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Abstract

In the context of fine-grained visual categorization, the

ability to interpret models as human-understandable visual

manuals is sometimes as important as achieving high clas-

sification accuracy. In this paper, we propose a novel Part-

Stacked CNN architecture that explicitly explains the fine-

grained recognition process by modeling subtle differences

from object parts. Based on manually-labeled strong part

annotations, the proposed architecture consists of a fully

convolutional network to locate multiple object parts and a

two-stream classification network that encodes object-level

and part-level cues simultaneously. By adopting a set of

sharing strategies between the computation of multiple ob-

ject parts, the proposed architecture is very efficient run-

ning at 20 frames/sec during inference. Experimental re-

sults on the CUB-200-2011 dataset reveal the effectiveness

of the proposed architecture, from multiple perspectives of

classification accuracy, model interpretability, and efficien-

cy. Being able to provide interpretable recognition results

in realtime, the proposed method is believed to be effective

in practical applications.

1. Introduction

Fine-grained visual categorization aims to distinguish

objects at the subordinate level, e.g., different species of

birds [47, 44, 4], pets [17, 30], flowers [29, 1] and cars

[38, 26]. It is a highly challenging task due to the smal-

l inter-class variance caused by highly similar subordinate

categories, and the large intra-class variance by nuisance

factors such as pose, viewpoint and occlusion. Inspiring-

ly, huge progress has been made over the last few years

[43, 4, 42, 18, 49], making fine-grained recognition tech-

niques a large step closer to practical use in various applica-

tions, such as wildlife observation and surveillance systems.

Whilst numerous attempts have been made to boost the

∗These authors contributed equally to this work.
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The class has its beak mostly different from the class 

Figure 1. Overview of the proposed approach. We propose to clas-

sify fine-grained categories by modeling the subtle difference from

specific object parts. Beyond classification results, the proposed

PS-CNN architecture also offers human-understandable instruc-

tions on how to classify highly similar object categories explicitly.

classification accuracy of fine-grained visual categorization

[10, 9, 6, 22, 46], we argue that another important aspect of

the problem has yet been severely overlooked, i.e., the abili-

ty to generate a human-understandable “manual” on how to

distinguish fine-grained categories in detail. For example,

volunteers for ecological protection may certainly benefit

from an algorithm that could not only classify bird species

accurately, but also provide brief instructions on how to dis-

tinguish a category from its most similar subspecies - e.g.,

a salient difference between a Ringed-billed gull and a Cal-

ifornia gull lies in the pattern on their beaks (Figure 1) -

with some intuitive illustration examples. Existing fine-

grained recognition methods that aim to provide a visual

field guide mostly follow the routine of “part-based one-

vs-one features” (POOFs) [2, 3, 4] or employ human-in-

the-loop methods [20, 7, 41]. Since the data size has been

increasing drastically, a method that simultaneously imple-

ments and interprets fine-grained visual categorization us-

ing the latest deep learning methods [19] is therefore highly

advocated.

It is widely acknowledged that the subtle difference be-

tween fine-grained categories mostly resides in the unique
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properties of object parts [32, 2, 9, 27, 51, 53]. There-

fore, a practical solution to interpret classification result-

s as human-understandable manuals is to discover classi-

fication criteria from object parts. Some of existing fine-

grained datasets have provided detailed part annotations in-

cluding part landmarks and attributes [44, 26]. However,

they are usually associated with a large number of objec-

t parts, which poses heavy computational burden for both

part detection and classification. From this perspective, one

would like to seek a method that follows the object-part-

aware strategy to provide interpretable predicting criteria,

while requiring minimum computational effort to deal with

a possibly large number of parts.

In this paper, we propose a new part-based CNN ar-

chitecture for fine-grained visual categorization that mod-

els multiple object parts in a unified framework with high

efficiency. Similar with previous fine-grained recognition

approaches, the proposed method consists of a localization

module to detect object parts (“where pathway”) and a clas-

sification module to classify fine-grained categories at the

subordinate level (“what pathway”). In particular, we em-

ploy a fully convolutional network (FCN) to perform object

part localization. The inferred part locations are fed into the

classification network, in which a two-stream architecture is

proposed to analyze images in both object-level (bounding

boxes) and part-level (part landmarks). The computation of

multiple parts is first conducted via a shared feature extrac-

tion route, then separated directly on feature maps through a

part crop layer, concatenated, and then fed into a shallower

network to perform object classification. Except for cate-

gorical predictions, the proposed method also generates in-

terpretable classification instructions based on object parts.

