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Abstract

Bird migration is a critical indicator of environmental

health, biodiversity, and climate change. Existing tech-

niques for monitoring bird migration are either expensive

(e.g., satellite tracking), labor-intensive (e.g., moon watch-

ing), indirect and thus less accurate (e.g., weather radar),

or intrusive (e.g., attaching geolocators on captured birds).

In this paper, we present a vision-based system for detecting

migrating birds in flight at night. Our system takes stereo

videos of the night sky as inputs, detects multiple flying birds

and estimates their orientations, speeds, and altitudes. The

main challenge lies in detecting flying birds of unknown tra-

jectories under high noise level due to the low-light environ-

ment. We address this problem by incorporating stereo con-

straints for rejecting physically implausible configurations

and gathering evidence from two (or more) views. Specif-

ically, we develop a robust stereo-based 3D line fitting al-

gorithm for geometric verification and a deformable part

response accumulation strategy for trajectory verification.

We demonstrate the effectiveness of the proposed approach

through quantitative evaluation of real videos of birds mi-

grating at night collected with near-infrared cameras.

1. Introduction

Bird migration is the regular seasonal, large-scale, of-

ten long-distance movement between breeding and winter-

ing grounds. Many species of bird migrate. Migration be-

havior is a critical indicator for evaluating environmental

health [24]. By identifying important stopover and winter-

ing locations, one can take action to save these key loca-

tions to protect endangered species. Scientists use a vari-

ety of methods to monitor bird migration, including satel-

lite tracking, weather radar, moon-watching, or attaching

geolocators on captured birds. However, these methods are

either expensive (e.g., satellite tracking), inaccurate because

they are indirect (e.g., weather surveillance radars), labor-

intensive and error-prone (e.g., moon-watching), or intru-

sive (e.g., geolocators). Moreover, these techniques only

crudely estimate the bulk density of migrating birds aloft.

Figure 2. An example of automatic bird detection in stereo se-

quences. Our system takes stereo videos of the night sky as inputs,

detects migrating birds in flight, and infers their orientation, speed,

and altitude in very low SNR.

We propose to use a vision-based approach as a comple-

mentary sensing modality to build a bird migration moni-

toring system. By setting up stereo cameras facing up to the

night sky, we can detect and track migrating birds in flight

illuminated from below by light pollution in the recorded

videos, as shown in Figure 2. Vision-based solutions offer

several advantages over existing techniques. First, we can

automatically and accurately count the number of individual

birds aloft along with detailed trajectory estimation such as

orientation, speed, and altitude. Such unprecedented accu-

racy in the reconstructed trajectories of individual birds may

help re-evaluate migration, locomotion and navigation the-

ories. Second, the estimated statistics could be used to cali-

brate other sensing modalities such as weather radar. Third,

low-cost digital cameras allow us to build large-scale, dis-

tributed monitoring systems that cover broad areas.

There are three main challenges in developing a robust

bird detection algorithm from videos. First, as migration

usually occurs at night, the recorded videos inevitably con-

tain substantial noise because of the low-light environment

— the birds are generally invisible to the naked eye in the

sky unless they pass in front of an illuminated object such

as the moon. We illustrate this using sample frames from

three video sequences in Figure 1. Second, depending on

the species, migrating birds fly at altitudes ranging from

several hundred feet to two miles. If the lens and camera

provide an adequate field of view, the imaged bird may span

only 1-2 pixels in a frame. This suggests that motion is the

only reliable cue for detecting a bird. Third, efficient algo-

rithms are required for large-scale deployment.

Several methods have been proposed to detect small ob-
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Figure 1. Detecting migrating birds from noisy image sequences. Each row shows a set of frames from a video sequence. From top to

bottom, the sequences shown here have increasing levels of difficulty. Most of the bright spots in the images are stars. Color boxes indicate

the birds in the first and the last frame of each sequence. Because of the low SNR and small size of high-flying birds (1-2 pixels), detection

is very difficult, and often impossible, when looking at individual frames. It is only by detecting motion in the video stream that the human

perceptual system can identify and track most birds. Similarly, the detection algorithm can only detect the more difficult high-flying birds

by looking at the full video sequence and by simultaneously using stereo constraints from both cameras. Results are best viewed on a

high-resolution display with adequate zoom level.

jects in image sequences under different problem contexts.

