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Abstract

A form of meter-scale, macroscopic interferometry is

proposed using conventional time-of-flight (ToF) sensors.

Today, ToF sensors use phase-based sampling, where the

phase delay between emitted and received, high-frequency

signals encodes distance. This paper examines an alterna-

tive ToF architecture, inspired by micron-scale, microscopic

interferometry, that relies only on frequency sampling: we

refer to our proposed macroscopic technique as Frequency-

Domain Time of Flight (FD-ToF). The proposed architec-

ture offers several benefits over existing phase ToF systems,

such as robustness to phase wrapping and implicit resolu-

tion of multi-path interference, all while capturing the same

number of subframes. A prototype camera is constructed to

demonstrate macroscopic interferometry at meter scale.

1. Introduction

Three-dimensional (3D) cameras capture the depth of

objects over a spatial field. The recent emergence of low-

cost, full-frame 3D cameras, such as Microsoft’s Kinect,

have facilitated many new applications in diverse areas

of computer vision and graphics. These advances con-

tinue to drive demands for faster, more accurate, and more

information-rich 3D systems that can operate outside of

controlled environments.

Time of flight (ToF) cameras contain an active light-

source that strobes coded patterns into a scene. The optical

signal returning to the sensor exhibits a shift in phase cor-

responding to the propagation distance of the signal, which

allows object depth to be calculated. This pervasive archi-

tecture, used in devices such as the Microsoft Kinect and

Google Tango, is referred to as “phase ToF”.

All phase ToF cameras rely on phase-sensing to deter-

mine object depths. Accurate estimation of phase becomes

challenging in environments with, for example, multi-path

interference. Phase is also periodic, meaning that it will

wrap beyond a certain distance and create ambiguities in

true object depths. Many workarounds have been proposed,

but phase ToF still remains sensitive to multi-path, wrap-

ping at extreme distances, and low levels of signal-to-noise-

ratio (SNR).

1.1. Contributions

Inspired by optical coherence tomography (OCT), this

paper recasts depth estimation into a macroscopic architec-

ture, dubbed Frequency-Domain ToF (FD-ToF), avoiding

several limitations with existing ToF cameras:

• Long-range objects that would ordinarily phase-wrap,

can be ranged with no additional processing.

• Multi-path interference can be easily filtered with stan-

dard methods, such as Fourier Transformations, with-

out need for increased sampling.

• Ranging is possible in environments with extremely

low SNR.

• Drawing from existing theories in OCT, this paper pro-

vides a theoretical bound for multi-path separation.

2. Related Work

The connections between early techniques in interferom-

etry, radar, and ToF imaging are well-known. In the 1990’s,

development of the modern ToF camera was inspired by

the Michelson interferometer (see [26] for a historical

overview). However, ToF range imaging has diverged from

interferometric techniques, with little cross-pollination of

ideas over the last decade. While recent work has linked

ToF cameras with various radar systems [39]. In compar-

ison, this paper aims to connect Frequency-Domain OCT

to a complementary depth sensing architecture, Frequency-

Domain ToF.
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Figure 1. This paper repurposes the microscopic technique of Frequency-Domain OCT to a macroscopic technique, Frequency ToF. Both

techniques encode optical time of flight in the frequency of the received waveform. For short optical paths (top row), the received signal in

the primal-domain is lower in frequency than that of longer optical paths (bottom row).

Multifrequency time of flight describes a class of tech-

niques where a phase ToF camera repeatedly samples the

scene at multiple strobing frequencies (please note the em-

phasis). Our work is inspired by previous approaches in

this line that leverage the rich phase-frequency information

to recover a variety of light-transport metrics in complex

scenes. Notable papers include the convex optimization al-

gorithms by Heide et al. [13] and Lin et al. [25] as well

as the spectral estimation methods of Bhandari et al. [3, 4]

and Freedman et al. [6]. This paper is distinguished from

prior art because it samples only in the frequency-domain,

leading to a variant this paper refers to as “frequency ToF”.

Since the underpinnings of frequency ToF are not new—

having existed in the radar community for decades—this pa-

per’s contribution lies in the empirical and theoretical eval-

uation of whether frequency ToF is a beneficial architecture

for ToF cameras.

