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Abstract

How to avoid ambiguity is a challenging problem for

conic-based homography estimation. In this paper, we ad-

dress the problem of homography estimation from two sep-

arate ellipses. We find that any two ellipses have a unique

common self-polar triangle, which can provide three line

correspondences. Furthermore, by investigating the loca-

tion features of the common self-polar triangle, we show

that one vertex of the triangle lies outside of both ellipses,

while the other two vertices lies inside the ellipses sepa-

rately. Accordingly, one more line correspondence can be

obtained from the intersections of the conics and the com-

mon self-polar triangle. Therefore, four line correspon-

dences can be obtained based on the common self-polar

triangle, which can provide enough constraints for the ho-

mography estimation. The main contributions in this paper

include: (1) A new discovery on the location features of

the common self-polar triangle of separate ellipses. (2) A

novel approach for homography estimation. Simulate ex-

periments and real experiments are conducted to demon-

strate the feasibility and accuracy of our approach.

1. Introduction

In computer vision, homograhy estimation arises in

many situations [6], such as camera calibration [26], 3D

reconstruction [2, 8], visual metrology [15], stereo vision

[16] and scene understanding [1, 17]. The definition of ho-

mograhy described in [10] is that a homography is an in-

vertible mapping from P2 to itself such that three points lie

on the same line if and only if their mapped points are also

collinear. The purpose of homography estimation is to find

the mapping matrix. In order to recover the matrix, object

correspondences are needed. Usually, there are three popu-

lar types of objects used in homography estimation, which

are points, lines and conics [6]. In this paper, we are in-

terested in conics. Conics are widely used in computer vi-

sion [14, 18] due to two reasons: (1) They are well studied

in mathematics and can be represented by a simple matrix.

(2) They can be detected and estimated robustly by exist-

ing mature algorithms. In order to estimate homography

from conics, Sugimoto presented a direct conic based ho-

mography estimation method in [21], but it requires seven

conic correspondences and it has to solve the problem of

ambiguity by conducting back projection. Later, by con-

sidering two conics together, Kannala et al. [13] presented

an algorithm for the minimal case of a pair of conic cor-

respondences, which leads to 4 solutions. In [19], Roth-

well et al. showed a straightforward approach based on the

fact that any two conics always intersect in 4 points (real or

complex). Unfortunately, their method has 24 solutions and

involves in solving quartic equations. Especially, they ad-

dressed the difficulty in matching points from two separate

ellipses. They pointed out that there is no way to order the

complex points. Even the intersections pairs are complex

conjugate pairs, there are still 8 combinations. On this mat-

ter, one might use quasi-affine invariant [25] or use absolute

signature and limit points [9] to distinguish the two complex

conjugate pairs. However, It still results in 4 combinations.

The reason is that for each pair of complex conjugate points,

there are two combinations. In [4], Chum and Matas found

the homograhpy by first order Taylor expansions at two (or

more) points from two or more correspondences of local el-

liptical features. However, the prerequisite of their method

is that the metric information of at least two point corre-

spondences should be known. In [5], Conomis recovered

the homography by using the pole-polar relationship. Their

approach first finds the correspondences using the common

poles. Further points are computed by intersecting the polar

of the pole with the conic. However, point order is not pre-

served under pojective transformation. To solve this prob-
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Figure 1. Two separate ellipses.

lem, an affine ordering strategy is proposed, but Chum and

Matas [4] pointed out the strategy does not often provide

correct correspondence of the poles, which leads to a po-

tentially high number of possible homgoraphy models. In

[24], Wright et al. recovered the homography using four

bitangent lines of two ellipses. The problem is the same as

using four intersection points. To avid ambiguity, lots of

assumptions should be made in their method.

In this paper, we focus on two separate ellipses (see

Fig.1). We find that homography estimation from separate

conics has real application. For instance, in [24], Wright

et al. used it in forensic blood splatter reconstruction. We

try to solve this problem using the common self-polar tri-

angle of conics. Previously, the common self-polar trian-

gle has been used in camera calibration [11, 12] and po-

sition relationship discussion [22]. So far, to the best of

our knowledge, there are no studies on the location features

of the common self-polar triangle of separate ellipses. We

find that any two separate ellipses have a unique common

self-polar triangle, which can provide three line correspon-

dences. Furthermore, by investigating the location features

of the common self-polar triangle, we show that one more

line correspondence can be obtained from the intersections

of the conics and the common self-polar triangle. In to-

tal, four line correspondences can be obtained based on the

common self-polar triangle, which can provide enough con-

straints for the homography estimation. Our approach has

three advantages: (1) No requirements on the physical in-

formation of the patterns and the camera. (2) All compu-

tations involved are linear. (3) No ambiguity on the solu-

tion. To evaluate our approach, we conduct simulate exper-

iments and real experiments, whereby accurate results are

achieved.