In Automatic Target Recognition (ATR) [11, 36] the pres-

ence of the target is detected either using simple frame dif-

ferencing, filter responses, or matching against a known

template and then tracking over time. Similarly, in ridge

detection in three-dimensional volumetric data (e.g., ves-

sel extraction [28]), the ridge is often detected using a pre-

defined set of oriented filters. The common drawback of

these approaches is that the detection is mostly performed

locally. These techniques are thus not directly applicable

to our problem due to the extremely low SNRs in our case.

Recent methods address this issue by designing filter banks

to improve detection of faint signals [22, 23, 16, 17] or by

searching a large set of curves [2, 32]. However, most of

these algorithms, designed specifically for 2D images, are

computationally infeasible for 3D image data. In multi-

object tracking, several algorithms have been proposed to

track objects in 3D using stereoscopy [35, 3].

In general, the problem of target tracking can be divided

into four main categories: 1) Large objects in bright light

(e.g., tracking cars, pedestrians, faces in daylight). 2) Small

objects in bright light (e.g., meteor streaks in sky surveys,

planes with lights at night or in daylight at a great distance,

rockets/missiles that are bright in IR). 3) Large objects in

dim light (e.g., people detection and tracking at night un-

der surveillance illumination). 4) Small objects in low light

(e.g., birds flying over 1 mile high at night illuminated by

light pollution). Unfortunately, a direct application of exist-

ing techniques does not suffice for our problem (category 4).

These techniques often pose tracking and trajectory recon-

struction as independent problems of frame-level target lo-

calization and cross-frame and cross-view data-association.

The target size and SNR in our case are so low that targets

cannot be reliably detected in individual frames.

In this paper, we tackle this problem using a two-stage

(a) Bird patches (b) Background patches
Figure 3. The difficulty of detection based on local image patches.

(a) 16 cropped local image patch along a manually labeled bird

trajectory. (b) 16 cropped random background patches. These

patches are virtually indistinguishable by the naked eye.

robust model fitting approach. In contrast to prior work that

aims at local detections in each frame, we aim at detecting

using domain knowledge and global reasoning. Our funda-

mental assumption is that the migrating birds do not signif-

icantly change course and speed over short temporal spans

(e.g., 5 seconds). We can thus cast the bird detection as

finding curved 3D ridges in a spatiotemporal volume. The

core detection algorithm consists of two main stages:

(1) Geometric verification: Given a large collection of

noisy local detections, we extend the RANSAC-based 3D

line fitting algorithm by explicitly incorporating stereo vi-

sion constraints. Specifically, we fit the model to both views

jointly, which offers several advantages over a straightfor-

ward application of RANSAC independently in each view.

First, the sample subset is used to determine the full bird

model including altitude, speed, orientation, and position.

Second, we can quickly reject a large number of physically

implausible model hypotheses by checking the disparity, the

temporal alignment, and extreme speed and altitude. Third,

our model hypothesis allows us to exploit simultaneously
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the detected foreground points from both view by com-

pensating the disparity. We set a loose threshold for line

fitting so that birds flying at time-varying speed or direc-

tions could also be detected. To the best of our knowledge,

while RANSAC has been extensively applied to two-view

robust correspondence problems (e.g., solving the funda-

mental matrix, homography), it is less explored in robust

model fitting (e.g., fitting 3D lines in volumetric data) by

incorporating multi-view inputs and constraints.

(2) Trajectory verification: In this step, we aim at verify-

ing the presence of the bird using guidance from geometric

verification. Given a small set of 3D line hypotheses, we

integrate the signals along the direction of the coarse 3D

trajectory while accounting for spatial uncertainties due to

time-varying speed, direction, and altitude. This is techni-

cally realized using the generalized distance transform to ef-

ficiently search over all possible spatial deformations. The

trajectory verification allows us to integrate all of the lo-

cal responses along the predicted trajectory, resulting in a

more discriminative signal for separating birds from noisy

background night sky and ranking hypothesis. This step is

critical for handling challenging low-SNR scenarios.

