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Abstract

In this paper, we address the task of natural language

object retrieval, to localize a target object within a given

image based on a natural language query of the object. Nat-

ural language object retrieval differs from text-based image

retrieval task as it involves spatial information about ob-

jects within the scene and global scene context. To address

this issue, we propose a novel Spatial Context Recurrent

ConvNet (SCRC) model as scoring function on candidate

boxes for object retrieval, integrating spatial configurations

and global scene-level contextual information into the net-

work. Our model processes query text, local image de-

scriptors, spatial configurations and global context features

through a recurrent network, outputs the probability of the

query text conditioned on each candidate box as a score for

the box, and can transfer visual-linguistic knowledge from

image captioning domain to our task. Experimental results

demonstrate that our method effectively utilizes both local

and global information, outperforming previous baseline

methods significantly on different datasets and scenarios,

and can exploit large scale vision and language datasets

for knowledge transfer.

1. Introduction

Significant progress has been made in object detection

in recent years; with the help of Convolutional Neural Net-

works (CNNs), it is possible to detect a predefined set of

object categories with high accuracy [8, 7], and the num-

ber of categories in object detection has grown over 10K to

100K with the help of domain adaptation [12] and hashing

[2]. However, in practical application scenarios, instead of

using a predefined fixed set of object categories, one would

often prefer to refer to an object with natural language rather

than use a predefined category label. Such natural language

query can include different types of phrases such as cat-

egories, attributes, spatial configurations and interactions

with other objects, such as “the young lady in a white dress
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Figure 1. Overview of our method. Given an input image, a text

query and a set of candidate locations (e.g. from object proposal

methods), a recurrent neural network model is used to score can-

didate locations based on local descriptors, spatial configurations

and global context. The highest scoring candidate is retrieved.

sitting on the left” or “white car on the right” in Figure 1.

In this paper, we address the problem of natural language

object retrieval: given an image and a natural language de-

scription of an object as query, we want to retrieve the ob-

ject by localizing the object in the image. Natural language

object retrieval can be seen as a generalization of generic

object detection and has a wide range of applications, such

as handling natural language commands in robotics where

the user may ask to a robot to pick up “the TV remote con-

trol on the shelf”.
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We frame natural language object retrieval as a retrieval

task on a set of candidate locations in a given image in this

paper, as shown in Figure 1, where candidate locations can

come from object proposal methods such as EdgeBox [33].

We observe that simply applying text-based image retrieval

systems on the image regions cropped from candidate loca-

tions for this task leads to inferior performance, as natural

language object retrieval involves spatial configurations of

objects and the global scene as context. For example, to de-

cide how likely an object in a scene corresponds to “the man

in a blue jacket sitting on the right in front of the house”, one

needs to look at both the object to determine whether it is

“the man” (category), “in blue jacket” (attribute) and “sit-

ting” (action), and its spatial configuration within the scene

to determine whether it is “on the right”, and the whole im-

age as global contextual information to determine whether

it is “in front of the house”. Although both text-based im-

age retrieval and natural language object retrieval involve

jointly modeling images and text, they are different vision

and language domains with domain shift from whole im-

ages to bounding boxes.

To address these issues, we propose the Spatial Context

Recurrent ConvNet (SCRC) model to learn a scoring func-

tion that takes the text query, candidate regions, their spa-

tial configurations and global context as input and outputs

scores for candidate regions. Inspired by the Long-term Re-

current Convolutional Network (LRCN) [4], an effective re-

current architecture for both image captioning and image re-

trieval, we use a two-layer LSTM network structure where

the embedded text sequence and visual features serve as

input to the first layer and the second layer, respectively.

However, we note that it is possible to build our model on

other recurrent network architectures such as [25, 31].

Compared with other types of visual-linguistic models

such as bag-of-words [27], one of the advantages of us-

ing a recurrent neural network as scoring function is that

the whole model can be easily learned end-to-end via sim-

ple back propagation, allowing visual feature extraction

and text sequence embedding to be adapted to each other,

and we show that it significantly outperforms a previous

method using bag-of-words. Another advantage is that it

is easy to utilize relatively large scale image-text datasets

from other domains like image captioning (e.g. MSCOCO

[23]) to learn a vision-language model, by first pretraining

the model on the image captioning task, and then adapting it

to natural language object retrieval task through fine-tuning.