Since the proposed architecture employs a sharing strategy

that stacks the computation of multiple parts together, we

call it Part-Stacked CNN (PS-CNN).

The contributions of this paper include: 1) we present

a novel and efficient part-based CNN architecture for fine-

grained recognition; 2) our architecture adopts an FCN to

localize object parts, which has seldom been studied be-

fore in the context of object recognition; 3) our classifica-

tion network follows a two-stream structure that captures

both object-level and part-level information, in which a new

share-and-divide strategy is presented on the computation

of multiple object parts. As a result, the proposed architec-

ture is very efficient, with a capacity of 20 frames/sec1 on

a Tesla K80 to classify images at test time using 15 object

parts; 4) The proposed method provides effective model in-

terpretation for fine-grained object recognition, while be-

ing able to run in real-time. This is a much preferred prop-

erty for practical applications, such as surveillance system-

s. The effectiveness of the proposed method is demonstrat-

1For reference, a single CaffeNet runs at 50 frames/sec under the same

experimental setting.

ed through systematic experiments on the Caltech-UCSD

Birds-200-2011 [44] dataset, in which we achieved 76%
classification accuracy. We also present practical exam-

ples of human-understanding manuals generated by the pro-

posed method for the task of fine-grained visual categoriza-

tion.

The rest of the paper is organized as follows. Section 2

summarizes related works. The proposed architecture in-

cluding the localization network and the classification net-

work is described in Section 3. Detailed performance s-

tudies and analysis are conducted in Section 4. Section 5

concludes the paper and proposes discussions on the appli-

cation scenarios of the proposed PS-CNN.

2. Related Work

Fine-Grained Visual Categorization. A number of meth-

ods have been developed to classify object categories at the

subordinate level. Recently, the best performing method-

s mostly sought for improvement brought by the following

three aspects: more discriminative features including deep

CNNs for better visual representation [5, 33, 19, 39, 37],

explicit alignment approaches to eliminate pose displace-

ments [6, 14], and part-based methods to study the impact

of object parts [2, 52, 27, 51, 15, 55]. Another line of re-

search explored human-in-the-loop methods [8, 10, 45] to

identify the most discriminative regions for classifying fine-

grained categories. Although such methods provided direct

references of how people perform fine-grained recognition

in real life, they were impossible to scale for large systems

due to the need of human interactions at test time.

Current state-of-the-art methods for fine-grained recog-

nition are part-based R-CNN by Zhang et al. [51] and Bi-

linear CNN by Lin et al. [22], which both employed a two-

stage pipeline of part detection and part-based object classi-

fication. The main idea of the proposed PS-CNN is largely

inherited from [51], who first detected the location of two

object parts and then trained an individual CNN based on

the unique properties of each part. Compared to part-based

R-CNN, the proposed method is far more efficient in both

detection and classification phrases. As a result, we are able

to employ much more object parts than that of [51], while

still being significantly faster at test time.

On the other hand, Lin et al. [22] argued that manually

defined parts were sub-optimal for the task of object recog-

nition, and thus proposed a bilinear model consisting of

two streams whose roles were interchangeable as detectors

or features. Although this design enjoyed the data-driven

nature that could possibly lead to optimal classification

performance, it also made the resultant model hard to

interpret. On the contrary, our method tries to balance

the need of both both classification accuracy and model

interpretability in fine-grained recognition systems.
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Figure 2. Network architecture of the proposed Part-Stacked CNN model. The model consists of: 1) a fully convolutional network for part

landmark localization; 2) a part stream where multiple parts share the same feature extraction procedure, while being separated by a novel

part crop layer given detected part locations; 3) an object stream with lower spatial-resolution input images to capture bounding-box level

supervision; and 4) three fully connected layers to achieve the final classification results based on a concatenated feature map containing

information from all parts and the bounding box.

Fully Convolutional Networks. Fully convolutional net-

work (FCN) is a fast and effective approach to produce

dense prediction with convolutional networks. Success-

ful examples can be found on tasks including sliding win-

dow detection [34], semantic segmentation [23], and human

pose estimation [40].