Disentangling multipath interference is one of the most

popular topics in computational ToF imaging. The prob-

lem is posed as such: in phase ToF, reflections at differ-

ent phase delays mix at a single pixel on the sensor. Ex-

tracting the constituent phases and amplitudes is a compli-

cated signal processing problem, requiring additional mea-

surements. We can classify prior approaches in the vein

of multifrequency phase ToF [31, 22, 13, 3, 4, 6, 32, 5]

or space-time light transport [34, 41, 42, 30, 40, 18, 10,

28, 19, 27, 21, 32].1 The latter approach is complemen-

tary to this paper, as our approach is in the context of a

single scene point and could be later extended with spa-

tial analysis. Based on the intended goals, we consider the

multifrequency phase ToF approaches of [31, 22, 3, 4] to

be the closest related work and we use this as our point of

1Time-coding doesn’t strictly fall into either category, but the few ex-

isting works are different from our approach [20, 36].

comparison. If successful, a solution to multipath interfer-

ence has scope to broader problems, such as ultrafast imag-

ing [29, 38, 13, 20, 25, 15, 8, 9], scattered light imaging

[37, 14], velocity imaging [12] and fluorescence imaging

[2, 33, 1]. The list of references in mitigating multipath in-

terference for ToF cameras is vast. Rather than proposing

yet another specialized method, this paper introduces fre-

quency ToF, where multipath correction is implicit in the

Fourier Transform.

Phase wrapping is an artifact occuring in phase ToF

where depth can only be recovered to a modulo factor.

Phase unwrapping techniques address this problem by us-

ing multifrequency phase ToF, where each frequency yields

phasor measurement [22, 3]. A Lissajous pattern is formed

in phasor space by tracing out phasors at multiple frequen-

cies. If the Lissajous pattern does not cross over in pha-

sor space, the original scene depths can be uniquely recov-

ered. However, for nearby points on the Lissajous pattern,

the presence of shot noise can cause the Lissajous pattern

to cross, leading to problems in unicity. Robust depth sens-

ing at long-ranges has been achieved through the design of

both an appropriate Lissajous pattern and incorporation of

spatial or scene priors [11]. To avoid phase wrapping alto-

gether, this paper explores Frequency-Domain ToF.

Optical coherence tomography is an optical interfer-

ometric technique used extensively in biomedical imag-

ing [16]. Phase ToF was inspired by early, time-domain

OCT systems, where the received signal is time-correlated

with a reference signal to determine phase offset. Over the

last decade, phase ToF literature has little to do with optical

interferometry. This paper studies the relationship between

the ToF camera sensor and the more recent interferometric

technique of frequency-domain OCT. In frequency-domain

OCT, 3D shape is obtained by illuminating a microscopic
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sample at multiple optical frequencies [7]. Transposing

ideas from frequency-domain OCT to macroscopic 3D cam-

eras offers a complementary way of thinking about ToF cap-

ture. To summarize: frequency ToF substitutes multiple op-

tical frequencies for multiple temporal frequencies.

3. Preliminaries

A description of the basic principles of phase-based ToF

is provided in Section 3.1, and a condensed overview of

OCT in Section 3.2.

Terminology: The term primal-domain is used to re-

fer to the original frame that a signal is sampled in. The

term dual-domain refers to the frequency transform with

respect to the primal-domain.

3.1. Phase ToF

A phase-based ToF camera measures the phase delay of

optical paths to obtain depth by the relation

z =
cϕ

2πfM

d = z/2, (1)

where z is the optical path length of reflection, d is the ob-

ject depth, fM is the modulation frequency of the camera, ϕ
is the phase delay, and c is the speed of light. Modulation

frequencies are typically around 20-50 MHz, corresponding

to periods of 50-20 nanoseconds. To estimate ϕ with preci-

sion, a phase ToF camera uses an active illumination source

strobed according to a periodic illumination signal. In stan-

dard implementations, the illumination strobing signal i(t)
can be modelled as a sinusoid

i (t) = α cos (2πfMt) + βi, (2)

where α is the modulation amplitude and βi represents a

DC component. At the sensor plane, the received optical

signal o(t) can be written as

o (t) = Γα cos (2πfMt− ϕ) + βo, (3)