One of the main challenges for natural language object re-

trieval is the lack of large scale datasets with annotated ob-

ject bounding box and description pairs. To address this

issue, we show that it allows us to transfer visual-linguistic

knowledge learned from the former task to the latter one

by first pretraining on the image caption domain and then

adapting it to the natural language object retrieval domain.

This pretraining and adaptation procedure improves the per-

formance and avoids over-fitting, especially when the object

retrieval training dataset is small.

2. Related work

Natural language object retrieval. Based on a bag of

words sentence model and embeddings derived from Ima-

geNET classifiers, [10] addresses a similar problem as ours

and localizes an object within an image based on a text

query. Given a set of candidate object regions, [10] gener-

ates text from those candidates represented as bag-of-words

using category names predicted from a large scale pre-

trained classifier and compares the word bags to the query

text. Other methods generate visual features from query text

and match them to image regions, e.g. through a text-based

image search engine [1] or learn a joint embedding of text

phrases and visual features. Concurrent with our work, [24]

also proposes a recurrent network model to localize objects

from given descriptions.

Grounding Objects from Image Descriptions. Given

an image and its description sentence, [18] aligns sentence

fragments to image regions by embedding the detection re-

sults from a pretrained object detector and the dependency

tree from a parser with a ranking loss. [17] builds on [18]

and replaces the dependency tree with a bidirectional RNN.

Canonical Correlation Analysis (CCA) is used in [26] to

learn a joint embedding of image regions and text snippets

to localize each object mentioned in the caption. [22] uses

a structure prediction model to align text to image and rea-

sons about object co-reference in text for 3D scene parsing.

Concurrent with this paper, [28] uses an attention model to

ground referential phrases in image descriptions by attend-

ing to regions where the phrases can be best reconstructed.

Image Captioning. Image captioning methods take

an input image and generate a text caption describing

it. Recently, methods based on recurrent neural networks

[32, 31, 25, 4] have shown to be effective on this task.

LRCN [4] is one of these recent successful methods and in-

volves a two-layer LSTM network with the embedded word

sequence and image features as input at each time step. We

use LRCN as our base network architecture in this work and

incorporate spatial configurations and global context into

the recurrent model for natural language object retrieval.

Image Retrieval. Text-based image retrieval systems se-

lect from a set of images an image that best matches the

query text. In image retrieval, a ranking function is learned

through a recurrent neural network [25, 4], metric learning

[13], correlation analysis [21] and other methods [6, 20].

It was shown in [4] that a probabilistic image captioning

model such as LRCN can also be used as an image retriever

by using the probability of the query text sequence condi-

tioned on the image p(Squery|I) generated by image cap-

tioning model as a score for retrieval.
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Figure 2. Our Spatial Context Recurrent ConvNet (SCRC) for natural language object retrieval. The recurrent network in our model

contains three LSTM units. Two CNN’s are used to extract local image descriptors and global scene-level contextual feature respectively.

Parameters in word embedding, word prediction and three LSTM units are initialized by pretraining on image captioning dataset.

3. Our model

In this section, we describe our Spatial Context Recur-

rent ConvNet (SCRC) model for natural language object

retrieval and the training procedure in details. At test time,

an image, a natural language object query and a set of can-

didate bounding boxes (e.g. from object proposal methods

such as EdgeBox [33]) are provided. The system needs to

select from the candidate set a subset of bounding boxes

that match the query text.

3.1. Spatial Context Recurrent ConvNet

Inspired by the architecture of LRCN [4], our Spatial

Context Recurrent ConvNet (SCRC) model for natural lan-

guage object retrieval consists of several components as il-

lustrated in Figure 2. The model has three Long Short-Term

Memory (LSTM) [11] units denoted by LSTMlanguage,

LSTMlocal and LSTMglobal, a local and a global Convo-

lutional Neural Network (CNN), a word embedding layer

and a word prediction layer. At test time, given an image

I , a query text sequence S and a set of candidate bounding

boxes {bi} in I , the network outputs a score si for the i-th

candidate box bi based on local image descriptors xbox on

bi, spatial configuration xspatial of the box with respect to

the scene, and global contextual feature xcontext.

In this work, the local descriptor xbox is extracted by

CNNlocal from local region Ibox on bi, and we use feature

extracted by another network CNNglobal on the whole im-

age Iim as scene-level contextual feature xcontext. The spa-

tial configuration of bi is an 8-dimensional representation

xspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox]
(1)

where wbox and hbox are the width and height of bi. We nor-

malize image height and width to be 2 and place the origin

at the image center, so that coordinates range from −1 to 1.