We make the following contributions in this paper:

1. We address a novel application domain using computer

vision algorithms. The vision-based system provides a

low-cost, accurate, and new sensing modality for mon-

itoring and studying bird migration.

2. We propose a RANSAC-based 3D line fitting algo-

rithm that explicitly incorporates stereo vision con-

straints. We demonstrate that such constraints are cru-

cial for robust model fitting in very low SNRs.

3. We account for birds flying with time-varying speeds

and directions using deformable part modeling. The

trajectory verification step allows us to gather all the

local responses along the predicted trajectory, resulting

in a discriminative signal for separating birds from the

noisy background night sky.

2. Related Work

Bird migration monitoring techniques. Scientists use

methods such as weather radar [15, 33, 19] and acoustic

sensors [31, 8, 18] to monitor migrating birds [9, 1, 13].

Radar networks can provide wide area coverage over 1000’s

of kilometers, but radar reflectivity data is difficult to in-

terpret and requires careful calibration as the data contain

many biological (birds, bats, and insects) and metorologi-

cal phenomena. Calibration often is based on a traditional

method for counting migrating birds: the use of a tele-

scope to count birds as they pass across the full moon. Al-

though moon-watching [29, 25] can provide direct visual

bird counts, it is labor-intensive, error-prone (e.g., when

multiple birds fly across), and only covers a very small por-

tion of the night sky (the moon is about 0.5 deg wide in the

sky). In contrast, our vision-based approach can accurately

detect birds, infer their orientations, speeds, altitudes, and

cover a large portion of the sky — a 5-10 degree FOV cov-

ers 250 to 1000× larger area than the moon.

Small target detection in image sequences. Detecting

and tracking small targets in infrared image sequences is

a long-standing problem in computer vision with numer-

ous military applications. These methods typically rely

on detecting the small targets locally, e.g., using frame-

differencing [12], max-mean/max-median filter [14], top-

hat transformation [5], or directional filters [4]. Local detec-

tions are then linked over time using sequential hypothesis

testing or motion models such as Kalman, particle filters, or

global optimization approaches [3, 35]. As our videos con-

tain a substantial amount of noise, local detections are not

reliable (as shown in Figure 3). Unlike previous approaches

that aim at getting correct local detections, we leverage top-

down models with global reasoning for robust detection.

The work most related to our work is that of Bal-

lerini et al. [7], which uses stereo vision to reconstruct 3D

positions of individual birds to study the collective behav-

ior of flocks of birds during the day. Our problem differs

from theirs because many birds migrate at night. The chal-

lenge thus lies in how to detect birds in very low SNRs re-

liably. We can perform detection only by doing detection

and tracking simultaneously so that detection is enabled by

additional constraints coming from tracking, and vice versa.

Ridge detection in three-dimensions. We can view our

problem as ridge detection in three-dimensional volumetric

data (i.e., spatiotemporal volume). Ridge detection tech-

niques often detect ridges using a pre-defined set of oriented

filters at multiple scales. However, the local filters are not

optimal for detecting faint signals in low SNR settings. Re-

cent efforts include designing image representation for fa-

cilitating faint signal detection [22, 23, 17] or detecting faint

curved edges in images [2, 32].

Geometric model fitting. Our work is related to classical

parametric shape fitting techniques in computer vision such

as RANSAC [21] and generalized Hough transform [6]. In

our problem context, Hough transform would need to con-

struct a 5-D parameter space, making the memory cost pro-

hibitively high. Our method uses a RANSAC-based algo-

rithm to perform line fitting in 3D point clouds (2D space

+ 1D time). The novelty lies in that we propose a sam-

ple selection approach for generating hypothetical inliers by

leveraging the stereo vision constraints.