3. Part-Stacked CNN

We present the model architecture of the proposed Part-

Stacked CNN in this section. In accordance with the com-

mon framework for fine-grained recognition, the proposed

architecture is decomposed into a Localization Network

(Section 3.1) and a Classification Network (Section 3.2).

We adopt CaffeNet [16], a slightly modified version of the

standard seven-layer AlexNet [19] architecture, as the basic

structure of the network; deeper networks could potentially

lead to better recognition accuracy, but may also result in

lower efficiency.

A unique design in our architecture is that the message

transferring operation from the localization network to the

classification network, i.e. using detected part locations to

perform part-based classification, is conducted directly on

the conv5 output feature maps within the process of data for-

warding. It is a significant difference compared to the stan-

dard two-stage pipeline of part-based R-CNN [51] that con-

secutively localizes object parts and then trains part-specific

CNNs on the detected regions. Based on this design, a set

of sharing schemes are performed to make the proposed PS-

CNN fairly efficient for both learning and inference. Figure

2 illustrates the overall network architecture.

3.1. Localization Network

The first stage of the proposed architecture is a localiza-

tion network that aims to detect the location of object parts.

We employ the simplest form of part landmark annotations,

i.e. a 2D key point is annotated at the center of each object

part. Assume that M - the number of object parts labeled

in the dataset, is sufficient large to offer a complete set of

object parts on which fine-grained categories are usually

different from each other. Motivated by recent progress

of human pose estimation [23] and semantic segmentation

[40], we adopt a fully convolutional network (FCN) [28] to

generate dense output feature maps for locating object parts.

Fully convolutional network. A fully convolutional

network is achieved by replacing the parameter-rich fully

connected layers in standard CNN architectures by convo-

lutional layers with kernels in spatial size of 1 × 1. Given

an input RGB image, the output of a fully convolutional

network is a feature map in reduced dimension compared to
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Figure 3. Demonstration of the localization network. Training pro-

cess is denoted inside the dashed box. For inference, a Gaussian

kernel is then introduced to remove noise. The results are M 2D

part locations in the 27× 27 conv5 feature map.

the input. The computation of each unit in the feature map

only corresponds to pixels inside a region with fixed size

in the input image, which is called its receptive field. FCN

is preferred in our framework due to the following three

reasons: 1) feature maps generated by FCN can be directly

utilized as the part locating results in the classification

network, which will be detailed in Section 3.2; 2) results

of multiple object parts can be obtained simultaneously

using an FCN; 3) FCN is very efficient in both learning and

inference.

Learning. We model the part localization process as a

multi-class classification problem on dense output spatial

positions. In particular, suppose the output of the last con-

volutional layer in the FCN is in the size of h × w × d,

where h and w are spatial dimensions and d is the number

of channels. We set d = M + 1. Here M is the number of

object parts and 1 denotes for an additional channel to mod-

el the background. To generate corresponding ground-truth

labels in the form of feature maps, units indexed by h × w

spatial positions are labeled by their nearest object part; u-

nits that are not close to any of the labeled parts (with an

overlap < 0.5 with respect to receptive field) are labeled as

background.

A practical problem here is to determine the model depth

and the size of input images for training the FCN. General-

ly speaking, layers at later stages carry more discriminative

power and thus are more likely to generate promising local-

ization results; however, their receptive fields are also much

larger than those of previous layers. For example, the recep-

tive field of conv5 layer in CaffeNet has a size of 163× 163
compared to the 227 × 227 input image, which is too large

to model an object part. We propose a simple trick to deal

with this problem, i.e., upsampling the input images so that

the fixed-size receptive fields denoting object parts become

relatively smaller compared to the whole object, while still

being able to use layers at later stages to guarantee enough

discriminative power.

The localization network in the proposed PS-CNN is il-

lustrated in Figure 3. The input of the FCN is a bounding-

box-cropped RGB image, warped and resized into a fixed

size of 454 × 454. The structure of the first five layers is i-

dentical to those in CaffeNet, which leads to a 27×27×256
output after conv5 layer. Afterwards, we further introduce a

1×1 convolutional layer with 512 output channels as conv6,

and another 1 × 1 convolutional layer with M + 1 outputs

termed conv7 to perform classification. By adopting a spa-

tial preserving softmax that normalizes predictions at each

spatial location of the feature map, the final loss function is

a sum of softmax loss at all 27× 27 positions:

L = −

27
∑

h=1

27
∑

w=1

log σ(h,w, ĉ), (1)

where

σ(h,w, ĉ) =
exp(fconv7(h,w, ĉ))

∑M

c=0 exp(fconv7(h,w, c))
.