The words {wt} in the query text sequence S are rep-

resented as one-hot vectors and embedded through a lin-

ear word embedding matrix as Ewt, and processed by

LSTMlanguage as the input time sequence. At each time

step t, LSTMlocal takes in [h
(t)
language, xbox, xspatial] (con-

catenation of the three vectors, where h
(t)
language is the hid-

den state from LSTMlanguage), and LSTMglobal takes in

[h
(t)
language, xcontext]. Finally, based on h

(t)
local and h

(t)
global,

a word prediction layer predicts the conditional probability

distribution of the next word based on local image region

Ibox, whole image Iim, spatial configuration xspatial and

all previous words it have seen so far, as

p(wt+1|wt, · · · , w1, Ibox, Iim, xspatial)

= Softmax(Wlocalh
(t)
local +Wglobalh

(t)
global + r) (2)

where Wlocal and Wglobal are weight matrices for word pre-

diction and r is a bias vector. Softmax(·) is a softmax func-

tion over a vector to output a probability distribution.

We note that when setting Wlocal = 0 in Eqn. 2, our

Spatial Context Recurrent ConvNet (SCRC) model is equiv-

alent to the LRCN model [4] for image captioning and im-

age retrieval by only modeling p(S|Iim) to predict a text se-

quence S based on the whole image Iim while ignoring Ibox
and xspatial. This makes it possible to pretrain the model on

the image captioning in Section 3.2 to obtain a good param-

eter initialization for visual-linguistic modeling, and trans-

fer knowledge from large image captioning datasets.

We use VGG-16 net [30] trained on ILSVRC-2012

dataset [29] as the CNN architecture for CNNlocal and

CNNglobal and extract 1000-dimensional fc8 outputs as
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xbox and xcontext, and use the same LSTM implementation

as in [4], where the gates are computed as

it = σ(Wxixt +Whiht−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 + bf ) (4)

ot = σ(Wxoxt +Whoht−1 + bo) (5)

gt = tanh(Wxgxt +Whght−1 + bg) (6)

All the three LSTM units have 1000-dimensional state ht.

At test time, given an input image I , a query text S and

a set of candidate bounding boxes {bi}, the query text S

is scored on i-th candidate box using the likelihood of S

conditioned on the local image region, the whole image and

the spatial configuration of the box, computed as

s = p(S|Ibox, Iim, xspatial)

=
∏

wt∈S

p(wt|wt−1, · · · , w1, Ibox, Iim, xspatial)(7)

and the highest scoring candidate boxes are retrieved.

3.2. Knowledge transfer from image captioning

To exploit paired image-text data in image captioning

datasets, and to learn a good initialization of parameters in

word embedding, word prediction and three LSTM units,

we first pretrain our model on an image captioning dataset,

by restricting Wlocal = 0 in Eqn. 2, which is equivalent

to training a LRCN model [4]. We follow the procedure in

[4] for pretraining on image captioning. During pretraining,

the probability of ground truth image caption p(Sgt|Iim) is

maximized over the training image-sentence pairs, and the

whole network is optimized with standard Stochastic Gra-

dient Descent (SGD). We refer to [4] for the training details

on image captioning.

Since we restrict Wlocal = 0 in Eqn. 2 during pretrain-

ing, the parameters in LSTMlocal are not learned. To obtain

a good initialization of this unit, we copy those weights in

Eqn. 3 – 6 from LSTMglobal to LSTMlocal. The weights

over the extra 8 dimensions of xspatial are initialized with

zero. We also copy Wglobal to Wlocal to initialize word pre-

diction weights.

After pretraining on the image captioning task, the pa-

rameters in our model already encode useful knowledge

of word embedding and decoding and sequence prediction

based on image features. The knowledge is transferred to

the natural language object retrieval task in Section 3.3.

