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Abstract

In this paper, we propose a novel method for depth esti-

mation in light fields which employs a specifically designed

sparse decomposition to leverage the depth-orientation re-

lationship on its epipolar plane images. The proposed

method learns the structure of the central view and uses this

information to construct a light field dictionary for which

groups of atoms correspond to unique disparities. This dic-

tionary is then used to code a sparse representation of the

light field. Analyzing the coefficients of this representation

with respect to the disparities of their corresponding atoms

yields an accurate and robust estimate of depth. In addi-

tion, if the light field has multiple depth layers, such as for

reflective or transparent surfaces, statistical analysis of the

coefficients can be employed to infer the respective depth of

the superimposed layers.

1. Introduction

In the scope of this work, light fields are dense collec-

tions of views of a scene with view point shifting parallel to

the image plane. Image plane coordinates are pairs (x, y),
view point coordinates are pairs (s, t), so a light field is

four-dimensional. Let us look at the structure of such a light

field and its epipolar plane images (EPIs), which are slices

in the (x, s) and (y, t) planes, see figure 1. One can im-

mediately observe that the data exhibits a large amount of

redundancy, as patches in any of the views reappear slightly

shifted in multiple neighbouring views. For a light field

of a Lambertian scene, the amount of shift from one view

to the next depends linearly on the disparity of the patch,

which yields the well-known orientation-depth relationship

on epipolar plane images [2].

This inherently sparse structure of the light field has been

exploited in several lines of research. A natural applica-

tion is light field compression [15] and compressive sens-

ing [17], where the redundancy is used to generate an effi-

cient light field coding scheme or reduce the amount of data

one has to record to capture one. Indeed, the key idea is that
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Figure 1. Epipolar plane images (EPIs). The picture shows the

center view of a light field parametrized by image coordinates x

and y. On the bottom and right, the epipolar plane images for the

white lines in the center view are shown, where s and t describe

varying view point coordinates. As the camera moves, 3D scene

points trace straight lines on the EPIs, whose slope is inversely

proportional to the distance of the point [2]. Thus, orientation on

the EPI is related to local depth.

if one knows the depth (and thus disparity) for all of the

points in any of the 2D views, one can perfectly reconstruct

the light field except for occlusions. The latter work [17]

also employs patch dictionaries to learn the 4D structure

and improve reconstruction.

Just like traditional 2D image patch dictionaries [7],

4D light field dictionaries can also be used for regularizing

inverse problems. In particular, these have been employed

for light field denoising and deconvolution, inpainting, and

super-resolution [14]. In [18], they solve similar problems

by modeling light field patches as Gaussian random vari-

ables conditioned on disparity to construct a GMM prior.

Similarly to our work, they generate patches synthetically

based on disparity, but not to create dictionaries. In contrast,

the papers which also explicitly employ light field dictionar-

ies [17, 14] learn structure directly on 4D light field patches.

While this allows sparse coding and construction of priors,

it can not be expected that the orientation-depth relationship

on the EPIs is preserved in the atoms.

However, the correspondence between depth and orien-

tation is exactly what has been leveraged in a lot of work on

lightfield-based depth estimation, e.g. [13, 24, 26, 30]. We
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will discuss this line of research in depth in the next section,

as it is most closely related to our work.

Contributions. In this work, for the first time, we

unify the idea of orientation-based depth reconstruction

with sparse light field coding based on generating a depth-

based dictionary. In contrast to previous work, we first

learn a lower-dimensional dictionary on the center view

only. Then, the base atoms of the center view dictionary

are “lifted” into the 4D light field domain based on a gener-

ative model such that the resulting light field atoms have a

unique, known disparity. It turns out that with a simple av-

eraging strategy, the sparse coding coefficients for the lifted

dictionary already allow to compute a reliable per-pixel es-

timate of disparity for Lambertian surfaces. However, in

contrast to orientation analysis using the structure tensor of

EPIs [30], disparities can be much larger than one pixel.

Moreover, statistical analysis of the coefficients reveals

whether the light field contains multiple depth layers caused

by transparent or reflective surfaces. The disparity of these

layers can be reconstructed, substantially surpassing exist-

ing state-of-the-art [29, 12] for multi-orientation estimation

in accuracy and robustness, in particular on real-world light

fields from plenoptic cameras.