Note that our approach is different from [5], even we

both use the pole-polar relationship. Paper [5] has not ex-

plored the location features of the common poles and they

need to carefully order the points when they try to find more

point correspondences by intersecting the polar with the

conics. In our approach, we explore the location feature

of the common self-polar triangle, and four line correspon-

dences can be determined easily, efficiently and without any

ambiguity. Our contribution in this paper includes: (1) A

new discovery on the location features of the common self-

polar triangle of separate ellipses. (2) A novel approach for

homography estimation.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly introduces related notations and theorems.

Section 3 discusses the location features of the common

self-polar triangle of separate ellipses. Section 4 describes

homography estimation method. Section 5 shows the exper-

imental results on synthetic and real data sets. Finally, the

concluding remarks are drawn in Section 6.

2. Preliminaries

2.1. Homography

Let (x,x
′

) be a point correspondence from two images

of the same scene plane. In the homogenous coordinate sys-

tem, the homography between these two images can be ex-

pressed as

s [x
′

y
′

1]T=





h1 h2 h3

h4 h5 h6

h7 h8 h9



[x y 1]T (1)

or

sx
′

=Hx, (2)

where, H is usually a non-singular 3 by 3 homogenous

matrix. H has 8 degrees of freedom, which can be esti-

mated from four point correspondences(no three points are

collinear).

Let line l go through x in the first image and line l
′

go

through x
′

in the second image. Due to the duality princi-

ple [10] about points and lines, the mapping process can be

expressed as

sl=HTl
′

. (3)

Similarly, at least four line correspondences are needed to

estimate the homography. In this paper, we will use the line

correspondences.

Let C1 and C2 be the images of conic C under two dif-

ferent views. The projective transformations are H1 and

H2 respectively. The imaged conics C1 and C2 can be ex-

pressed as

C1 = H1
−TCH1

−1

C2 = H2
−TCH2

−1. (4)

Furthermore, we can obtain

C2 = (H2H1
−1)−TC1(H2H1

−1)−1. (5)

Thus, the homography from the first image to second image

is H2H1
−1 [10].
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Figure 2. △efg is a self-polar triangle with respect to conic C

when polars of e, f and g are lines fg, eg and ef, respectively.

2.2. Pole­polar Relationship and Self­polar Triangle

A point x and conic C define a line l = Cx. The line l

is called the polar of x with respect to C, and the point x is

the pole of l with respect to C.

If the poles of a conic form the vertices of a triangle and

their respective polars form its opposite sides, it is called

a self-polar triangle (see Fig.2). If a self-polar triangle is

common to two conics, it is called common self-polar trian-

gle (see Fig.6) [23].

In this paper, we will use two results from projective ge-

ometry [10, 7, 20] They are:

Result 1. If the pole lies on the conic, the polar is the

poles tangent line; If the pole lies outside the conic, the po-

lar intersects the conic in two points; If the pole lies inside

the conic, the polar has no real intersection points with the

conic.

Result 2. If two conics intersect in four distinct points,

they have one and only one common self-polar triangle.

3. Location Features of the Common Self-polar

Triangle of Separate Ellipses

Before exploring the location features of the common

self-polar triangle of separate ellipses, one proposition is

established below.

Proposition 1. Two separate ellipses have a unique com-

mon self-polar triangle.

Proof. Considering intersection points of two separate el-

lipses, it is easy to find that they have four imaginary inter-

section points, which fall into two conjugate pairs. Obvi-

ously, these four intersection points are distinct. According

to the Result 2 in Section 2.2, we can conclude that two

separate ellipses have a unique common self-polar triangle.

3.1. The Common Self­polar Triangle Location

Based on the fact that two separate ellipses have a unique

common self-polar triangle, we investigate the location fea-

tures and following results are achieved.

Property. Let two separate ellipses be C1 and C2, and let

points e,f and g be the vertices of their common self-polar

triangle. Then one vertex lies outside of both C1 and C2,

and the other two vertices lies inside C1 and C2 separately.

Figure 3. When the pole e is on the conic, the polar fg is the

tangent line.

Figure 4. When the pole e lies inside the conic, the polar fg is

outside the conic.

Figure 5. When the pole e lies outside the conic, there is one and

only one point from points f and g lies inside the conic.

Proof. Let C be a conic and △efg be a self-polar tri-

angle of C. Here, we proof that there is one and only one

vertex of △efg lies inside C (see Fig.2).

We readonly choose one vertex from the self polar tri-

angle and let it be point e. In terms of the definition of

self-polar triangle in Section 2.2, we know that the opposite

side of the pole is the polar, which means the polar of the

pole e is the line going through point f and point g. It is

easy to know point e can not lie on the conic. If e lies on

the conic, according to Result 1 in Section 2.2, the polar of

e will go through e. Then points e, f and g lies on the same

line (see Fig.3), which can not form a triangle.