3.3. Training for object retrieval

After pretraining, we adapt the SCRC model to natu-

ral language object retrieval. In this paper, we assume

that the training dataset consists of N images, with each

image containing Mi (i = 1, · · · , N ) annotated objects,

and each object annotated by a bounding box and Ki,j

(i = 1, · · · , N , j = 1, · · · ,Mi) text descriptions (an ob-

ject can be described more than once with different descrip-

tions). At training time, each instance is an image-bounding

box-description tuple (Ii, bi,j , Si,j,k), where Ii is the whole

image, bi,j = [xmin, ymin, xmax, ymax] is the bounding box

of the j-th object and Si,j,k is a description text in natural

language such as “the black and white cat”.

Our model for natural language object retrieval can be

trained via maximizing the probability of the object de-

scription text in ground truth annotations conditioned on the

local image region Ibox and the whole image Iim as con-

text, which is analogous to training a generic object detec-

tion system. Many state-of-the-art generic object detectors

[8, 7] are built by turning object detection into a classifica-

tion problem on candidate bounding boxes produced either

from a sliding window or an object proposal mechanism,

and a classifier is trained by maximizing the probability of

ground truth object category label. In natural language ob-

ject retrieval, the description text of an object can be seen

as a generalized “label” of the object, and maximizing its

conditional probability is similar to training a “generalized

classifier” whose output is a sequence of word labels rather

than a single category label.

Given a natural language object retrieval dataset, we con-

struct all tuples (Ii, bi,j , Si,j,k) from the ground truth anno-

tations as training instances (multiple tuples are constructed

if there are multiple descriptions for the same object). For

each annotated object in the training set, an image patch

Ibox is cropped from the whole image Iim based on bound-

ing box of that object region, with its spatial configuration

xspatial constructed through Eqn. 1. We define the loss

function during training as

L = −

N∑

i=1

Mi∑

j=1

Ki,j∑

k=1

log(p(Si,j,k|Iboxi,j , Iimi, xspatiali,j
))

(8)

where N is the number of images, Mi is the number of

annotated objects in i-th image, Ki,j is the number of nat-

ural language descriptions associated with the j-th object

in that image, and p(Si,j,k|Iboxi,j , Iimi, xspatiali,j
) is com-

puted by Eqn. 7.

During training, the model parameters are initialized

from the pretrained network in Section 3.2, and fine-tuned

using SGD with a smaller learning rate, allowing the net-

work to adapt to natural language object retrieval domain.

The whole network is trained end-to-end via back propaga-

tion. Our model is implemented using Caffe [16] and our

code and data are available at http://ronghanghu.

com/text_obj_retrieval.

4. Experiments

We evaluate our method on different datasets from small

scale to relatively large scale. More experimental results
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can be found in the supplementary material or in [15]. Since

[10] solves a similar problem to our paper, we adopt it as our

baseline. In [10], a large scale fine-grained classifier of 7K

object classes is trained on ImageNET [3]. Each box in the

candidate set is classified into one of the 7K classes, and

a bag of words is extracted from the predicted object class

based on its ImageNET [3] synset containing category name

and synonyms. Then, the word bag is projected to a vector

space, and matched to the projected query text using cosine

distance to obtain a score. The sentence projection (embed-

ding) in [10] is predefined and the only training involved

in training the 7K object classifier. Note that [10] also pro-

poses an instance match model that relies on online APIs

at test time. As in this work we assume a self-contained

system without resorting to other APIs, we only use the cat-

egory model (CAFFE-7K) in [10] as our baseline.

As our recurrent architecture is inspired by LRCN [4],

which is shown to be effective for both image captioning

and image retrieval, we also compare our model to LRCN.

We use the LRCN model trained on MSCOCO [23] for im-

age captioning task as an object retriever by evaluating it

on candidate bounding boxes. Given an image I with a set

of candidate boxes and a query text Squery , we compute

p(Squery|Ibox), the probability of the query text Squery con-

ditioned on the local image region Ibox outputted by LRCN

as a score for each box in the candidate set, and retrieve

highest scoring candidates.

4.1. Object retrieval evaluation on ReferIt dataset

The ReferIt dataset [19] is the biggest publicly avail-

able dataset containing image regions with descriptions at

the time of writing. It contains 20,000 images from IAPR

TC-12 dataset [9], together with segmented image regions

from SAIAPR-12 dataset [5], and 120K annotated descrip-

tions for the image regions collected in a two-player game

that aims to make the image region identifiable from the

annotation. The ReferIt dataset also contains some am-

biguous (e.g. “anywhere”) and mistakenly annotated ex-

amples where the annotation does not correspond to any

object. To evaluate on this dataset, we split the 20,000

images (together with their annotations) into 10,000 for

training and validation and 10,000 for test, and construct

image-bounding box-description tuples on all annotated im-

age regions as training instances. There are 59,976 (image,

bounding box, description) tuples in the trainval set and

60,105 in the test set. In our experiments on this dataset,

we only use the bounding boxes of annotated regions during

training and evaluation. The bounding boxes are obtained

from the segmentation regions in SAIAPR-12 dataset cor-

responding to the clicks by annotators. Note that although

[19] introduces the ReferIt dataset, it does not propose a

baseline method for object retrieval based on text query.