2. Related Work

There has been a substantial amount of recent work

and great progress in depth estimation for Lambertian sur-

faces in light fields. The pioneering work which introduced

epipolar volumes is [2], where they analyze slopes of lines

by line fitting to estimate disparity. Based on these ideas, [5]

perform shearing of the epipolar volume to subsequently

extract the lines with the smallest color variations. In [13],

they refine the idea of line extraction and obtain very accu-

rate results on extremely large scale light fields. The first

order structure tensor is used in [30] to compute orienta-

tion on the EPIs and exploit the orientation-depth relation-

ship. They also propose a variational framework to opti-

mize results with respect to occlusion constraints. In [24],

they calculate depth by shearing EPIs and measuring defo-

cus responses. The work [11] employs the phase-shift theo-

rem to match sub-aperture images in order to deal with the

narrow baseline of light field cameras. The idea of a scale-

depth space is pursued in [26] to find the best disparity. A

data term based on active wavefront sampling is considered

in [10] within a variational stereo framework. None of the

above methods employ sparse coding of the light field for

the purpose of depth reconstruction. However, in [9] they

use the idea of redundancy of sub-aperture views and used

sparsity of the RPCA as new matching term. Likewise, [18]

employ sparsity ideas to model light field patches as Gaus-

sian random variables conditioned on its disparity value.

They construct a patch prior and can estimate disparity by

finding the nearest PCA subspace.

Figure 2. Dictionary lifting. Left: 2D epipolar plane patches are

generated from line shaped atoms on the center view. The trained

patches are extrapolated by slightly shifting the base patch accord-

ing to the chosen disparity when moving from layer to layer (yel-

low). Afterwards, the final patch (red) is extracted from the region

where all data is valid. Right: illustration of the same procedure

for crosshair-shaped base patches. Please note that the 3D visual-

ization is insufficient to show all aspects of what happens, as the

underlying data is 4D. Thus, the values at the intersection of the

two EPI slices do not match outside of the blue base patch area.

Much fewer work has been pursued on the topic of multi-

layer light fields, which appear in the context of reflective

or transparent surfaces, but also to some extent in the case

of specular reflections. Again based on the idea of orien-

tation estimation, [29] use the second order structure ten-

sor to estimate disparity values for superimposed patterns.

The work is again extended in [12] with an improvement

to handle different contributions from horizontal and verti-

cal EPIs for a slightly better accuracy. It can also separate

the two layers from each other. While both methods work

well on rendered and gantry datasets, it turns out in sec-

tion 6 that compared to ours, they are very sensitive to noise

and calibration inaccuracies. Similarly, [23, 27] optimize

for two overlaid matching models for an epipolar volume

using graph cuts or semi-global matching, respectively. In

[25], they describe depth estimation for glossy surfaces with

light field cameras. Light sources are estimated in order to

separate the diffuse and specular part of signal. Again, none

of these works explore the relationships between disparity

estimation and sparse coding, which will be our focus in the

remainder of the work.

3. Sparse light field coding

We first briefly review ideas and notation for sparse cod-

ing and dictionary learning, and afterwards specialize to our

scenario of light field coding.

The central idea is to represent a signal as a linear com-

bination of elements from a dictionary. Consider a set

of n patches x1, . . . , xn written as m-dimensional vectors

xi ∈ R
m, and a patch dictionary D ∈ R

m×k where k is the

number of elements, usually with k ≫ n. The problem of

l1-sparse coding or Lasso [20] is to find

argmin
αi∈Rk

{

1

2
‖xi −Dαi‖

2
2 + λ ‖αi‖1

}

, ∀1 ≤ i ≤ n, (1)
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Figure 3. Visualization of a subset of the atoms of a light field patch dictionary with lines as base atoms. Each light field atom represents

a 2D 5 × 5 epipolar plane image patch generated from a specific center view atom and using an individual disparity value. Every row of

patches corresponds to one center view base atom, while each column of patches corresponds to a distinct disparity. A total of 320 light

field atoms is visible, corresponding to 64 disparities and 5 different center view atoms.

where λ is a regularization parameter. The columns of D
represent the dictionary elements to approximate the input

signal and are called atoms. To ensure comparability be-

tween the different atoms and input patches both are nor-

malised, i.e. rescaled to a zero-mean and constant variance.