3. Overview

Figure 4 illustrates the three main steps for detecting mi-

grating birds in flight. Given a pair of stereo videos, we
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Figure 4. Overview of the bird detection algorithm. Our algorithm consists of three main modules: (a) Foreground detection: using

statistical background modeling for moving object detection. (b) Geometric verification: RANSAC-based line fitting with stereo vision

constraints. The three red boxes indicate the selected hypothetical inliers. This strategy naturally handles disparity estimation and offer

computational efficiency by rejecting a large number of physically implausible configurations. (c) Trajectory verification: with the coarse

3D line fitting, we integrate weak signals along the predicted trajectory for both videos to verify if there is a bird. To account for birds

flying at time-varying speed and directions, we interpret the motion compensated local image patch as a “part” of an object and use the

generalized distance transform [20] for handling such spatial uncertainty. We detect the birds by thresholding the final response map.

first use classical statistical background modeling to detect

foreground candidates (Section 4.3). As shown in Figure 4,

the substantial number of outliers obscure the hidden curved

line. Second, we use a RANSAC-based 3D line fitting al-

gorithm to generate and verify hypotheses (Section 4.4).

We propose a sampling strategy that explicitly incorporates

stereo vision constraints. Such constraints are powerful be-

cause it allows us to reject a large portion of physically im-

plausible configurations, and thereby offers computational

efficiency when a large number of random samples are re-

quired due to the unusually high outliers ratio. We use a

coarse threshold to maintain high recall in detection. Third,

we use trajectory verification (Section 4.4) to integrate the

faint signals along the predicted trajectory from geometric

verification while accounting for spatial uncertainties. Un-

like RANSAC-based detection methods that use sparse de-

tection data (i.e., 3D point clouds), we exploit dense infor-

mation across the spatiotemporal volume. Through gath-

ering local evidence across a long temporal span, we get

a clean and discriminative signal that allows us to separate

birds from the noisy background with high precision.

4. Stereo-based Bird Detection

In this section, we describe the proposed method in de-

tail. We first present the local bird trajectory model by as-

suming a weak perspective camera model. We then briefly

describe pre-processing steps for rectifying videos of the

night sky by registering stars, followed by the core detec-

tion algorithm: (1) foreground detection, (2) geometry ver-

ification, and (3) trajectory verification.

4.1. Bird trajectory modeling

To model the coarse bird trajectory in a video, we make

the following two assumptions. First, we assume affine

camera models because the migrating birds in flight are rea-

sonably far away from the camera (with altitudes ranging

(a) Correspondence (b) Stereo rectification
Figure 5. Stereo image rectification using star registration. (a) Star

detection from a video frame, (b) Correspondence, (c) Stereo im-

age rectification.

from several hundred feet to two miles) compared with the

size of a bird. Second, we assume that birds fly at relatively

constant speed, orientation, and altitude during a short time-

frame (e.g., 5 seconds).

Denote the three-dimensional position in space of a bird

at time t as Pt = [Xt ,Yt ,Zt ]
⊤, we can express the imaged

position of the bird pt = [xt ,yt ]
⊤ as pt = M[P⊤

t ,1]
⊤, where

M ∈ R
2×4 is the camera projection matrix. Using the con-

stant speed, orientation, and altitute assumptions, we sim-

plify the 3D position Pt as Pt = P0 + t[Vx,Vy,0]
⊤, where P0

indicates the position at time t = 0, and Vx,Vy are the physi-

cal speeds in space. We can write down the imaged position

pt = p0 + t[vx,vy]
⊤, where vx,vy are the speed in the image

space. We can thus view this idealized bird trajectory as a

thin, straight ridge in the spatio-temporal video cube.

4.2. Stereo image rectification

Our system uses stereo vision to determine the altitude of

a flying bird from correspondence. To simplify the 2D cor-

respondence search to 1D, we first rectify the images from

two views so that all epipolar lines are parallel to the hori-

zontal axis. We follow the standard procedure for stereo im-

age rectification: (1) finding a set of correspondences in the

stereo pair of videos, (2) estimate the fundamental matrix
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[37], and (3) compute the rectifying matrices using [30].

For night sky images, we cannot apply the commonly

used local interest point and feature descriptor matching ap-

proaches to establish correspondences. Fortunately, mother

nature provides stars as markers. The two cameras are setup

to capture roughly the same patch of the sky, so we exploit

the imaged star positions for image registration. For each

video, we first apply a moving average filter over the tem-

poral axis to suppress the background noise. We then apply

a single-scale 2D Laplacian of the Gaussian (LoG) to locate

bright blob structures. After thresholding the LoG filter re-

sponse and non-maximum suppression, we obtain a set of

star positions (i.e., 2D point cloud) for each video.