Here, ĉ ∈ [0, 1, ...,M ] is the part label of the patch at

location (h,w), where the label 0 denotes background.

fconv7(h,w, c) stands for the output of conv7 layer at

spatial position (h,w) and channel c.

Inference. The inference process starts from the output of

the learned FCN, i.e., (M+1) part-specific heat maps in the

size of 27 × 27, in which we introduce a Gaussian kernel

G to remove isolated noise in the feature maps. The final

output of the localization network are M locations in the

27 × 27 conv5 feature map, each of which is computed as

the location with the maximum response for one object part.

Meanwhile, considering that object parts may be missing

in some images due to varied poses and occlusion, we set a

threshold µ that if the maximum response of a part is below

µ, we simply discard this part’s channel in the classification

network for this image. Let g(h,w, c) = σ(h,w, c) ∗ G, the

inferred part locations are given as:

(h∗

c , w
∗

c ) =

{

argmaxh,w g(h,w, c) if g(h∗

c , w
∗

c , c) > µ,

(−1,−1) otherwise.

(2)

3.2. Classification network

The second stage of the proposed PS-CNN is a classi-

fication network with the inferred part locations given as

an input. It follows a two-stream architecture with a Part

Stream and a Object Stream to capture semantics from

multiple levels. A sub-network consisting of three fully

connected layers is then performed as an object classifier,

as shown in Figure 2.

Part stream. The part stream acts as the core of the

proposed PS-CNN architecture. To capture object-part-

dependent differences between fine-grained categories, one
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can train a set of part CNNs, each one of which conducts

classification on a part separately, as proposed by Zhang et

al. [51]. Although such method worked well for [51] who

only employed two object parts, we argue that it is not ap-

plicable when the number of object parts is much larger in

our case, because of the high time and space complexity.

In PS-CNN, we introduce two strategies to improve the

efficiency of the part stream. The first one is model pa-

rameter sharing. Specifically, model parameters of the first

five convolutional layers are shared among all object parts,

which can be regarded as a generic part-level feature extrac-

tor. This strategy leads to less parameters in the proposed

architecture and thus reduces the risk of overfitting.

Other than model parameter sharing, we also conduc-

t a computational sharing strategy. The goal is to make

sure that the feature extraction procedure of all parts only

requires one pass through the convolutional layers. Anal-

ogous to the localization network, the input images of the

part stream are in doubled resolution 454 × 454 so that the

respective receptive fields are not too large to model object

parts; forwarding the network to conv5 layer generates out-

put feature maps of size 27 × 27. By far, the computation

of all object parts is completely shared.

After performing the shared feature extraction proce-

dure, the computation of each object part is then partitioned

through a part crop layer to model part-specific classifica-

tion cues. For each part, the part crop layer extracts a local

neighborhood region centered at the detected part location.

Features outside the cropped region are simply dropped. In

practice, we crop 6 × 6 neighborhood regions out of the

27× 27 conv5 feature maps to match the output size of the

object stream. The resultant receptive fields for the cropped

feature maps has a width of 243, given the receptive field

size of conv5 layers and the respective stride.

Object stream. The object stream utilizes bounding-box-

level supervision to capture object-level semantics for fine-

grained recognition. It follows the general architecture of

CaffeNet, in which the input of the network is a 227× 227
RGB image and the output of pool5 layer are 6× 6 feature

maps.

We find the design of the two-stream architecture in

PS-CNN analogous to the famous Deformable Part-based

Models [12], in which object-level features are captured

through a root filter in a coarser scale, while detailed

part-level information is modeled by several part filters at a

finer scale. We find it critical to measure visual cues from

multiple semantic levels in an object recognition algorithm.

Dimension reduction and fully connected layers. The

aforementioned two-stream architecture generates an in-

dividual feature map for each object part and bounding

box. When conducting classification, they serve as an over-

complete set of CNN features from multiple scales. Follow-

ing the standard CaffeNet architecture, we employ a DNN

including three fully connected layers as object classifiers.

The first fully connected layer fc6 now becomes a part con-

catenation layer whose input is generated by stacking the

output feature maps of the part stream and the object stream

together. However, such a concatenating process requires

M + 1 times more model parameters than the original fc6

layer in CaffeNet, which leads to a huge memory cost.