A real sparse solution would be obtained for the regu-

lariser ‖α‖0 - i.e. the number of non-zero elements - which

is not convex. Although there is no analytical link between

the l1 and l0 norm, the l1 norm is widely used instead and

gives sparse solutions similar to the l0 norm. The problem

of dictionary learning is closely related to (1), but instead of

optimizing over α given a dictionary D, the task is to find a

dictionary D which is optimal in terms of representing the

signal with a sparse α [16].

Creating light field dictionaries. When considering the

problem of sparse coding for light fields, one needs to de-

cide for the shape of the patches xi and thus the dictionar-

ies’ atoms. Remember that the key idea of the paper is to

encode light field dictionaries in such a way that their sparse

coding coefficients α yield information for disparity estima-

tion. For this, we leverage the fact that if disparity is con-

stant, the center view of a light field completely determines

all other views. With this in mind, we create light field dic-

tionary atoms according to a generative model. They are

generated from atoms which are learned by training a stan-

dard image dictionary on the center view. Each center view

dictionary atom generates a large number of light field dic-

tionary atoms, one for each discrete disparity value under

consideration. In particular, each light field atom which is

generated corresponds to a unique disparity value. In the re-

mainder of this section, we will formalize this process and

discuss several possibilities to choose the patch shape of the

base dictionary.

1D base patches, 2D EPI patches. The most straight-

forward way to create light field atoms is to lift a center

view dictionary made up of lines. We train the base dic-

tionary on all horizontal and vertical patches of a fixed con-

stant length p of the center view. Every 1D-atom of the base

dictionary can then be lifted to atoms for an epipolar plane

image as follows. Consider a shift in view point parallel

to the line, and assume the points on the line have constant

disparity. Since for fixed disparity, there is a linear rela-

tionship between view point and image plane coordinates

of the projection, all pixels in the base patch will shift by

the same amount. To simplify notation, we assume dispar-

ity units are chosen such that when shifting to the next view,

the pixel shift is exactly equal to the disparity value. We re-

peat this shifting for every view point coordinate, and thus

generate a 2D patch where one coordinate is along the line

in the image plane, the other coordinate is along the line of

view points parallel to it, see figure 2.

In effect, this describes a generative model which cre-

ates an EPI patch from a 1D image patch, similar to [12],

but without the need to model occlusion. To obtain the final

light field dictionary atom, we cut out the valid area which

lies exactly above the base line. To generate the complete

light field dictionary, we repeat this for every base atom and

every disparity label d = 1, . . . , L. Note that disparities it-

self need not be integer, each integer label corresponds to

an actual disparity value λd ∈ R. Figure 3 shows an exem-

plary 2D patch dictionary created for a light field. We use

the same dictionary to solve the Lasso 1 for both horizontal

and vertical EPI patches, and all color channels.

In the following, we refer to this light field dictionary

type as the 2D dictionary. It is light-weight, simple and

efficient to compute. As a drawback, there is no inherent

correlation between the horizontal and vertical EPI patches

corresponding to a pixel, while of course disparity should be

the same for both. Thus, we also consider two alternatives.

Crosshair base patch, 2×2D EPI patches. The first

alternative is designed to enforce disparity consistency be-

tween horizontal and vertical EPIs. Here, the base patch

has the shape of a crosshair of width and height p. For sim-

plicity of implementation, the center pixel is duplicated and

the horizontal and vertical lines lifted separately as above

to create horizontal and vertical EPI patches. Thus, a single

light field atom consists of a pair of orthogonal 2D patches

in EPI space with consistent disparity, see figure 2.

The resulting Lasso problems (1) are higher-dimensional

and thus computationally more expensive, however, only

one has to be solved for horizontal and vertical EPI together.

Thus, the different contributions do not have to be made

consistent in the later optimization pass, which is concep-

tually more satisfying. However, as we will later see in the

results, this approach is of higher accuracy for smooth ar-

eas but has more problems at occlusions, especially if the

occlusion boundary is close to being vertical or horizontal.

We will refer to this type of light field dictionary as cross.