With the detected star positions, we use the Iterative

Closest Point (ICP) algorithm [10] with an affine motion

model to find the transformation and inlier matches. How-

ever, as the stars are infinitely far away from the camera,

the correspondences from stars gives rise to a degenerated

case in fundamental matrix estimation. To eliminate this

degeneracy, we manually label the position of a flying bird

in several frames. We only need to do this manual labeling

once because we assume the cameras remain fixed through

the videos. It is possible to use the proposed automatic

flying bird detection to perform self-calibration (e.g., for

cases where the stereo camera setup cannot remain fixed

over time), but we leave that for future work.

We show in Figure 5(a) the detected starts in two views

(Red and Green) the correspondence from ICP in Blue line.

Figure 5(b) shows the rectified positions for the stars and the

manually labeled bird. The stars from two views align ac-

curately (as they are infinitely far) and the labeled birds fall

on horizontal lines. Note that the results shown here contain

star positions over 20 mins. The purpose of using this “star

trail” is to provide additional accuracy for registration.

4.3. Foreground detection

In this step, we look for local evidences for detecting fly-

ing birds. As imaged flying birds appear brighter than the

surrounding background (illuminated from below by light

pollution), the imaged bird trajectory can be seen as an in-

tensity ridge in the video sequence. The problem of bird

detection could be naturally cast as a ridge detection task in

a 3D spatiotemporal video cube. Ridge (and valley) detec-

tion have been extensively studied in computer vision and

image analysis with typical applications for detecting road

in aerial images and for detecting blood vessels in 2D reti-

nal or 3D magnetic resonance images. These methods often

rely on designing filters that respond to locally linear inten-

sity features followed by linking processes. However, these

methods cannot directly be applied to our problem. As our

videos have very low SNR, achieving accurate local detec-

tion would require evaluating a large collection of oriented

filters with large kernel sizes, and thus would not scale well

Figure 6. Foreground detection. (a) Sample foreground detection

plots. Flying birds in a video appear like curved lines in the spatio-

temporal volume. In this scattered plot, there are three curved

lines. (b) Projection of foreground detection onto X-Y, X-T, and

Y-T planes.

with large-scale video datasets.

For efficiency, we rely on top-down knowledge and

global reasoning for detecting dim flying birds and resort

to a simple statistical background modeling approach for

local foreground pixel detection. Specifically, we build a

per-pixel Gaussian model and compute the response of a

pixel by measuring the intensity deviation from the learned

model. We detect foreground pixels by thresholding the lo-

cal responses. We estimate the parameters of the per-pixel

Gaussian model (mean and variance) online using a pre-

defined learning rate. Note that while other more sophisti-

cated background modeling and subtraction techniques are

available, we did not observe substantial improvement. Fig-

ure 6 shows the three-dimensional (X-Y-T) scattered plot

of the foreground detection on West and East camera on a

video with a flock of three birds. Figure 6(b) shows the

projections of the 3D point cloud onto X-Y, Y-T, and X-T

planes, respectively. We could visually spot the three fly-

ing birds. The challenge, however, lies in how to handle the

high outliers ratio.

4.4. Geometric verification

Our coarse bird model (i.e., a straight line in a 3D video

cube) consists of 5 parameters, including an initial spatial

position in the image plane (2D), constant motion vectors

(2D), and disparity from stereo vision (1D). The goal of

geometric verification is to fit coarse bird models to the

3D point clouds with a significant portion of outliers from

the foreground detection step. The most widely used ro-

bust fitting algorithms are (1) Generalized Hough Trans-

form (GHT) and (2) RANSAC. We choose to perform geo-

metric verification using RANSAC because of the demand-

ing memory complexity in GHT for estimating 5D models.

A straightforward approach would be using RANSAC-

based 3D line fitting method independently for each video

and then solve the disparity by matching fitted lines in two

views after the models in each video are found. However,

such an approach does not exploit the available physical

constraints presented in the stereo videos. For example, the
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two corresponding 3D lines in the stereo pair should be par-

allel, having the same y-coordinate at all frames, and with

positive disparity values. To incorporate these constraints,

we propose a stereo-based 3D line fitting algorithm. Specif-

ically, of the detected foreground points from the stereo pair,

we select random subsets of three detected points to esti-

mate the bird model, where two points are drawn from one

video, and one point is drawn from the other video.