where Γ ∈ [0, 1] is the attenuation in the reflected amplitude

and now βo includes DC offset from ambient light. Estimat-

ing the phase would require sampling Equation 3 multiple

times. Such sampling in time-domain is challenging be-

cause it requires very short, nanosecond exposures. Instead,

ToF cameras cross-correlate the optical signal with a refer-

ence signal at the same frequency, i.e., r(t) = cos (2πfMt).
Without loss of generality set Γ = 1 to express the cross-

correlation as

c(τ) = lim
T→∞

1

T

T/2∫

−T/2

o(t)r(t+ τ)dt =
α

2
cos (2πfMτ + ϕ) .

(4)

Now, the primal-domain has changed from time, to τ .

This plays a key role, as τ can be sampled at nanosecond

timescales by varying a buffer between emitted and refer-

ence signals. To recover the phase and amplitude from the

received signal, ToF cameras capture N subframes in the

primal-domain of τ and, in software, compute an N -point

Discrete Fourier transform (DFT) with respect to the pri-

mal. Suppose that four evenly spaced samples are obtained

over the length of a period, for instance, τ = [0, π
2 , π,

3π
2 ]T .

Then the calculated phase can be written as

ϕ = arctan

(
c(τ4)− c(τ2)

c(τ1)− c(τ3)

)

, (5)

and the calculated amplitude as

α =
1

2

√

(c (τ4)− c (τ2))
2
− (c (τ1)− c (τ3))

2
. (6)

The two real quantities of amplitude and phase can be com-

pactly represented as a single complex number using phasor

notation:

M = αejϕ, (7)

where M ∈ C is the measured phasor, and j is the imag-

inary unit. Armed with the phase information, a ToF sen-

sor computes depth using Equation 1 and provides a mea-

sure of confidence using the amplitude. This concludes our

overview of the standard phase ToF operation.

Multi-path interference: Multi-path interference (MPI)

occurs when K reflections return to the imaging sensor. The

received signal can be written as

cMP(τ) =
1

2

(
K∑

l=1

αl cos (2πfMτ + ϕl)

)

+ β, (8)

where the subscript MP denotes multi-path corrupted mea-

surements. The received signal is now a summation of sinu-

soids at the same frequency but different phases. Obtaining

the direct bounce, i.e., K = 1, is a very challenging prob-

lem. After simplification using Euler’s identity, the mea-

sured amplitude and phase in the presence of interference

can be written as

ϕMP = arctan

(∑K
i=1 αi sinϕi

∑K
i=1 αi cosϕi

)

(9)

α2
MP =

K∑

i=1

α2
i + 2

K∑

i=1

K∑

j=1

αiαj cos (ϕi − ϕj)

︸ ︷︷ ︸

i 6=j

. (10)

In crux, phase ToF cameras encode multi-path interference

as a summation of varying phases. Disentangling phases is a

challenging, non-linear inverse problem that is well-known

to be ill-conditioned at realistic levels of SNR [3, 6]. Later

in this paper, multi-path is recast as a summation of varying

frequencies, a solvable problem at low SNR.
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Increasing the modulation frequency: Increasing the

modulation frequency of phase ToF allows for greater depth

precision [24]. Intuitively, at high frequencies, a small

change in the estimated phase, corresponds to a small

change in the estimated depth. The range accuracy ∆L is

proportional to

∆L ∝ c/fM. (11)

Over the past few years, phase ToF hardware has supported

increased modulation frequencies to boost depth precision.

For instance, the new Kinect tripled the modulation fre-

quency, increasing the modulation frequency to about 100

MHz. However, this frequency is at the upper limit of what

the phase ToF architecture can handle. Without using phase

unwrapping, scene objects at a depth greater than

dambiguity = c/2fM, (12)

will encounter wrapping. Unwrapping, or disambiguation

of phase, requires more measurements in combination

with a lookup table and is susceptible to noise [23].

Another challenge at high modulation frequencies is an

increase in the required sampling rate in the primal-domain.

Frequency-Domain ToF does not have such drawbacks

when using high strobing frequencies.