Square base patch, 4D EPI patches. The most am-

bitious implementation employs complete 4D light field

patches as atoms. Each base center view atom is a p × p
square, which is lifted from the center view into every other
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Figure 4. Different coding coefficient distributions. The graphs

illustrate typical distributions for the sparse coding coeffi-

cients ad(x) as grey bars over the disparity range. Top: this

distribution is likely to have only a single mode, we can see that

a single normal distribution is a good fit. Bottom: distribution

with two modes and a two-component GMM fitted to it using the

EM-algorithm [21].

of the light field views to create the 4D light field atom. As

we will also see later on, this type of light field dictionary,

referred to as 4D, yields a high accuracy but is computation-

ally very expensive. It also has a tendency to smear edges

because of an inherently built-in spatial smoothing. In our

experience, it is often advantageous to keep the point-wise

results potentially more noisy but also more precise, and

leave regularization to a global optimization step which is

actually designed for it.

4. Sparse coding for disparity estimation

As explained in section 3, estimating depth from epipo-

lar plane images is equivalent to estimating the slope of

the linear structures, as in the Lambertian case each line

corresponds to the projection of a single 3D point. The

non-Lambertian case will be discussed in the next section.

Since each dictionary atom by construction corresponds to a

well-defined slope, depth estimation from sparse dictionary

learning comes down to analysing the result of the Lasso (1)

for each pixel in the center view. To simplify notation, we

first fix one pixel and drop indices related to the pixel posi-

tion.

For each different disparity label d, we collect the re-

sponses of all coefficients αi in (1) which correspond to

atoms of disparity d in a vector Ad. As our dictionary is

grayscale, if we consider color light fields, we need to solve

several instances of (1) per pixel, one for each channel.

Additional instances are required if horizontal and vertical

EPIs are analyzed separately and not e.g. with the crosshair

dictionary. In the cases of multiple instances, we just add

all responses from all problem instances and atoms of dis-

parity d to the vector Ad as separate elements.

From the vector Ad of responses for disparity d, we now

compute a single number ad ∈ R by taking the sum of the

absolute values in Ad. Doing this for every pixel yields the

final response function

a : Ω ∋ x 7→ (a1(x), . . . , ad(x), . . . , aL(x)) ∈ R
L (2)

which returns a real number ad(x) for every pixel x and

disparity label d. According to our dictionary model, the

number will be larger the more likely it is that the pixel

has a disparity of d. We now analyze the distribution of the

coefficients over d for every pixel in order to obtain the final

disparity estimate.

Lambertian Case. In the case of a Lambertian surface,

for every pixel the positive values of ad(x) will be clustered

around the correct disparity value, see figure 4, graph on

top. Thus, we fit a Gaussian to the data at each pixel by

computing mean and standard deviation as

µ(x) =

L
∑

d=1

d ad(x), σ
2(x) =

L
∑

d=1

ad(x)(d− µ(x))2, (3)

respectively. Although the disparity values are quantized

when creating the dictionary, this strategy achieves a point-

wise sub-label accurate estimate, as oriented patterns of

slope between e.g. d and d + 1 will be a weighted mixture

of the atoms corresponding to the discrete labels.

In cases that an estimate in a pixel is completely inac-

curate, we will likely have a very high standard deviation.

Also, in a textureless region, the response from all atoms

will be close or equal to zero. Thus, we inpaint unreli-

able estimates and perform an overall smoothing by solving

the L1-inpainting problem with weighted second order total

generalized variation (TGV) [3]

argmin
u:Ω→[1,L]

{

λTGVg(u) +
m

2
‖u− µ‖

2
2

}

(4)

to obtain the final disparity map u. The point-wise regular-

izer weight g is adapted to the edges in the center view I ,

and defined in a standard fashion as

g(x) = exp(−K ‖∇I(x)‖
2
), (5)

where we set K = 5. The inpainting mask m is zero when-

ever the variance σ2(x) is larger than one-fourth its maxi-

mum value, and one otherwise.

By design, the method sketched above assumed Lam-

bertian surfaces, since it assumes the presence of a single

orientation in every pixel. In the following section, we will

generalize this to a second disparity layer to handle more

difficult materials.