Based on the above analysis, we know e either lies in-

side conic C or outside conic C. If point e lies inside C,

according to Result 1 in Section 2.2, the polar of point e has

no intersections with coinic C. Consequently, we have that

point f and point g lies outside C (see Fig.4).

If point e lies outside conic C, the polar of point e has

two intersections with conic C. Then there are two cases:

(1) Points f and g are both inside the conic. (2) One point

from points f and g lies inside the conic.

Let us consider the first case. If point f lies inside the
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Figure 6. △efg is the common self-polar triangle with respect to

conic C1 and C2.

conic, according to Result 1 in Section 2.2, the line (polar)

going through points e and g has no intersections with C,

which implies point g is outside the conic. Obviously, the

first case is not true. Then, it must be the second case (see

Fig.5).

Finally, we can conclude that for any self-polar triangle

of a conic, there is one and only one vertex of this triangle

lies inside the conic. Since △efg is the common self-polar

triangle of C1 and C2, Then △efg has one and only one

vertex lies inside C1, and has one and only one vertex lies

inside conic C2. The third vertex lies outside of both C1

and C2 (see Fig.6).

This Property is very useful. In Section 4, we will de-

rive one important line correspondence from it without any

ambiguity.

3.2. The Common self­polar Triangle Recovery

Let point x and line l are the common pole-polar of C1

and C2 . The following relationship should be satisfied:

x = C1
−1l

x = λC2
−1l, (6)

where λ is a scalar parameter. Subtracting the equations

in (6), we get (C1
−1 − λC2

−1)l = 0. By multiplying C2

on both sides, we obtain the following equation:

(C2C1
−1 − λI)l = 0. (7)

From the equation of (7), we find the common polars for

C1 and C2 are the eigenvectors of C2C1
−1. Since we have

proved that two separate ellipses have a unique self-polar

triangle, the eigenvalues should be distinct.

Similarly, we can find the vertices of the common self-

polar triangle by computing the eigenvectors of C2
−1C1.

Figure 7. When △efg is the common self-polar triangle of C11,

C21, one more line mn within the triangle can be uniquely deter-

mined by the intersections.

Figure 8. Line m
′

n
′

is the correspond line of mn in Fig.7.

4. Homography Estimation

4.1. Line Correspondences from the Common self­
polar Triangle

Let the first image of two separate ellipses C1 and C2 be

C11 and C21. Let the second image be C12 and C22. Let

the transformation from the first image to the second image

is H. We have:

C12 = H−TC11H
−1

C22 = H−TC21H
−1. (8)

By computing the product C22C12
−1, we obtain:

C22C12
−1 = (H−TC21H

−1)(H−TC11H
−1)−1

= H−T(C21C11
−1)HT.

(9)

Then,

C21C11
−1 = HT(C22C12

−1)H−T. (10)

We find that C21C11
−1 is similar to C22C12

−1. If λ and

l
′

are eigenpairs of C22C12
−1, according to the property

of similarity transformation, λ and HTl
′

are eigenpairs of

C21C11
−1. Based on this observation, we can find three

lines correspondences by matching the eigenvalues.
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Figure 9. Two separate ellipses generated by computer.

4.2. One More Line Correspondence

As Section 2 discussed, at least 4 line correspondences

are required to estimate the homography. Here, we demon-

strate one more line correspondence can be determined

without any ambiguity using the Property.

Let △efg be the common self-polar triangle ofC11, C21

(see Fig.7). Let △e
′

f
′

g
′

be the common self-polar triangle

of C12, C22 (See Fig.8). According to the Property in Sec-

tion 3, segment eg has one and only one intersection (point

m) with C11, and segment fg has one and only one inter-

section (point n) with C21. As we know, collinearity is an

invariant under projective transformation, so line mn in first

image and line m
′

n
′

(see Fig.8) are correspondence.

4.3. Homography Estimation Method

Based on the above analysis, the complete homography

estimation algorithm consists of the following steps:

Step 1: Extract conic C11, C21, and C12, C22 from two

images separately.

Step 2: Compute the common polars of C12 and C22. Let

three eigenpairs be (λ1, l
′

1
), (λ2, l

′

2
), and (λ3, l

′

3
).

Step 3: Compute (β, l) of C11, C21. Let three eigenpairs

be (β1, l1), (β2, l2), and (β3, l3).
Step 4: Find three line correspondences by matching the

values of the λ, β.

Step 5: Find one more line correspondences by connecting

intersections within the common self-polar triangle.

Step 6: Calculate homography matrix using existing algo-

rithms in [10].