To reduce model parameters, we introduce a 1×1 convo-

lutional layer termed conv5 1 in the part stream that projects

the 256 dimensional conv5 output to 32-d. It is identical to

a low-rank projection of the model output and thus can be

initialized through standard PCA. Nevertheless, in our ex-

periments, we find that directly initializing the weights of

the additional convolution by PCA in practice worsens the

performance. To enable domain-specific fine-tuning from

pre-trained CNN model weights, we train an auxiliary CN-

N to initialize the weights for the additional convolutional

layer.

Let Xc ∈ R
N×M×6×6 be the cth 6 × 6 cropped region

around the center point (h∗

c , w
∗

c ) from conv5 1 feature maps

X ∈ R
N×M×27×27, where (h∗

c , w
∗

c ) is the predicted loca-

tion for part c and N is the number of output feature maps.

The output of part concatenation layer fc6 can be formulat-

ed as:

fout(X) = σ(

M
∑

c=1

(W c)TXc), (3)

where W c is the model parameters for part c in fc6 layer,

and σ is an activation function.

We conduct the standard gradient descent method to train

the classification network. The most complicated part for

computing gradients lies in the dimension reduction layer

due to the impact of part cropping. Specifically, the gradi-

ent of each cropped part feature map (in 6×6 spatial resolu-

tion) is projected back to the original size of conv5 (27×27
feature maps) according to the respective part location and

then summed up. Note that the proposed PS-CNN is im-

plemented as a two stage framework, i.e. after training the

FCN, weights of the localization network are fixed when

training the classification network.

4. Experiments

We present experimental results and analysis of the pro-

posed method in this section. Specifically, we will evaluate

the performance through four different aspects: localization

accuracy, classification accuracy, inference efficiency, and

model interpretation.

4.1. Dataset and implementation details

Experiments are conducted on the widely used fine-

grained classification benchmark the Caltech-UCSD Bird-
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part throat beak crown forehead right eye nape left eye back

APK 0.908 0.894 0.894 0.885 0.861 0.857 0.850 0.807

part breast belly right leg tail left leg right wing left wing overall

APK 0.799 0.794 0.775 0.760 0.750 0.678 0.670 0.866

Table 1. APK for each object part in the CUB-200-2011 test set in descending order.

Figure 4. Typical localization results on CUB-200-2011 test set. We show 6 of the 15 detected parts here. They are: beak (red), belly

(green), crown (blue), right eye (yellow), right leg (magenta), tail (cyan). Better viewed in color.

s dataset (CUB-200-2011) [44]. The dataset contains 200
bird categories with roughly 30 training images per catego-

ry. In the training phase we adopt strong supervision avail-

able in the dataset, i.e. we employ 2D key point part an-

notations of altogether M = 15 object parts together with

image-level labels and object bounding boxes.

The proposed Part-Stacked CNN architecture is imple-

mented using the open-source package Caffe [16]. Specif-

ically, bounding-box cropped input images are warped to a

fixed size of 512× 512, randomly cropped into 454× 454,

and then fed into the localization network and the part

stream in the classification network as input. We employ

a pooling layer in the object stream that downsamples the

454× 454 input to 227× 227 to guarantee synchronization

between the two streams in the classification network.

4.2. Localization results

As the localization results in our method are directly de-

livered to the classification network at feature-map-level,

we do not intend to achieve accurate keypoint localization at

pixel-level but instead focus on a rougher correctness mea-

sure. The localization correctness is quantitatively assessed

using APK (Average Precision of Key points) [50]. Follow-

ing [24], we consider a key point to be correctly predicted

if the prediction lies within a Euclidean distance of α times

the maximum of the bounding box width and height com-

pared to the ground truth. We set α = 0.1 in all the analysis

below.

The adopted FCN architecture in PS-CNN achieves a

reasonably inspiring 86.6% APK on the test set of CUB-

200-2011 for 15 object parts. Specifically, the additional 1×

BBox only +2 part +4 part +8 part +15 part

69.08 73.72 74.84 76.63 76.41

Table 2. The effect of increasing the number of object parts on the

classification accuracy.

1 convolutional layer and the employed Gaussian smooth-

ing kernel delivers 1.5% and 2% improvements over the re-

sults using standard five convolutional layers in AlexNet,

respectively.