As described in Section 3, we first pretrain a SCRC

model on MSCOCO dataset [23] for image captioning. The

training details such as hyper-parameters of SGD follow

[4]. After pretraining, we copy the weights in LSTM and

the word prediction layer to the local part of the network as

mentioned in Section 3.2. Then the pretrained SCRC model

is adapted to the natural language object retrieval task fol-

lowing the procedure in Section 3.3. The model is fine-

tuned on image-bounding box-description tuples in ReferIt

trainval set with back propagation.

Ablations. To test the effect of incorporating spatial

configurations xspatial and scene-level contextual feature

xcontext, we evaluate different setups during fine-tuning on

ReferIt. By setting xspatial and Wglobal to 0 during fine-

tuning and testing, the model can only learn to score a

box based on local image descriptors xbox from candidate

boxes, denoted by SCRC (w/o context, spatial). Similarly,

by setting Wglobal to 0, the model can learn a scoring func-

tion on xbox and xspatial but cannot utilize scene-level con-

text, denoted by SCRC (w/o context).

As a comparison, we directly trained a SCRC model

on ReferIt without first pretraining on MSCOCO, and set

xspatial and Wglobal to 0 during training and testing, de-

noted by SCRC (w/o context, spatial, transfer). The CNN

parameters in the model are initialized from VGG-16 net

[30] and other parameters are randomly initialized. In all

the training above, the whole SCRC model is trained end-

to-end with SGD, allowing visual feature extraction and tex-

tual sequence prediction to be optimized jointly.

At test time, all the 4 SCRC models mentioned above,

the bag-of-words model (CAFFE-7K) in [10] and LRCN

[4] as an object retriever on candidate boxes are compared

on the ReferIt test set. The LRCN model is trained on

MSCOCO dataset for image captioning as described in [4]

to learn a probabilistic generative model p(S|I), and we use

it to score a candidate region Ibox based on a text query

Squery by computing the probability of the text conditioned

on the local region, i.e. p(Squery|Ibox) as a baseline.

We evaluate with two testing scenarios: In the first sce-

nario similar to the experiment in [10], given an image and a

text query, the model is asked to retrieve the corresponding

image region from all annotated regions in that image. In

the second scenario, which is a harder task but closer to real

applications, given a text query the model retrieves an image

region from a set of candidate bounding boxes produced by

object proposal methods. A retrieved region is considered

as correct if it overlaps with ground truth bounding box by

at least 50% IoU. In this experiment, we use top 100 pro-

posals from EdgeBox [33] as our candidate box set.

Results. Table 1 shows the top-1 precision (the percent-

age of the highest-scoring region being correct) in the first

scenario where the candidate set is all annotated boxes in

the image. Note that CAFFE-7K cannot return informative

results when none of the words in query are in its category
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Method P@1-NR P@1

CAFFE-7K [10] 32.53% 27.73%

LRCN [4] - 38.38%

SCRC (w/o context, spatial, transfer) - 61.03%

SCRC (w/o context, spatial) - 64.09%

SCRC (w/o context) - 70.15%

SCRC - 72.74%

Table 1. Top-1 precision of our method compared with baselines

on annotated bounding boxes in ReferIt dataset. See Section 4.1

for details.

names (leading to an empty bag and same score for all re-

gions), whereas our SCRC model can always return deter-

ministic result since it can represent unknown words with

“<unk>”. Similar to [10], we evaluate with “P@1-NR”

corresponding to non-random top-1 precision computed on

the those informative results and “P@1” corresponding to

top-1 precision on all cases including non-informative re-

sults, where random guess is used. Results show that our

full SCRC model achieves the highest top-1 precision. In

Table 1, it can be seen that pretraining on image captioning,

adding spatial configuration, and adding scene-level context

all improve the performance, with adding spatial configu-

ration xspatial leading to the most significant performance

boost. This is no surprise, as spatial configuration not only

benefits in cases where spatial relationship is directly in-

volved in the query (e.g. “the man on the left”), but also

enables the network to learn a prior distribution of object

locations (e.g. “sky” is usually at the top of the scene while

“ground” is usually at the bottom).