Figure 4(b) illustrates the three-point hypothetical inlier.

The proposed three-point subset sampling strategy offers

several advantages. First, we can fully determine the 5D

bird model using the selected three points. Second, we can

quickly reject a large collection of model hypotheses that

are not physically plausible by checking the disparity and

temporal alignment. Third, as we also have disparity in

the estimated model, we can simultaneously exploit the de-

tected foreground points from both videos by compensating

for the disparity.

We follow the standard RANSAC algorithm and count

the number of inliers (number of foreground points fall in-

side the 3D tube). We then apply the J-linkage clustering al-

gorithm [34] to group repeatedly sampled hypothesis. Once

we have the grouped model hypothesis, we perform least

squares fitting using all the inlier foreground points from

both videos to compute a more reliable bird model estima-

tion. We solve this refinement step iteratively. Given an

estimated disparity, we can solve the orientation using Sin-

gular Value Decomposition. In turn, we fix the orientation

and update the disparity using least-square fitting.

4.5. Trajectory verification

While geometric verification can efficiently detect fly-

ing birds by exploiting the stereo vision constraints, we ob-

serve a high false positive rate due to inevitable noisy fore-

ground detections. We address this issue by integrating sig-

nals along the bird’s trajectory. Unlike geometric verifica-

tion that fit models to sparse foreground candidates, trajec-

tory verification exploits dense information across the entire

video cube.

One way to achieve this is to use the corresponding

matched filter that computes the average local response

along its trajectory. However, the actual bird trajectory may

not be a perfect 3D straight line in the video because the

bird may not fly along the same direction or maintain con-

stant speed and altitude. Simply using the estimated coarse

bird model to filter the videos is clearly sub-optimal as spa-

tial misalignments lead to blurry accumulated response.

We address this problem by allowing the bird trajectory

to be “deformed” as illustrated in Figure 7. We interpret the

bird response at the predict position using the coarse model

at a frame as the local response for a “part”. The detection

of the bird can then be cast as the detection of a deformable

part model. Specifically, we evaluate the score of a small

Figure 7. Trajectory verification. Given a 3D line model, we gather

the spatial patches along the coarse trajectory from T = 1 (when

the bird enters the frame) to T = N (when the bird leaves the

frame). These local responses are noisy and misalignment due

to time-varying speed and directions. We transform the responses

to account for spatial uncertainty.

window (e.g., 15 × 15) as

score(x,y)=
Nt

∑
t=1

max
dx,dy

[

Rt (xt +dx,yt +dy)−α

(

dx2 +dy2
)]

,

where Rt is the response map for foreground object, (xt ,yt)
is the predicted position at time t using the hypothesized

3D line from the geometric verification step, and α is the

weights for allowing different levels of spatial deformation.

As we also have the disparity estimation, we aggregate the

scores from two views. We use the Generalized Distance

Transform [20] to efficiently search over all possible de-

formations through time. These transformed responses can

then be added together and ranked for verification.

5. Experimental Results

5.1. Implementation details

In foreground detection, we classify a pixel as a fore-

ground if its intensity is greater than the mean background

intensity by 2.75 standard deviations. In geometric veri-

fication, we keep model hypotheses with at least 5 inliers

and reject the rest. In trajectory verification, we use 15×15

windows and set the spatial deformation parameter α = 0.5.

We fix these parameters throughout all experiments.

We process a video in a mini-batch mode, by dividing a

long video sequence into a set of overlapping five-second

sequences with a one-second interval. We detect birds in

each video clip and cluster these detections in the nearby

clips to generate our final results. In a video with frame rate

30 fps, we have in total 150 frames. For processing one
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Table 1. Quantitative performance

Method Precision Recall

Geometric verification only 6.08% 83.10%

Geometric and Trajectory verification 97.30% 83.72%

5 second video clip, our MATLAB implementation takes 7

seconds on a PC with 1.9GHz and 8 GB memory. The data

and source code are available on the project website 1.