Furthermore, we present per part APKs in Table 1. An

interesting phenomenon here is that parts residing near the

head of the birds tend to be located more accurately. It turns

out that the birds’ head has relatively more stable structure

with less deformations and lower probability to be occlud-

ed. On the contrary, parts that are highly deformable such

as wings and legs get lower APK values. Figure 4 shows

typical localization results of the proposed method.

4.3. Classification results

We begin the analysis of classification results by a study

on the discriminative power of each object part. Each time

we select one object part as the input and discard the com-

putation of all other parts. Different parts reveal significant-

ly different classification results. The most discriminative

part crown itself achieves a quite impressive accuracy of

57%, while the lowest accuracy is only 10% for part beak.

Therefore, to obtain better classification results, it may be

beneficial to find a rational combination or order of objec-

t parts instead of directly ran the experiments on all parts

altogether.

1178



We therefore introduce a strategy that incrementally adds

object parts to the whole framework and iteratively trains

the model. Specifically, starting from a model trained on

bounding-box supervision only, which is also the baseline

of the proposed method, we iteratively insert object part-

s into the framework and re-finetune the PS-CNN model.

The number of parts inserted in each iteration increases ex-

ponentially, i.e., in the ith iteration, 2i parts are selected and

inserted. When starting from an initialized model with rela-

tively high performance, introducing a new object part into

the framework does not require to run a brand new classi-

fication procedure based on this specific part alone; ideally

only the classification of highly confusing categories that

may be distinguished through the new part will be impact-

ed and amended. As a result, this procedure overcomes the

drawback raised by the existence of object parts with lower

discriminative power. In our implementation, the ordering

of part inclusion is determined by its discriminative power

measured by the classification accuracy using each part on-

ly (see Supplementary for details). Table 2 reveals that as

the number of object parts increases from 0 to 8, the classi-

fication accuracy improves gradually and then becomes sat-

urated. Further increasing the part number does not lead to

a better accuracy; however, it does provide more resources

for performing explicit model interpretation.

Table 3 shows the performance comparison between PS-

CNN and existing fine-grained recognition methods. Since

the CNN architecture has a large impact on the recognition

performance, for fair comparison, we only compare results

reported on the standard seven-layer architecture. Deeper

models could surely lead to better accuracy, but also re-

sult in less efficiency. The complete PS-CNN model with

a bounding-box and 15 object parts achieves 76% accuracy,

which is comparable with part-based R-CNN [51], while

being slightly lower than several most recent state-of-the-

art methods [22, 21, 35] due to the effectiveness-efficiency

tradeoff. In particular, our model is over two orders of mag-

nitude faster than [51], requiring only 0.05 seconds to per-

form end-to-end classification on a test image. This num-

ber is quite inspiring, especially considering the number of

parts used in the proposed method. The efficiency makes it

possible for the proposed method to be conducted in real-

time, leading to potential applications in video domain.

4.4. Model interpretation

One of the most prominent features of the proposed

Part-Stacked CNN (PS-CNN) method is that it can pro-

duce human-understandable interpretation manuals for fine-

grained recognition. Here we detail the algorithm we use to

perform interpretation using the proposed method.

Different from [2] who directly conducted one-on-one

classification on object parts, the interpretation process of

the proposed method is conducted in a relatively indirec-

Method Train Anno. Test Anno. Acc.

Constellation [36] n/a n/a 68.5

Attention [48] n/a n/a 69.7

Bilinear-CNN [22] n/a n/a 74.2

Weak FGVC [54] n/a n/a 75.0

CNNaug [31] BBox BBox 61.8

Alignment [13] BBox BBox 67.0

No parts [18] BBox BBox 74.9

Bilinear-CNN [22] BBox BBox 80.4

Part R-CNN [51] BBox+Parts n/a 73.9

PoseNorm CNN [6] BBox+Parts n/a 75.7

POOF [2] BBox+Parts BBox 56.8

DPD+DeCAF[11] BBox+Parts BBox 65.0

Deep LAC [21] BBox+Parts BBox 80.2

Multi-proposal [35] BBox+Parts BBox 80.3

Part R-CNN [51] BBox+Parts BBox 76.4

PS-CNN (this paper) BBox+Parts BBox 76.6

Table 3. Comparison with state-of-the-art methods on the CUB-

200-2011 dataset. To conduct fair comparisons, for all the meth-

ods using deep features, we report their results on the standard

seven-layer architecture (mostly ALexNet except VGG-m for [22])

if possible. Note that our method achieves comparable results with

state-of-the-art while running in real-time.

t way. Considering that using each object part by itself

cannot lead to convincing classification results, we perform

the analysis for interpretation on a combination of bounding

box supervision and each single object part. The analysis is

performed in two ways: a “one-versus-rest” comparison for

denoting the most discriminative part to classify a subcat-

egory from all other classes, and a “one-versus-one” com-

parison to find out the classification criteria of a subcategory

with its most similar classes.