5. Experiments and Results

5.1. Synthetic Data

In the computer simulations, we first generate two sepa-

rate ellipses (see Fig.9 ). Then we set two projective trans-

formation matrix to obtain two images of the separate el-

lipses. We choose 100 points on each ellipse image, and

Gaussian noise with zero-mean and σ standard deviation is

added to these image points. Ellipses are fitted to these im-

ages using a least squares ellipse fitting algorithm, the com-

mon self-polar triangles are computed using the Equation

(7) in Section 3 (see Fig.10 and Fig.11). We vary the noise

100 120 140 160 180 200 220 240 260
60

80

100

120

140

160

180

200

Figure 10. The first image with the common self-polar triangle.

320 340 360 380 400 420 440 460

240

260

280

300

320

340

Figure 11. The second image with the common self-polar triangle.

G.T. 0 0.2 0.4 0.6

h1 1.2690 1.2690 1.2842 1.2771 1.2795

h2 0.3036 0.3036 0.3102 0.3145 0.3082

h3 215.6545 215.6545 214.7491 215.2049 215.0966

h4 0.1502 0.1502 0.1573 0.1545 0.1561

h5 1.4101 1.4101 1.4209 1.4211 1.4161

h6 147.9527 147.9527 147.2942 147.5542 147.5756

h7 0.0005 0.0005 0.0005 0.0005 0.0005

h8 0.0013 0.0013 0.0013 0.0013 0.0013

h9 1.0000 1.0000 1.0000 1.0000 1.0000

Table 1. Homography results with 0, 0.2, 0.4 and 0.6 pixels noise

0 0.2 0.4 0.6

e 0 0.1639 0.2756 0.7999

f 0 0.1729 0.1888 0.6566

g 0 0.3150 0.7704 1.9692

Table 2. Symmetric transfer error for three points with noise 0.2,

0.4 and 0.6 pixels.

level from 0 pixels to 0.6 pixels. For each noise level, we

conduct 1000 independent trials, and the final results are

shown in average (see Table 1). The ground truth (G.T.) is

calculated using the rules in Section 2.1.

From the results, we find that, when there is no noise,

the results is the same as the ground truth. When add noise,

errors for each parameters is very small.

In the second experiment, we just add noise on the sec-

ond image. The first image has no noise. We treat the ver-

tices e, f and g of the common self-polar triangle as fixed

points, then calculate the symmetric transfer error (STE)

[10]. The distance value are shown in Table 2. From the

results, we find errors are less than 2 pixels.

For both experiments, we also implement the algorithm

in [5]. By carefully ordering the points, the same results
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Figure 12. The first reference image: Two ellipses on one A4 pa-

per.

Figure 13. The second reference image:Two oval shaped plates

are achieved. Therefore, we do not list the same data in the

table.

5.2. Real Scene

We conduct two real experiments. In the first experi-

ment, we print out two ellipses on one A4 paper. To make

it not so ideal, we intentionally place something on the pa-

per. Especially, the ”Heart” shape is for the convenience to

check the performance of our method. In the second ex-

periment, we place two oval shaped plates on a desk. For

these two experiments, real images are taken with a Nikon

D300s camera. The image resolution is 2144 × 1424. The

images are taken from different viewpoints and the focal

lengths are different. The images of ellipses are extracted

using Canny’s edge detector [3], and ellipses are fitted to

these images using a least squares ellipse fitting algorithm.

One of the images is chosen as reference (see Fig.12 and

Fig.13). We use our presented approach to compute the ho-

mography for each image. Finally, we warp the images back

to the reference view. The results are listed in Figure 14 and

Figure 15.

Note that the considered perspective projections in this

paper are quasi-affine with respect to the ellipses and in one

case, the homography results may not be accurate. When

the scene contains two separate ellipses with a common axis

of symmetry, the image plane should not be parallel to the

scene when we capture an image, because they have one

common pole at infinity.

Figure 14. The left side are ellipse images taken from different

viewpoints. The right side are images warped back to the reference

view.

6. Concluding Remarks

We have investigated the location features of the com-

mon self-polar triangle of separate ellipses. Based on the

common self-polar triangle, four line correspondences can

be uniquely determined. Our approach is solidly derived

from existing theories in projective geometry. All steps in-

volved in our approach are linear and easy to implement.
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Figure 15. The left side are plate images taken from different view-

points. The right side are images warped back to the reference

view.

We believe that our method can be easily extended to the

case of more than two ellipses. In such case, any two

separate ellipses can provide four line correspondences, if

there are three or more ellipse correspondences, an over-

determined linear system can be obtained. Therefore, opti-

mization methods can be used to obtain more accurate re-

sults. In future work, we will apply this theory into other

distributions of two coplanar ellipses or circles.
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