5.2. Evaluation on real videos

To evaluate the proposed method, we have developed a

prototype stereo video system to capture videos of migrat-

ing birds at night. In what follows, we present the data col-

lection steps and our results on real videos.

Data collection We use two low-light near-IR mono in-

dustrial VGA cameras to capture the stereo video. We chose

the cameras because of their superior low-light sensitivity

(10k–100k × more sensitive than consumer video cameras).

The cameras have a spatial resolution of 640× 480 pixels.

We use a pair of 50 mm lenses and set the two cameras on

tripods facing the sky with a two-meter baseline. We cap-

tured hours of stereo video on different nights and selected

a 40-minutes long video from Spring migration for testing.

Quantitative results To evaluate performance, we devel-

oped a Graphical User Interface to allow experts to anno-

tate the birds flying across video frames. In total, 86 birds

were found in the video. A majority of the birds head North

+−20 degrees. Among the 86 annotated birds, our method

detects 74 of them, with two false positives and 12 missed

detections. In Table 1, we show the quantitative perfor-

mance of our algorithm. When using geometric verification

only, we achieve 83.10% in recall. However, precision is

very poor, with only 6.08%. Coupled with trajectory ver-

ification, precision rises above 95% with 83% recall. The

automatic system detects 9 birds missed by the experts.

We further evaluate the relative contributions from (1)

fusing information from two views and (2) using the de-

formable part model to account for the inevitable spatial un-

certainty when using real videos of birds migrating at night.

Specifically, we report the precision and recall values using

the four variants. One View: use only the video from the

West camera. Two Views: use both West and East videos.

Without deformation: did not transform the scores in each

local image patch. With deformation: use the generalized

distance transform to allow spatial uncertainty.

To make the contribution of each term clear, Figure 8

shows the precision and recall of these four variants using a

version of the system that does no post-processing to reduce

1https://sites.google.com/site/jbhuang0604

Figure 8. Precision and recall of four variants of the proposed tra-

jectory verification approach on real videos.

false detections. In cases of integrating signals along the es-

timated trajectory (from geometric verification) in one view,

both the precision and recall improve when we account for

the spatial deformation. When using two views without ac-

counting for the spatial deformation, we found that the re-

call drops significantly. We attribute the performance degra-

dation to the imperfect disparity estimation between the two

views. Integrating scores from two views without taking the

spatial uncertainty into account, the results suggest that the

algorithm may not be able to accumulate the weak signals

due to the misalignment, and, therefore, fails to detect dim

birds. Overall, the best performance is achieved by taking

advantage of the stereo constraint while also allowing for

deformation to account for spatial uncertainty.

Qualitative results In Figure 9, we show detection results

in a variety of scenarios to demonstrate the effectiveness

of the proposed approach. For example, our method can

detect birds flying at altitudes ranging from 200 meters to

more than 2,500 meters as well as at different directions

and speeds. We can also handle multiple birds flying across

the video frame. Unlike existing techniques that can only

detect the presence of the birds, the direct visual analysis

provides detailed measurements about the trajectory of in-

dividual birds. We believe such information may provide

valuable insights about the behavior of migrating flocks.

5.3. Discussion

Limitations One potential problem and limitation in eval-

uating the performance on real videos is that the groundtruth

annotations are not available, and the human visual sys-

tem may not be able to detect very dim, high-flying birds

from the video. In the future, we plan to investigate a

multi-modal solution (e.g., vision-based, acoustics-based,

and weather radar) toward this problem. Figure 10 shows

a few of the limitations of our method. First, as our fore-

ground detection is based on a statistical background mod-
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Figure 9. Detection results on real videos. Our system can handle diverse scenarios, e.g., single, multiple birds, birds flying parallel with

each other, or birds flying at very different altitudes.