• The “one-versus-rest” manual for an object category

k. For every part p, we compute the summation of

prediction scores of the category’s positive samples.

The most discriminative part is then captured as the

one with the largest accumulated score:

p∗k = argmax
p

∑

i,yi=k

S
(p)
ip . (4)

• The “one-versus-one” manual obtained by computing

as the part which results in the largest difference of

prediction scores on two categories k and l. We first

pick up the respective two rows in the score matrix S,

and re-normalize it using the binary classification cri-

terion as S′. Afterwards, the most discriminative part

is given as:

p∗k→l = argmax
p

(
∑

i,yi=k

S
′(p)
ip +

∑

j,yj=l

S
′(p)
jp ) (5)
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crown (0.9382) back (0.9268) belly (0.9220) 

vs. 

Green 

Kingfisher 

crown (0.9435) forehead (0.9327) nape (0.9317) 

left eye (0.9995) left leg (0.9994) forehead (0.9993) 

Similar Class Comparison Predict Class Test Image 

right eye belly 

Important Parts 

vs. 

Belted 

Kingfisher 

vs. 

Blue 

Jay  Pied 

Kingfisher 

part 
class 

part 
class 

part 
class 

Figure 5. Example of the prediction manual generated by the proposed approach. Given a test image, the system reports its predicted class

label with some typical exemplar images. Part-based comparison criteria between the predicted class and its most similar classes are shown

in the right part of the image. The number in brackets shows the confidence of classifying two categories by introducing a specific part.

We present top three object parts for each pair of comparison. For each of the parts, three part-center-cropped patches are shown for the

predicted class (upper rows) and the compared class (lower rows) respectively.

The model interpretation routine is demonstrated in Fig-

ure 5. When a test image is presented, the proposed method

first conducts object classification through the PS-CNN ar-

chitecture. The predicted category is presented by a set of

images in the dataset that are closest to the test image ac-

cording to conv5 1 outputs. Except for classification result-

s, the proposed method also presents classification criteria

for distinguishing the predicted category from its most simi-

lar neighbor classes based on object parts. Again we use the

output of conv5 1 layer but after performing part cropping

to retrieve nearest neighbor part patches of the input test im-

age. The procedure described above provides an intuitive

visual guide for distinguishing fine-grained categories.

5. Conclusion

In this paper, we proposed a novel model for fine-grained

recognition called Part-Stacked CNN. The model exploited

detailed part-level supervision, in which object parts were

first located by a fully convolutional network, following by

a two-stream classification network that explicitly captured

object-level and part-level information. Experiments on the

CUB-200-2011 dataset revealed the effectiveness and effi-

ciency of PS-CNN, especially the impact of introducing ob-

ject parts on fine-grained visual categorization tasks. Mean-

while, we have presented human-understandable interpreta-

tions of the proposed method, which can be used as a visual

field guide for studying fine-grained categorization.

We have discussed the application of the proposed Part-

Stacked CNN on fine-grained visual categorization with

strong supervision. In fact, PS-CNN can be easily gener-

alized for varied applications. Examples include:

1) Discarding the requirement of strong supervision. In-

stead of introducing manually-labeled part annotations for

generating human-understandable visual guides, one can al-

so exploit unsupervised part discover methods [18] to define

object parts automatically, which requires far less human la-

beling effort.

2) Attribute learning. The application scenario of PS-

CNN is not restricted to FGVC. For instance, performance

of online shopping [25] could definitely benefit from cloth-

ing attribute analysis from local parts provided by PS-CNN.

3) Context-based CNN. The role of local “parts” in PS-

CNN is interchangeable with global contexts, especially for

objects that are small in size and have no obvious object

parts, such as volleyballs or tennis balls.
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