3.2. Primer on optical coherence tomography

Optical coherence tomography performs correlation di-

rectly on the optical signal using either: Time-Domain OCT

(TD-OCT) to time-correlate an optical reference with a

sample or Frequency-Domain OCT (FD-OCT) to sample

only in frequency domain.2 In this section, we provide a

concise overview of FD-OCT, describing only the facets

that can be applied to 3D cameras.

FD-OCT obtains depth by sampling the signal at dif-

ferent optical wavelengths (i.e. wavelength is the primal-

domain). Figure 1 provides a schematic for the typical FD-

OCT system. At a single wavelength, the detector receives

an electric field from the reference object, which takes the

form of

R (λ) = α(λ)ejϕR(λ), (13)

where R(λ) represents the received phasor as a function

of optical wavelength. Similarly, the received electric field

from the sample object is written as

S (λ) = α(λ)ejϕS(λ). (14)

Note that the amplitude of the sample and reference are as-

sumed to be equal, which simplifies our explanation of the

concept. A combination of the two reflections return to an

imaging sensor. The electric field at the detector is the sum-

mation

M (λ) =
1

2
(R (λ) + S (λ)) , (15)

2Phase ToF was inspired by TD-OCT [26].

where it is assumed that the constituent phasors are halved

when they recombine (for instance, due to a beamsplitter).

The current measured at the detector can be expressed as

the real quantity

i (λ) =
ηq

hν
|M (λ)|

2
, (16)

where η is the detector sensitivity, q is the quantum of elec-

tric charge, h is Planck’s constant, and ν is the optical fre-

quency. By substituting Equation 15 into 16 we obtain

i (λ) = 1
4
ηq
hν




R (λ) (R (λ))

∗
+ S (λ) (S (λ))

∗

︸ ︷︷ ︸

Autocorrelation

+2Re
(
(R (λ))

∗
S (λ) e−jϕz

)

︸ ︷︷ ︸

Crosscorrelation




 .

(17)

Here, ϕz represents the phase delay due to the difference

in optical path length between the reference and optical re-

flections. Similar to the ToF case, phase and z-distance are

related:

ϕz = 2πz/λ. (18)

In Equation 17 note that the Autocorrelation terms are DC

with respect to the wavelength. By using this relation along

with Equation 18, Equation 17 is rewritten as

i (λ) =
1

2

ηq

hν
(α (λ))

2

(

1 + 2 cos

(
2πz

λ

))

. (19)

Now we introduce an auxiliary variable k = 2π/λ, which

is known as the wave number. Equation 19 can be rewritten

as

i (k) =
1

2

ηq

hν
(α (k))

2
(1 + 2 cos (kz)) , (20)

where now the primal-domain is the wavenumber (k). The

dual can be computed as

F [i (k)] (κ) ∝ δ (κ) + δ (κ± z) , (21)

where κ represents the dual domain. To summarize: in

Frequency-Domain OCT, reflections at multiple wavenum-

bers are measured at the detector and depth is encoded in

the frequency of the received signal in primal-domain.

4. Frequency-Domain Time-of-Flight

Inspired by Frequency-Domain OCT, the conventional

operation of ToF cameras is re-examined. In this section

a recipe for depth estimation is provided by sampling dif-

ferent modulation frequencies at a single phase step. This

architecture is the proposed Frequency-Domain ToF, where

the primal-domain is modulation frequency.

4.1. Depth sensing using only modulation frequency

Depth is calculated, not from phase steps, but from fre-

quency steps. Recall from Section 3.1 that the received sig-

nal takes the form of

c(τ) =
α

2
cos (2πfMτ + ϕ) + β. (22)
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Figure 2. Multi-path interference is inherently resolved in Frequency-Domain ToF. (left) Multi-path interference from two reflections cause

the measured signal (black) to have two tones (right). This simulation uses a frequency bandwidth of 1Ghz (left plot windowed for clarity).

In standard phase ToF, τ represents the primal-domain

against which one would ordinarily compute the N -point

DFT. Instead, consider substituting Equation 1 into Equa-

tion 4 to obtain

c(τ, fM) =
α

2
cos

(

2πfMτ +
2πz

c
fM

)

+ β. (23)

Without loss of generality assume that this signal is sampled

only at the zero shift, i.e., τ = 0. Then the received signal

at the sensor takes the form of

c(τ = 0, fM) = c(fM) =
α

2
cos

(
2πz

c
fM

)

+ β. (24)

Now the primal domain is fM and the associated dual takes

the form of

F [c (fM)] (κ) ∝ δ (κ) + δ

(

κ±
2πz

c

)

, (25)

where κ is the dual-domain, corresponding to the inverse of

the modulation frequency. Analogous to FD-OCT the depth

can be obtained by finding the location of the support in the

dual domain.