5. Twin peaks: two disparity layers

In [29], it is discussed how flat reflecting or transparent

surfaces give rise to layered epipolar plane images, which

consist of two differently oriented superimposed patterns,

see figure 6 for an illustration. In this section, we show how

to analyze this situation with the help of the sparse cod-

ing coefficients obtained using the generated dictionary. In

contrast to previous work, we show how to compute an ac-

curate estimate for the regions where the two-layer model
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applies. Furthermore, we establish an optimization frame-

work to obtain disparity estimates for both layers which far

surpass previous work [29, 12] in quality.

Computing the mask for the two-layer model. In a

first step, we need to detect the region T ⊂ Ω in the center

view where the two-layer model actually applies. Let alx
be the sparse coding coefficients of pixel x for disparity la-

bels l = 1, . . . , L computed with the method described in

section 4.

If pixel x belongs to a reflective or transparent surface,

the surrounding regions on the epipolar plane images should

exhibit two superimposed orientations. Thus, the question

of whether x belongs to T is a question to the distribution

of the coefficients alx. If x ∈ T , then we should see two

distinct peaks corresponding to the two different disparities

of the two layers, otherwise we should see only a single

peak. Figure 4 shows a few examples taken from our light

fields.

In order to assess whether there are two layers, we

perform different statistical tests. First, we perform

a pixel-wise fit of a two-component Gaussian Mixture

Model (GMM) using a GPU implementation of the EM-

algorithm [21] which runs in parallel on all the pixels. We

use a fixed number of fifty iterations, where the means are

initialized with µ− = 0 and µ+ = L + 1, respectively,

and both with standard deviation L/4. Let µ1 ≤ µ2 be the

estimated means of the mixture components.

We now construct a data term ρ : Ω → R for a global

binary segmentation. First, the data term should be nega-

tive where we have a preference for the one-layer model. A

good test whether a distribution has only a single mode is

to check whether γ2 − κ ≤ 5
6 , where γ is the skewness and

κ the kurtosis of the distribution [22]. Formulas to com-

pute these are formed similar to µ and σ in (3). Second,

ρ should be positive in case of a preference for the two-

layer model. There is a preference for this if the initial es-

timates µ1 and µ2 are both valid and substantially different

from each other.

We thus define the data term ρ to strike a balance be-

tween these two indications,

ρ := −1{γ2−κ≤ 5

6
} + τ 1{1≤µ1,µ2≤L} (µ2 − µ1). (6)

Above, the notation 1S denotes the characteristic func-

tion of the set S, and τ > 0 is a constant, which we set

at τ = 1 throughout the experiments. A special case occurs

if
∑

l a
l
x = 0, which happens when the region around x is

completely devoid of texture. In this case, a valid estimate

is not possible, and we flag x to belong to a region I ⊂ Ω
which will later be inpainted during optimization.

First, we compute the final mask T denoting the region

flagged for the two-layer model by solving the binary seg-

y

s

x

x

Figure 6. Light field with two disparity layers. The top image

shows a close-up of the center view of the tiger dataset, see fig-

ure 5, courtesy of [29]. The EPI corresponding to the white line is

depicted below. Parts of the surface are non-Lambertian and show

a reflection, the corresponding regions of the EPI in turn exhibit

two superimposed oriented patterns.

mentation problem with weighted length regularity

argmin
t:Ω→{0,1}

{
∫

Ω

g ‖∇t(x)‖2 + ρ(x)t(x) dx

}

. (7)

for its characteristic function t = 1T . We achieve global op-

timality with relaxation to functions taking values in [0, 1],
optimization via the primal-dual algorithm [4], and subse-

quent thresholding, The point-wise regularizer weight g is

defined as in (5).

An example two-layer mask as a result of this optimiza-

tion can be observed in figure 5. Note that such a detection

was not reliably possible with any of the previous meth-

ods [29, 12].

Optimizing disparities for the two-layer model. In the

region Ω \ T , one can compute disparities with the method

described in the preceding section. Within T , however, two

disparity maps v, u need to be extracted from the coefficient

distributions. To facilitate this, we introduce the notion of

a separating disparity label s(p) assigned to each pixel. We

demand v ≤ s ≤ u. The key idea is that the coefficients

below s should explain u, the coefficients above s should

explain v. We allow fractional separation in the sense that

in case of s(p) lying in between the integers l and l+1, then

the coefficient alx is split, and a fraction s(p)− l is assigned

to the upper layer u, the rest to the lower layer v.

