target object. We

only consider keypoints visible in at least 10% of the images

as stable enough for reconstruction. We finally send the

observation matrix to the rigid factorization method of [21],

which robustly handles missing data, to obtain 3D shape.1

5. Experiments

We perform experiments on the CUB-200-2011 dataset

which contains 11788 images of 200 bird categories, with

15 parts annotated [30]. We reconstruct without part annota-

tion, assuming objects are localized within a bounding box.

We quantitatively evaluate our matches using and extending

the part annotations. Next, we evaluate the effectiveness of

WarpNet as a spatial prior and analyze the choice of trans-

formations for creating the artificial training dataset. Finally,

we demonstrate the efficacy of our framework with several

examples of unsupervised single-view reconstruction.

5.1. Experimental Details

We create the pose graph of [17] using the conv4 fea-

ture of AlexNet trained on ILSVRC2012 [18]. For creating

the artificial dataset, we only use the training data (∼6000

images) and create m = 9 copies of each image using our

exemplar-TPS. We resize all images to 224× 224. This re-

sults in approximately 120k image pairs, each with n = 100
point correspondences. Following [1], we apply spatial and

chromatic data augmentation on-the-fly during training.

We use the VGG-M architecture of [9] until the pool5

layer as the feature extraction component of WarpNet. The

point transformer consists of C512-C256-F1024-D-Op using

the notation of [2]. Both convolutional layers use 3x3 kernel,

stride 1 with no padding, with ReLU non-linearity. The

output layer is a regressor on the grid coordinates, with grid

size K = 10. The feature extraction weights are initialized

1A rigid factorization suffices to produce good reconstructions since the

dataset is large enough, but non-rigid methods alternately could be used.
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with weights pre-trained on the ILSVRC classification task,

following prior state-of-the-art for correspondence [19].

For matching and reconstruction, images are resized with

aspect ratio intact and the smallest side 224 pixels. We

uniformly sample points on the foreground with a stride of 8

as keypoints for matching. For all experiments we use L2-

normalized conv4 features extracted at the keypoints using

the hole algorithm [10] for computing the appearance term

in (1). Hyperparameters used for matching are σf = 1.75,

σw = 18, λ = 0.3, tuned using the artificial dataset.

5.2. Match Evaluation

We compare our approach with ILSVRC pre-trained

VGG-M conv4 [9], SIFT at radius 8 [20] and matches

from the deformable spatial pyramid (DSP) [16]. Only the

appearance term in (1) is used for computing matches with

VGG-M conv4 and SIFT. For computing the matches with

DSP, we mask out the background prior to extracting SIFT

features following [7] and only keep matches of the key-

points. For this experiment, the set of keypoints to match

includes the locations of annotated parts.

In order to evaluate WarpNet as a stand-alone learned

spatial prior, we compare WarpNet with DSP by replacing

the SIFT features in DSP with VGG features. We call this

method VGG+DSP. We further evaluate WarpNet against

the original DSP by using WarpNet as a spatial prior for

SIFT matches, where the unary term df in (1) is computed

with SIFT features. We call this method SIFT+WarpNet.

As discussed in Section 3.1, the only supervision re-

quired in training WarpNet is the segmentation mask to

mine exemplar-TPS transformations. We also evaluate the

robustness of WarpNet using co-segmentation outputs of

[17], called VGG+coseg.

Test set We evaluate on 5000 image pairs that are within 3

nearest neighbors apart on the pose graph, comprising more

than 50k ground truth matches. 2 Due to the unsupervised

nature of the pose graph, these pairs exhibit significant artic-

ulation, viewpoint and appearance variations (see Figures 1,

6). We remove severely occluded pairs with less than 7 parts

visible in both images and pairs whose TPS warp computed

from part annotations have very high bending energy. None

of the test images were used to train WarpNet.