(a) FP (cloud) (b) FP (noises) (c) TN (insect)
Figure 10. Interesting cases: (a): a false positive detection due to a

moving cloud. (b) a false positive detection due to noise. (c) a true

negative — the moving blob is an insect. Our system uses the es-

timated altitude to avoid confusion with high-flying objects (e.g.,

above 3000 meters) such as satellites or planes and low-flying ob-

jects (e.g., under 50 meters) such as insects.

eling approach, we are not able to handle dynamic back-

ground or sudden illumination changes. For example, in

Figure 10(a), our method falsely detect the moving cloud as

a bird. Second, even with the use of stereo-based constraints

for rejecting physically implausible detections (e.g., Fig-

ure 10(b)), our method may sometimes produce false posi-

tives due to the substantial noise in the video. One potential

solution is to use three or more cameras covering the same

patch of the night sky. Our framework could be extended to

multi-camera settings to further improve the detection per-

formance. Third, in Figure 10(c) we show that our method

is robust to other types of flying objects. The altitude es-

timation provides important cues for separating migrating

birds from high-flying objects (satellites or airplanes) and

low-flying objects (insects).

6. Conclusions

We presented the first stereo-vision-based approach for

monitoring migrating birds at night. From a pair of stereo

videos, we perform stereo image rectification by detecting

and registering stars. The core bird detection algorithm then

consists of three main steps. First, we use a statistical back-

ground modeling for foreground detection for each video.

This produces a noisy three-dimensional point cloud. Sec-

ond, we propose a novel RANSAC-based 3D line fitting

that explicitly takes into account stereo vision constraints.

Third, we apply deformable part modeling for handling the

spatial uncertainty of birds due to time-varying speed and

orientation. Through evaluation on real videos captured

from a physical setup, we demonstrate the effectiveness of

the proposed method. We believe the new capabilities will

make significant impact on computational ecology.

While our work address a particular application, the ap-

proach for detecting and tracking multiple small targets in

3D volumic data with very low SNR using multiple cameras

is general and potentially can be applied to many other im-

portant problems. In this work, we show how to leverage the

underlying physical constraints and domain knowledge to

achieve physically plausible detection that otherwise would

not be feasible due to the high level of noise.
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tion: evolution and determinants. Oikos, 103(2):247–260, 2003. 3

[2] S. Alpert, M. Galun, B. Nadler, and R. Basri. Detecting faint curved

edges in noisy images. In ECCV. 2010. 2, 3

[3] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelic,

S. Melillo, L. Parisi, F. Pellacini, E. Shen, E. Silvestri, et al. Greta-a

novel global and recursive tracking algorithm in three dimensions.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(12):2451–2463, 2015. 2, 3

[4] T.-W. Bae, F. Zhang, and I.-S. Kweon. Edge directional 2d lms filter

for infrared small target detection. Infrared Physics & Technology,

55(1):137–145, 2012. 3

[5] X. Bai and F. Zhou. Analysis of new top-hat transformation and the

application for infrared dim small target detection. Pattern Recogni-

tion, 43(6):2145–2156, 2010. 3

[6] D. H. Ballard. Generalizing the hough transform to detect arbitrary

shapes. Pattern recognition, 13(2):111–122, 1981. 3

[7] M. Ballerini et al. Interaction ruling animal collective behavior de-

pends on topological rather than metric distance: Evidence from

a field study. Proceedings of the National Academy of Sciences,

105(4):1232–1237, 2008. 3

[8] R. Bardeli, D. Wolff, F. Kurth, M. Koch, K.-H. Tauchert, and K.-H.

Frommolt. Detecting bird sounds in a complex acoustic environment

and application to bioacoustic monitoring. Pattern Recognition Let-

ters, 31(12):1524–1534, 2010. 3

[9] P. Berthold. Bird migration: a general survey, volume 12. Oxford

University Press, 2001. 3

[10] P. BESL and N. MCKAY. A method for registration of 3-d shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(2):239–256, 1992. 5

[11] B. Bhanu. Automatic target recognition: State of the art survey.

IEEE Transactions on Aerospace and Electronic Systems, (4):364–

379, 1986. 2

[12] S. D. Blostein and T. S. Huang. Detecting small, moving objects in

image sequences using sequential hypothesis testing. IEEE Transac-

tions on Signal Processing, 39(7):1611–1629, 1991. 3

[13] E. S. Bridge, K. Thorup, M. S. Bowlin, P. B. Chilson, R. H. Diehl,
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