Let us formalize this idea a bit: for every pixel, we

extend alx to a function Ax(l) over the continuous inter-

val l ∈ (0, L] by setting Ax(l) := A
⌈l⌉
x , where ⌈l⌉ denotes

rounding up, see figure 7. Then, we define the lower expec-

tation value v̄s(p) and upper expectation value ūs(p) as

v̄s(p) =

∫ s(p)

0

lAx(l) dl and ūs(p) =

∫ L

s(p)

lAx(l) dl, (8)

respectively. Of course, this is just notation, in practice, the

integrals can be computed by simple summation, correctly

taking care of a possibly split coefficient.

In an ideal world, all observed data would be explained

perfectly with the dictionary. In practice, however, we often

have regions where the estimate is noisy or invalid due to
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center view detected mask (ours) disp. object (ours) disp. reflection (ours) disp. object [29] disp. reflection [29]

MSE 0.0106 MSE 0.0062 MSE 0.0036 MSE 0.0137

MSE 0.0489 MSE 0.032 MSE 0.5657 MSE 0.0961
X

Figure 5. Accuracy evaluation of two-layer disparity reconstructions. We compare our method to [29] on their ray-traced Tiger dataset

(top) with a reflective plane, and a data set captured with a gantry (bottom), for which ground truth was acquired with a laser scanner [29].

Note that in contrast to [29], our algorithm detects the reflection mask automatically (2nd column from left), while the results in [29] were

obtained for the ground truth mask. For both methods, disparity maps are shown after smoothing with an L2-data term using (4). The

disparity maps are visually much better, confirmed by a better mean squared disparity error (MSE). We also experimentally verified that

the error remains similar if we remove a subset of the views and thus increase maximum disparity to up to four pixels.

v̄s(p) ūs(p) L1 s(x)0

a2x

a1x

Figure 7. Separation, upper and lower expectations. The coordi-

nate s(x) separates the label range into an upper and lower part

and thus the two disparity layers. The upper and lower estimates

ūs(p) and v̄s(p) are computed as expectation values over the red

and blue distributions, respectively. Note that s(x) is allowed to

be fractional - if it lies between two disparity labels, it cuts a bar

from the chart in two.

lack of texture. Thus, our algorithm consists of finding a

local optimum of the functional

E(u, v, s) = λR(u, v)+

∫
T

mu(u−ūs)
2+mv(v−v̄s)

2
dx (9)

for the three unknowns. Above, R is a regularizer for the

disparity maps u and v, we use total generalized varia-

tion [3] with a point-wise weight g to account for image

edges, defined as before. The functions mu and mv are

masks depending on the coefficients and the estimated sep-

arator s. For some pixels, all coefficients above or below s
might be zero, i.e. no information is available about u or v,

respectively. In this case, we set the respective mask value

and thus data term weight to zero, effectively performing

inpainting. For all other pixels, the mask is set to one.

The optimization can only be performed up to a local

minimum. We initialize u, v with the corresponding esti-

mates µ2 and µ1 from the GMM, s as the mean of u, v,

masks as defined above, and iterate the following steps:

1. Keep v, s fixed and minimize E for u, which is an in-

stance of TGV-smoothing and inpainting (4).

2. Keep u, s fixed and minimize E for v, the same TGV-

smoothing and inpainting (4).

3. Keep u, v fixed, ignore the masks, and compute a new

estimate for s by optimizing E point-wise. Then up-

date the masks as described above.

In our experiments, this scheme converges in about ten

iterations to a steady state. Example results for the different

steps can be observed in figure 5, several more final results

are referenced in the following section.

6. Results and Evaluation

We conduct experiments with a Matlab implementation

of our method, with a solver for the Lasso (1) from the

SPAMS toolbox [16]. For a thorough evaluation, we have

several data sets available of varying origin. The first type

of data is ray-traced. Here, we use several data sets from the

HCI light field benchmark [31], which has mostly Lamber-

tian scenes with some mild specular reflections. On these,

we only evaluate our method up to section 4, without the

sophisticated scheme for two-layered light fields. As ex-

ample light fields with multiple layers, we use one rendered

light field with ground truth from [29], as well as one gantry

light field with ground truth also from the benchmark [31].