4.2. Multi­path interference in FD­ToF

An advantage of Frequency-Domain ToF is that multi-

path interference is separable in the dual-domain. Recall

that in the multi-path problem, K reflections return to the

sensor and the received signal is given by

c(fM) =
1

2

(
K∑

l=1

αl cos

(
2πzl
c

fM

))

+ β. (26)

The associated Fourier transform may now be written as

F [c (fM)] (κ) ∝ δ (κ) +
K∑

l=1

αlδ

(

κ±
2πzl
c

)

. (27)

Here, the multi-path corrupted signal is a sum of sinusoids

at the same phase but at different frequencies. As shown

in Figure 2, a Fourier transform allows resolution of multi-

path interference.

4.3. Estimating frequency to obtain depth

Frequency-Domain ToF recasts depth estimation into

the problem of frequency estimation of the received sig-

nal (Equation 27). The number of subframes required for

depth estimation is the same as for phase ToF (since both

rely on sinusoidal sampling). To estimate multi-path, the

sampling rate must obey the Nyquist rate; therefore, no less

than 2K samples can be taken to resolve K multi-path re-

flections. In theory, FD-ToF is susceptible to long-range ar-

tifacts because very large depths can alias to lower frequen-

cies. This is avoided by appropriately choosing the sam-

pling rate (for example, adhering to the Nyquist rate of the

highest-frequency component, if it is known) in the primal-

domain. The reader is directed to the supplement and Stoica

et al. [35] for details about frequency estimation.

4.4. Frequency bandwidth and resolution

By casting the problem in the realm of OCT, recovery

bounds can be provided for multi-path interference. Previ-

ous work in ToF literature [13, 20, 25] has not considered

to what resolution multi-path reflections can be separated.

The duality between OCT and Frequency-Domain ToF re-

veals the following:

Proposition 1: Multi-path interference can be resolved in

Frequency-Domain ToF if the optical path-length between

any two reflections is less than:

∆z ≈ 0.6c/∆fM. (28)

Proof (Sketch): The sampling function in the primal do-

main is a boxcar function Π(fM) = H
(
fM − f−

M

)
−

H
(
fM − f+

M

)
, where f−

M and f+
M represent the minimum

and maximum modulation frequencies that are sampled and

H(·) refers to the Heaviside step function. The Fourier

transform of Π(fM) takes the form of a scaled sinc function

F [Π (fM)] (κ) ∝ ∆fM
sin∆fMκ
∆fMκ

, where ∆fM = f+
M − f−

M .

The FWHM of this function determines the axial resolution

∆z. After simplification (see supplement), this can be ap-

proximated as ∆z ≈ 0.6c/∆fM, the desired result.�

Not surprisingly, a larger frequency bandwidth ∆fM im-

proves the optical path resolution.
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Figure 3. We show that the noiseless bound derived in Proposition

1 is valid in typical shot noise limited scenarios.

5. Assessment and Results

Without any additions to hardware beyond the typical

components of a ToF camera, and using fewer captured

images, the proposed technique is shown to handle chal-

lenging scenes with multi-path interference, large distances,

and low SNR. Comparisons were performed to a state-of-

the-art paper that uses both multiple frequencies and phase

steps to mitigate multi-path interference (hereafter Bhan-

dari’s method) [3].

5.1. Synthetic scenes

Resolution bound: Proposition 1 describes an upper

bound on multi-path resolution, derived in the main paper

for the noiseless case. This bound is based on the sampling

properties of the system (i.e. highest and lowest frequen-

cies sampled) and does not factor noise. However, Figure

3 shows that at SNRs, governed by shot-noise, of a typical

camera, the observed resolution very nearly approaches the

best-case resolution bound. To our knowledge, this is one of

only a few papers in ToF imaging to analyze the minimum

separation needed to accurately resolve multi-path. The

supplement contains a derivation of the resolution bound.