Evaluation metrics We evaluate the accuracy of matches

with the percentage of correct keypoints (PCK) metric [32],

where a match is considered correct if the predicted point is

within α ∗ L of the ground-truth correspondence. Following

[2], we chose L to be the mean diagonal length of the two

images. We also compute the precision-recall (PR) curve

adopting the procedure of [22]. A match is considered a

true positive within a radius α = 0.05, otherwise it is a false

positive. In this setup, a recall of 1 is obtained only if all

2Please see supplementary materials for results on a test set with 1-

nearest neighbors, where we observe similar trends but with higher PCKs.
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Figure 8: Precision-Recall curves for matching points between

neighboring images on the pose graph. We evaluate points with

(a) human-annotated correspondences and (b) expanded pseudo-

ground-truth correspondences.

the matches retrieved are correct, that is, 100% α-PCK. We

compute PR curves using the ratio-test values described in

Section 4.1 for ranking the matches and report AP. For DSP,

we use its matching cost for ranking instead of the ratios,

since second closest matches are not available.

Results Figure 8(a) shows the obtained PR curves. Warp-

Net achieves an AP of 53.4%, an 13.6% increase over

matches using just the appearance feature of VGG-M

conv4. WarpNet achieves a much higher recall due to its

spatial prior, learned without using any part annotations. As

a side note, conv4 features of WarpNet alone achieve very

similar performance to the VGG-M conv4. In all cases,

WarpNet outperforms DSP as a spatial prior and changing

SIFT to VGG features yields around 5% improvement in the

final recall. WarpNet-coseg still outperforms the baseline

VGG-M by 10.8%, showing our approach is applicable even

without ground truth segmentations.

Figure 9(a) shows the PCK as a function of α, where

WarpNet consistently outperforms other methods. We ob-

serve that VGG-M conv4 and DSP perform similarly, show-

ing that while DSP obtains low recall at high precision, its

overall match quality is similar to CNN features, an observa-

tion in line with [7]. Since only high precision matches are

useful for reconstruction where outliers need to be avoided,

we show the same curves thresholded at 85% precision in

Figure 9(b) for VGG-M and our method. Note that some

methods in black have zero recall at this precision. The

growing gap between WarpNet and VGG-M conv4 as α

increases suggests that, unlike WarpNet, appearance features

alone make grossly wrong matches (see Figures 1 and 7).

Expanding the set of part annotations A caveat of the

CUB-200-2011 for our task is that part annotations are sparse

and concentrated on semantically distinct parts such as eyes

and beaks around the head region, with only four points on

the bird body that are often not all visible. To investigate

matching performance more densely, we carefully expand
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Figure 9: PCK (higher the better) over varying definition of cor-

rectness α. (a) Mean PCK of all retrieved matches regardless

of ratio score. (b) Mean PCK with matches thresholded at 85%

precision, which are the matches used for reconstruction.

Figure 10: Illustration of the pseudo-gt correspondences. We tri-

angulate each image using the annotated keypoints (colored points).

The match for the big red dot in the left image is found by looking at

points within the same triangle (small pink dots) in the right image

and picking the closest point in terms of barycentric coordinates.

the ground-truth matches using the annotated parts. This

process is illustrated in Figure 10. Given a pair of images I1
and I2, we Delaunay triangulate each image independently

using the parts visible in both as vertices. For a point u

within a triangle in I1, we consider points in I2 that are

within the same triangle as possible candidates (shown as

pink dots in Figure 10), find the point that is closest to u in

terms of barycentric coordinates and accept this as a new

pseudo ground-truth match if the distance is less than 0.1.

Figure 8(b) shows the PR curve obtained using the pseudo-

ground truth matches (in addition to the annotated parts).

We see the same trends as Figure 8(a), but with a wider gap

between the baselines and our method. This is reasonable

given that bird bodies usually consist of flat or repeated

textures that are challenging to match with local appearances

alone, highlighting the efficacy of WarpNet’s spatial prior.