Table 2 shows the result of the second scenario on 100

EdgeBox proposals, where “R@1” is the recall of the high-

est scoring box (the percentage of the highest scoring box

being correct), and “R@10” is the percentage of at least one

of the 10 highest scoring proposals being correct. We also

report “Oracle” (or equivalently “R@100”), the percentage

of at least one of all 100 proposals being correct, as an

upper-bound of all object retrieval systems in this scenario.

It can be seen that results in Table 2 follow the same trend as

in Table 1, with our full SCRC model achieving the highest

recall. Figure 4 shows examples of correctly retrieved ob-

jects at top-1 using 100 EdgeBox proposals, where the high-

est scoring candidate region from our SCRC model overlaps

with ground truth annotation by at least 50% IoU, and Fig-

ure 5 shows some failure cases, where retrieved top-1 can-

didate region fails to match ground truth.

By comparing “SCRC (w/o context, spatial)” and

“SCRC (w/o context, spatial, transfer)” in Table 1 and Ta-

ble 2, it can also be seen that the pretraining and adaptation

procedure described in Section 3 outperforms directly train-

ing on retrieval dataset, showing that pretraining allows the

model to transfer useful visual-linguistic knowledge from

image captioning dataset.

Method R@1 R@10

CAFFE-7K [10] 10.38% 26.20%

LRCN [4] 8.59% 31.86%

SCRC (w/o context, spatial, transfer) 14.53% 40.72%

SCRC (w/o context, spatial) 15.78% 42.54%

SCRC (w/o context) 17.68% 44.77%

SCRC 17.93% 45.27%

Oracle 59.38% 59.38%

Table 2. Performance of our method compared with baselines on

100 EdgeBox proposals in ReferIt dataset. See Section 4.1 for

details.

Also, our SCRC model outperforms the bag-of-words

CAFFE-7K model and LRCN model significantly. Com-

pared with our model, CAFFE-7K method suffers from in-

formation loss by first projecting image region to category

names and limited vocabulary drawn from predefined object

category names, and is not end-to-end trainable. Although

LRCN model trained on MSCOCO for image captioning

task is effective for text-based image retrieval as shown in

[4], directly running it as an object retriever on a set of can-

didate boxes results in inferior performance. This is because

object retrieval and image retrieval are different domains,

and LRCN model as a object retriever does not encode spa-

tial configuration or global context.

4.2. Object retrieval evaluation on Kitchen dataset

We also evaluate and compare our method with the base-

line model [10] on the same Kitchen dataset as used in

[10]. Kitchen is a dataset with 606 images sampled from

the kitchen/household sub-tree of ImageNET hierarchy [3],

with 10 different descriptions annotated for each image.

Since objects in this dataset almost occupy the entire im-

ages, instead of using retrievals on candidate object propos-

als boxes, in [10] the performance of the object retrieval

is evaluated at image-level. During testing, for each query

text, the candidate set consists of 11 images with ground

truth and 10 distractors. The distractors are sampled ei-

ther from the same Kitchen dataset (“Kitchen” experiment)

or from the whole ImageNET (“ImageNET” experiment),

with the latter being an easier task. Performance of object

retrieval is evaluated using top-1 precision.

To evaluate our method on this dataset, we split the

dataset into two parts, with 300 images as trainval set and

306 images as test set. Similar to Section 4.1, we first pre-

train a SCRC model on MSCOCO dataset [23] for image

captioning, and then fine-tune the model on the trainval

set. The our model is tested through image-level retrieval

on the candidate set of ground truth and 10 distractors,

where we use the feature extracted from the entire image

as xbox. Since the dataset involves no spatial configurations

or scene-level contextual information, we set xspatial and

Wglobal in Eqn. 2 to zero during fine-tuning and testing, so
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query=’whisk with red tipped handle’

query=’mobile phone the pink color’

Figure 3. Correctly retrieved examples in Kitchen dataset, where the highest scoring object (green) matches ground truth.

the model can only learn to score a candidate based xbox. As

this dataset is a much smaller than ReferIt, we observe that

transferring knowledge from MSCOCO significantly boosts

the performance and avoids overfitting.