Dragon scene: A complex scene with transparencies and

caustics was generated using the Mitsuba renderer [17].

Figure 4 displays the rendered scene, consisting of a dragon

behind a transparent sheet. Two dominant reflections are

observed, from the transparency and the dragon behind.

The camera noise model includes read noise, dark noise,

and shot noise. Three scenarios are compared across SNR:

Frequency-Domain ToF (12 subframes), phase ToF (12 sub-

frames), and Bhandari’s method (using 120 subframes).

As expected, Frequency-Domain ToF performs better than

phase ToF at all levels of noise. At high levels of SNR,

Bhandari’s technique of disentangling phases is the best

performer. However, under a shot-noise limited model,

the measurement SNR is typically between 15 and 40 dB.

Within this regime, our proposed technique outperforms

Bhandari’s method despite using far fewer subframes.

5.2. Experiments

Physical implementation: Physical experiments were

conducted by reconfiguring a sensor used previously for
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Figure 4. Frequency-Domain ToF is more robust than other meth-

ods at low levels of SNR. (Top) The rendered scene consists of

a partially occluded dragon. (Middle) Registered plots of mean

absolute error at (Upper Row) 15 and (Lower Row) 30 dB SNR.

(Bottom) Plot of error across varying levels of SNR. Bhandari’s

method [3] is shown in the red dashed line.

coded ToF imaging [20]. Dynamic reconfiguration of mod-

ulation frequencies is achieved by controlling the sensors

electronic exposure and light strobing with a phase-locked

loop of an Altera Cyclone IV FPGA (Figure 5a). The

CMOS sensor is a 120x160 pixel PMD 19k-S3 ToF sen-

sor and the illumination bank is comprised of six, diffused,

650nm Mitsubishi LPC-836 laser-diodes. Calibration was

performed at each modulation frequency to remove non-

linear effects. All physical results in this paper are obtained

by capturing either 4 or 45 frequency-indexed subframes

within an achievable sensor bandwidth of 5 to 50MHz.

Window scene: An arrangement of boxes was placed be-

hind a thick glass slab. Two dominant reflections return to

the camera: one from the glass and another from the back-

ground scene. Using the existing method of phase ToF leads

to a mean absolute error of 63 cm—note that the depth is

underestimated due to the mixture from the foreground ob-

ject. The proposed technique of FD-ToF recovers the back-

ground depth with a mean absolute error of 5cm. This

is in line with previous approaches in multi-depth imag-

ing [20, 3], but FD-ToF allows scene recovery using only

four subframes, the same as phase ToF.
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Figure 5. Window scene. (Top Figure) Overview of the prototype FD-TOF camera hardware and multi-path test scene. The camera (a)

looks through a thick glass slab (b), which creates multi-path interference, at an arrangement of boxes (c). This is a medium-range scene;

the wavy dash-lines indicate a large separation. The glass slab is 4.75m in front of the sensor plane, and the the first box is 7.4m in front.

Our prototype camera with zoomed in lens (d), lasers (e), and bare sensor (f). The lower-right inset (g) shows the approximate field-of-view

of the system. (Bottom Row) shows recovered depths, using the mean absolute error metric.

Phase ToF Frequency-Domain ToFLong-range scene

3.4m

Figure 6. Phase is implicitly unwrapped in Frequency-Domain

ToF. At 44 MHz the wrapping depth is 3.4m.

Long-range scene: Figure 6 shows a long-range capture

of an angled wall. To isolate the effect of phase wrap-

ping, no post-processing was performed on either FD-ToF

or phase ToF (this includes radial calibration). Collected at

a frequency of 44 MHz, phase ToF exhibits a wrapping arti-

fact at 3.4 meters. In comparison, while the recovered depth

from FD-ToF is noisy (due to limitations with the prototype

hardware), wrapping artifacts are not present.

Everyday scene: Multi-path interference is far from a

niche problem, occuring in everyday scenes. A living room

scene is shown in Figure 7 with a chair and lamp shade,

concave objects that will exhibit diffuse multi-path interfer-

ence. Using 4 subframes, phase ToF over-estimates concave

portions of the chair by about 20 centimeters. When sam-

pling 4 frames, Frequency-Domain ToF recovers a depth

map that is robust to multi-path, but exhibits noise. Us-

ing 45 subframes, FD-ToF recovers the scene with higher

fidelity than Bhandari’s method, which requires 180 sub-

frames. Error is quantified in the upper-right of Figure 7.