5.3. Choice of Transformations

We now analyze the choice of exemplar TPS transfor-

mations for creating the artificial dataset. We train another

WarpNet under the same settings, but on an artificial dataset

created using only affine spatial transformations, which we

refer to as AffineNet. Note that AffineNet’s output is still a

TPS transformation, thus, it has the same capacity as the orig-

inal WarpNet. Figure 11(a) shows the PR curve of AffineNet
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Figure 11: Comparing results for WarpNet trained on artificial

data created using affine-spatial transformations with (a) PR curves

and (b) PCK over α. WarpNet trained with exemplar-TPS is more

effective in terms of recall and precision.

in comparison to WarpNet and VGG-M conv4. Warp-

Net outperforms AffineNet in all aspects. While AffineNet

has a higher final recall (that is PCK of all matches) than

VGG-M conv4, its recall at high precision is slightly lower

than that of VGG-M conv4. This is highlighted in Figure

11(b), which shows PCK of matches at 85% precision over

α, where AffineNet performs on par with VGG-M conv4.

This indicates that the warps predicted by AffineNet are help-

ful in a general sense, but not precise enough to improve

the recall at high precision. This experiment shows that us-

ing exemplar-TPS transformations for creating the artificial

dataset is critical for training a useful WarpNet.

5.4. Single-view Object Reconstruction

We compare our method with three other matching meth-

ods. One is a supervised matching approach similar to [7],

where the network predicted TPS warp Tθ in (2) is replaced

by the supervised TPS warp computed using the annotated

keypoints. We call this approach supervised and it is

an upper-bound to our method since ground-truth part an-

notations are used for reconstruction. We also perform re-

constructions with VGG-M conv4 features alone and DSP.

We do not include the mirrored image as another viewpoint

of the target object, since bilateral symmetry does not hold

for articulated objects. For post-processing we use the xy-

snapping method proposed in [7], which only uses the z-

component from the reconstructed shape, while fixing the x,

y coordinates. We do not resample the target objects multi-

ple times prior to factorization since it did not seem to make

a difference.

Figure 12 shows reconstructions for various types of birds

using the four methods from three viewpoints: camera view,

45◦ azimuth and 45◦ elevation. The colors indicate depth

values (yellow is close, blue is far), with range fixed across

all methods. WarpNet produces reconstructions that are

most consistent with the supervised approach. Recon-

structions from VGG-M and DSP are noisy due to errors

in matching and often produce extreme outlier points that
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Input& Supervised& Ours& VGG1M&& DSP&

Figure 12: Sample reconstructions showing 3 views for each method: The camera viewpoint followed by the 45
◦ azimuth in counter-

clockwise direction (top right) and 45
◦ elevation (bottom right). Colors show the depth where yellow is closer and blue is farther. The

supervised method uses the spatial prior computed from annotated part correspondences, which can be seen as an upper bound. No part

correspondences were used for the last three methods. WarpNet consistently obtains reconstructions most similar to the supervised method.

had to be clipped for ease of visualization. Articulated parts

such as tails and wings are particularly challenging to match,

where VGG-M and DSP often fail to recover consistent

depths. A weakness of our method is that the TPS prior may

sometimes hallucinate birds of similar pose even with wide

baseline. This may be avoided by better choice of images for

reconstruction. Please see supplementary material for more

results, qualitative matches and reconstruction videos.

6. Conclusions and Future Work

We introduce a framework for matching and reconstruc-

tion in fine-grained datasets that avoids the expense and

scalability challenges of part annotations. The core of our

approach is a novel deep learning architecture that predicts a

function to warp one object into another. We show that our

network can be trained without supervised part annotations

by exploiting the structure of fine-grained datasets and use its

output as a spatial prior for accurate matching. Our approach

achieves significant improvements over prior state-of-the-art

without using part annotations and we show reconstructions

of similar quality as supervised methods. Key challenges

for future work are to determine optimal subsets of images

for reconstruction and a good order for adding images that

allows incremental reconstruction with bundle adjustment.
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