To our knowledge, these are the only multi-layer light fields

with ground truth available. They are of very high quality

and present only a moderate challenge, so to test the limits
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lightfield EPI C EPI G ST S ST G Ours

buddha 0.55 0.62 0.78 0.90 0.57

buddha2 0.87 0.89 1.05 0.68 1.08

horses 2.21 2.67 1.85 1.00 3.26

medieval 1.10 1.24 0.91 0.76 0.84

monasRoom 0.82 0.93 1.05 0.79 0.65

papillon 2.52 2.48 2.92 3.65 1.85

stillLife 2.61 3.37 4.23 4.04 2.95

couple 0.16 0.19 0.24 0.30 0.42

cube 0.82 0.87 0.51 0.56 0.51

maria 0.10 0.11 0.11 0.11 0.11

pyramide 0.38 0.39 0.42 0.42 0.48

statue 0.29 0.35 0.21 0.21 0.62

average 1.04 1.18 1.19 1.12 1.11

Figure 8. Comparison of different methods for disparity estima-

tion. Datasets are from the HCI light field benchmark [31]. The

numbers show mean squared disparity error for the method de-

scribed in section 4, which assumes Lambertian surfaces. Best

results in each row are bold-faced. We achieve the best result on

three of the data sets, and are second place on average. See text in

section 6 for a description of the competing methods.

of the methods, we also compare qualitatively on a data set

captured with a Lytro Illum plenoptic camera [19].

We first verify on the synthetic benchmark [31] how dif-

ferent parameters and choices of dictionary for our method

influence the quality of results. Graphs of the results can be

seen in figure 9, we now proceed with a detailed discussion.

Influence of the dictionary size. First, we verify the

influence of the dictionary size on the quality of the re-

sults. Two different factors have to be distinguished when

in comes to the size of the dictionary. On the one hand, the

number of disparity levels used, and on the other hand the

number of trained atoms for the center view. Somewhat re-

markably, the influence of the size of the dictionary on the

quality of the estimation is diminutive. For both the number

of disparity levels as well as the number of base atoms, it

turns out that the results do not improve as long as the val-

ues are chosen above a certain threshold. In our experience,

a good tradeoff between accuracy and run-time is to dis-

cretize disparity space such that the difference between two

subsequent labels equals about one-third of a pixel. Finer

disparity levels do not improve the results, and using fewer

labels implies that the method becomes faster. For the num-

ber of center view atoms, four times the number of pixels

in each patch seems to be a good rule of thumb. Further in-

creasing the disparity resolution and the overall dictionary

size gives close to no profit in case of Lambertian scenes,

and we thus do not include a figure with detailed numbers.

Influence of patch shape. In theory, the patch

shapes cross and 4D have certain advantages. The

shape cross enforces a coherent estimate over both epipo-

lar plane image directions, while 4D in addition enforces

some spatial coherence. However, this does not reflect in

performance, the best results are actually attained by 2D,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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cross RGB

2D grayscale

2D RGB

4D grayscale

4D RGB

Figure 9. MSE for different types of patches and regularization

depending on the sparsity parameter λ. Solid lines show the raw

point-wise estimates, while dashed lines show results after TGV-

L2 regularisation and inpainting using 4. See text in section 3 for

a description of the different light field patches used, and section 6

for a detailed discussion of the results.

which returns coefficients for 2D patches for both direc-

tions separately. A reason could be that the more complex

atoms are also less flexible to adapt to occlusions. In gen-

eral, except for 4D patches at higher values of λ, coding

the individual color channels separately yields better qual-

ity than using aggregated grayscale information. Note that

while the point-wise results for the different patch shapes

can differ greatly, the results are much closer after inpaint-

ing and smoothing with (4).

Influence of the sparsity parameter λ. For the raw

point-wise estimates, the sparsity norm weight λ has a

sweet spot at around λ = 0.3. Again, after inpainting and

smoothing with (4), this sweet spot is not visible anymore

and the results of our method are quite robust with respect to

different choices of λ. Thus, as the runtime decreases with

larger values of λ, we suggest a value of around λ = 0.8 for

general purpose depth estimation.