Results. Table 3 shows the top-1 precision (P@1) of

our method together with the baseline on the test set. The

first column “Kitchen” corresponds to sampling the 10 dis-

tractors from the same Kitchen dataset, while the second

column corresponds to sampling distractors from the whole

ImageNET 7K dataset [3]. Similar to Section 4.1, LRCN

refers to directly running LRCN model on the candidate im-

ages as a retriever. SCRC (w/o context, spatial, transfer)

refers to the SCRC model directly trained on the trainval

part of the Kitchen dataset, with convolutional layer initial-

ized from VGG-16 net, and LSTM unit, word embedding

and word prediction weights randomly initialized. SCRC

(w/o context, spatial) corresponds to first pretraining on

MSCOCO and then fine-tuning on Kitchen trainval set as

described in Section 3. As the dataset contains no spatial

configuration or scene-level context information, we cannot

test our full SCRC model on it. It can be seen from Table

3 that in both scenarios, pretraining on image captioning

and fine-tune on natural language object retrieval leads to

the best performance, outperforming the baseline bag-of-

words model CAFFE-7K and LRCN. Figure 3 shows some

correctly retrieved object examples from Kitchen dataset,

where the highest scoring candidate matches the ground

truth. Both the ground truth and the 10 distractor images

are sampled from the same Kitchen dataset in Figure 3.

Moreover, as Kitchen dataset has only 606 objects and is

more than 100 times smaller than ReferIt dataset, “SCRC

(w/o context, spatial)” has significantly higher accuracy

than “SCRC (w/o context, spatial, transfer)”. This shows

that pretraining on MSCOCO for image captioning dataset

improves the performance of natural language object re-

trieval significantly on this relatively smaller dataset, by

transferring the visual-linguistic knowledge from the for-

mer task to the latter task. As a reference, we note that

[10] also uses an instance model and achieves higher over-

all performance. The instance model sends the query and

candidate image regions to online APIs such as Google Im-

age Search and FreeBase on the fly at test time. As in this

Method Kitchen ImageNet

CAFFE-7K [10] 51.34% 57.50%

LRCN [4] 40.35% 63.22%

SCRC (w/o context, spatial, transfer) 54.02% 74.08%

SCRC (w/o context, spatial) 61.62% 81.15%

Table 3. Performance of different methods on the Kitchen dataset.

See Section 4.2 for details.

work we assume a self-contained system that can be applied

without resorting to Internet APIs on the fly, we only com-

pare with the category model CAFFE-7K in [10].

5. Conclusion

In this paper, we address natural language object re-

trieval with Spatial Context Recurrent ConvNet (SCRC), a

recurrent neural network model that scores a candidate box

based on local image descriptors, spatial configurations and

global scene-level context. We show that incorporation of

spatial configuration and global context improves the per-

formance of natural language object retrieval significantly.

The recurrent network model used in our method leads to an

end-to-end trainable scoring function, which significantly

outperforms baseline methods.

Also, we demonstrate that natural language object re-

trieval can benefit from transferring knowledge learned on

image captioning through pretraining and adaptation. As

one of the difficulties for natural language object retrieval

systems is the lack of large datasets with object-level an-

notation, we show that this problem can be alleviated by

exploiting datasets with image-level annotations, which are

often easier to collect than object-level descriptions. As fol-

low up to this work we show successful results by encoding

the phrase rather than scoring it [28] and also predicting im-

age segmentations instead of bounding boxes [14].
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query=’man squatting’ query=’standing guy’ query=’bike wheels’

query=’white hat’ query=’Window with closed curtains’ query=’right lake’

query=’bird on the left’ query=’leaves of left tree’ query=’pillar building in the middle’

Figure 4. Correctly localized examples (IoU ≥ 0.5) on ReferIt with EdgeBox. Ground truth in yellow and correctly retrieved box in green.

query=’man on right blue gloves’ query=’the piece with no shadows’ query=’face’

query=’rock’ query=’water on the right only’ query=’dirt patch next to car (right side)’

Figure 5. Failure cases (IoU < 0.5) on ReferIt with EdgeBox. Ground truth in yellow and incorrectly retrieved box in red. Some failures

cases are caused by ambiguity of the query and some due to wrong annotations in the dataset.
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