6. Discussion and Limitations

In summary, this paper has described a complementary

technique to obtain depth by sampling only in the frequency

domain. Practical benefits are demonstrated, including ac-

curate multi-path correction, immunity to phase wrapping

and scene recovery at low SNR. In comparison to other

multi-path correction schemes, the proposed technique re-

duces depth error, while requiring fewer subframes.

Diffuse and Specular Multi-path: Few papers in litera-

ture have proposed solutions that are robust to both diffuse
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4-FD-ToF 0.319 0.044 0.187

45-FD-ToF 0.153 0.020 0.090

Phase ToF 0.347 0.016 0.191

Bhandari 0.279 0.018 0.145

Figure 7. Naive phase ToF overestimates the chair’s depth by 20cm

due to diffuse multi-path. The proposed technique outperforms the

state-of-the-art MPI correction scheme in [3], while using fewer

subframe measurements (45 vs 180).

and specular multi-path. For example, Gupta et al. [10] and

Naik et al. [28] assume smoothness in global illumination;

their models work for diffuse multi-path but not specular

multi-path. In contrast, Kadambi et al. [20] assume sparse

multi-path; their model works for specular but not diffuse

multi-path. By recasting depth estimation in frequency,

both diffuse (as in Figure 7) and specular (as in Figure 5)

multi-path can be addressed.

Simplified pipeline: In commercial depth sensors, the

phase ToF pipeline can occur in stages:

Phase Subframes → DFT → Unwrap → MPI Correct

Even though some steps, such as phase wrapping, seem

easy to solve, small errors can magnify as they propagate

through the pipeline. In comparison, the proposed tech-

nique of FD-ToF exhibits a sparser pipeline:

Frequency Subframes → DFT

Number of subframes required: Previous methods for

multi-path correction require many subframes, adopt re-

strictive light transport assumptions, or employ elaborate

hardware schemes. Gupta et al. [10] and Naik et al. [28]

achieve results with only 4 and 5 subframes by
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Figure 8. Signal nonlinearities cause ranging errors. At 8MHz the

waveform resembles a triangle wave; at 45 MHz it resembles a

sinusoid. This is a limitation of the prototype hardware.

Table 1. Minimum subframes req’d

to handle multipath interference.

Paper Frames

Bhandari et al. [3] 15

Freedman et al. [6] 9

Kirmani et al. [22] 8

Naik et al. [28] 5

Gupta et al. [10] 4

FD-ToF 4

limiting scope to

diffuse multi-path only.

Some models are more

general [3], but require

dozens of subframes.

Table 1 shows the

minimum number of

measurements that

are required to handle

multi-path interference;

in the presence of noise or model mismatch, most solutions

require many more subframes. In this paper, FD-ToF has

demonstrated better results than [3], while using a quarter

of the subframes.

Limitations of prototype: Since the technique is proto-

typed on a phase ToF CMOS sensor, the hardware is suited

for phase but not frequency sweeps. This particular chip

is designed to work over a narrow range of frequencies—

outside this range, the signal is no longer sinusoidal (Figure

8). In addition, the sensor is geared to rapidly sweep in

phase not frequency, precluding us from showing real-time

results. Because the proposed method has been shown to

work with fewer subframes than previous techniques, there

is no fundamental limitation to achieving real-time perfor-

mance.

Limitations of method: Following Proposition 1, resolv-

ing multi-path returns is limited to about 3 meters depth

with the current bandwidth of 45 MHz. Until the bandwidth

increases, FD-ToF is perhaps less suited for entertainment

applications and better suited for longer-range depth sens-

ing. In addition, although FD-ToF is robust to phase wrap-

ping, long range depths can cause aliasing. However, as

shown in the supplement, such aliasing will only occur in

impossibly long-range scenarios.

Conclusion: Rather than directly solving challenges with

existing phase ToF sensors, this paper describes a practical

method to realize macroscopic interferometry on a standard

ToF sensor.
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