Accuracy under Lambertian assumption. Table 6

shows the mean squared disparity error for evaluation on

the complete HCI light field database [29]. Results for com-

peting methods were taken from the benchmark evaluation

in [29]. As the light fields compared here are mostly Lam-

bertian, we only employ our basic method described in sec-

tion 4. The method EPI C refers to [8] which enforces con-

sistent depth labeling at occlusions. The globally optimal

labeling scheme [30], which constructs a cost volume from

structure tensor orientation estimates for horizontal and ver-

tical epipolar plane images, is denoted EPI G. The multi

view stereo methods ST S and ST G compute a data term

based on point-wise color consistency of all views. ST S

takes the point-wise optimum and performs simple smooth-

ing, while ST G performs global optimization of a contin-

uous multi-label problem, respectively. See [29] for details

on the methods.
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Figure 10. Disparity estimation for two superimposed layers using

Lytro data. Our method can reliably estimate a mask for the super-

imposed region, as well as generate reasonably accurate disparity

maps for both surface and reflection. The challenge imposed by

this dataset can be appreciated by comparing to the raw estimates

from the second order structure tensor [12] below, which do not

turn out to be useful despite our best efforts at applying regular-

ization (not shown). Contrast-enhanced for better visibility.

We can see that our method performs on par with the

above methods, achieving second lowest MSE. Note that all

of these are not occlusion-aware, which is a major drawback

- indeed, more recent works [9, 28, 11] outperform these

results. However, in contrast to the other methods, we are

also capable of estimating two depth layers at the same time.

This is what sets us truly apart from previous techniques,

and where we make a big leap in quality.

Accuracy on reflective and transparent surfaces. For

light fields with two layers, we compare to the method [29],

which is based on decomposing the two orientations using

superimposed pattern analysis [1]. We compute accuracy

for both light fields where we have ground truth available,

see figure 5, and note that we achieve both qualitatively as

well as quantitatively far superior results. In addition, our

method computes a robust segmentation into regions with

and without multiple layers. Note that both light fields are

of very high quality (rendered and from a gantry, respec-

tively), so to test our limits we move to data from a plenop-

tic camera.

Plenoptic camera data. In order to process the data

captured with the Lytro Illum, we employ the Lightfield

Toolbox provided by [6] to construct an epipolar volume.

This creates challenging data, quite noisy and with non-

linear distortions from calibration inaccuracies, as can be

observed in figure 1. We then compare our full algorithm

Figure 11. Layer seperation of a real world light field. Given the

disparity estimates from our method for both layers and the mask

for the two-layer region, see figure 10, we can seperate the two lay-

ers of the light field using the method described in [12]. Disparity

maps obtained with [12, 29] are not accurate enough to perform

this decomposition. Contrast-enhanced for better visibility.

with the second-order structure tensor approach [12], see

figure 10. While the previous method [12], which is already

an improvement over [29], works reasonably well on high-

quality data as in figure 5, it completely breaks down on

the Lytro data set and does not yield any useful estimate.

In contrast, our method is still capable of estimating reflec-

tion masks as well as the disparities of the separate layers

robustly and with visually convincing accuracy. Using the

algorithm from [12], we can thus proceed with performing

a separation of the two light field layers, see figure 11.

7. Conclusions

In this paper, we present a novel approach for depth es-

timation from light fields. The key idea is to build a dictio-

nary for sparse light field coding such that the disparity for

every atom is known. For this, we first learn the structure of

the center view using dictionary learning, and afterwards,

lift the trained patches to the higher dimensional epipolar

space using shifting proportional to disparity. The method

supports different shapes of base patches, which capture

different aspects of spatial coherence within the views and

among epipolar plane images. Using the generated light

field atoms, we then employ the Lasso (1) in order to com-

pute sparse coding coefficients. Accumulating these with

respect to the different disparities of the atoms allows to

infer the depth of individual pixels of the center view, pro-

vided the light field is Lambertian.

Using statistical analysis, we are also able to detect re-

gions where the Lambertian assumption is violated, and the

light field is composed of different superimposed dispar-

ity layers. Experiments demonstrate that our method far

surpasses previous work for multi-layered disparity estima-

tion in robustness and accuracy. For purely Lambertian

scenes, however, our method performs only on par with ear-

lier methods which are not occlusion-aware. This is to be

expected, as only disparity across the complete patch is con-

sidered, which decreases accuracy at object boundaries. We

will remedy this in an upcoming work.
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