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Abstract

Removing image blur caused by camera shake is an

ill-posed problem, as both the latent image and the point

spread function (PSF) are unknown. A recent approach to

address this problem is to record camera motion through

inertial sensors, i.e., gyroscopes and accelerometers, and

then reconstruct spatially-variant PSFs from these read-

ings. While this approach has been effective for high-

quality inertial sensors, it has been infeasible for the in-

ertial sensors in smartphones, which are of relatively low

quality and present a number of challenging issues, includ-

ing varying sensor parameters, high sensor noise, and cal-

ibration error. In this paper, we identify the issues that

plague smartphone inertial sensors and propose a solution

that successfully utilizes the sensor readings for image de-

blurring. With both the sensor data and the image itself,

the proposed method is able to accurately estimate the sen-

sor parameters online and also the spatially-variant PSFs

for enhanced deblurring performance. The effectiveness of

this technique is demonstrated in experiments on a popular

mobile phone. With this approach, the quality of image de-

blurring can be appreciably raised on the most common of

imaging devices.

1. Introduction

A tremendous number of photographs are captured each

day using smartphones. Unfortunately, camera shake on

these light, hand-held devices is a common occurrence that

results in blurry images. To remove the motion blur, both its

point spread function (PSF), i.e., blur kernel, and the latent

image need to be estimated from the blurred photograph,

which is an ill-posed problem. Complicating this problem

further is the fact that motion blur often varies spatially

across the image in practice. Although there exist many

algorithms for removing spatially-invariant motion blur, the

spatially-variant deblurring problem remains unsolved, and

it is difficult to remove such blur without additional infor-

mation about the camera motion.

Unlike priors commonly used for latent images (e.g.,

those derived from natural image statistics), the distribution

of camera motions is difficult to model due to its large diver-

sity and inherent randomness. To gain additional informa-

tion on such motion, inertial sensors such as gyroscopes and

accelerometers have recently been exploited [15, 24, 19],

with blur kernels estimated directly from the recorded cam-

era motions and then used together with non-blind deconvo-

lution techniques to recover the sharp latent image. These

previous techniques assume the inertial sensor readings to

be reliable enough for accurate blur kernel recovery. How-

ever, the inertial sensors in smartphones are far from ideal,

as they are designed for tasks such as gaming that do not

require high-level accuracy. Among the issues common to

smartphone inertial sensors are a time delay between sen-

sor and image measurements, and significant sensor noise

that cannot be fully addressed through offline calibration.

In addition, the rotational center of camera motion can vary

with each photograph, and inaccurate accelerometer read-

ings can accumulate into substantial errors in measured

camera translation. These practical issues lead to a con-

siderable challenge in using inertial sensors for deblurring

smartphone photos.

In this paper, we present a solution that both manages

these individual problems and compensates for the short-

comings in sensor data quality. Techniques are proposed for

dynamically recovering the time delay between the inertial

and camera sensors, calibrating the rotational center of cam-

era motion online, and refining the blur kernels initially re-

constructed from noisy sensor readings. Equally important,

our method utilizes inertial sensor readings only as guid-

ance for kernel estimation, rather than directly computing

camera motion from the sensors as done in previous iner-

tial sensor-based deblurring systems [15, 24, 19]. Our work

jointly leverages the inertial sensor data and the captured

image itself to overcome the limitations each may have in

solving for spatially-variant PSFs. The experiments show

that, even with smartphone inertial sensors, this approach

can produce high-quality deblurring results, as exemplified

for an Apple iPhone 6 in Figure 1.

This work presents a significant step towards the practi-

cal use of image deblurring. Existing deblurring algorithms
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Figure 1. Example of smartphone image deblurring. (a) Blurry input image. (b) Estimated PSFs with the help of inertial sensors. (c)

Recovered latent image. (d) A patch from the blurry image in (a). (e) The corresponding patch from the recovered latent image in (c).

have exhibited limited performance on real-world images

captured with smartphones, which are by far the dominant

device for digital photography. With effective use of smart-

phone inertial sensors, image deblurring can become a more

practical and mainstream operation for millions of users.

2. Related Work

Significant progress in blind deconvolution has been wit-

nessed in recent years (e.g., [20, 32, 25, 9, 30]). Since blind

deconvolution is an ill-posed problem, prior knowledge or

additional captured information is often required to obtain

effective solutions.

The most common prior knowledge comes from natu-

ral image statistics, such as a heavy-tailed image gradient

distribution [6, 22], alpha matte of the blurry edge [14],

sparsity of wavelet coefficients [2], and adaptive texture pri-

ors [5]. Besides priors on image statistics, knowledge in the

form of camera motion models has been used in solving

more complicated spatially-variant blur. The blurry image

can be represented as the integration of all the intermedi-

ate images captured by the camera along the motion trajec-

tory [29, 26]. The camera motion can be modeled by three

dimensions of camera rotation [29] or 6D camera motion

with an in-plane translation and rotation [8]. To speed up

the optimization step, fast patch-based non-uniform deblur-

ring methods have been developed [10, 11]. These forms

of prior knowledge have been shown to be helpful, but they

often do not adequately constrain the deblurring result by

themselves.

Another line of research tackles image deblurring

by leveraging auxiliary information acquired at capture

time [21, 31, 17, 3, 1, 27], for example, blurred and

noisy image pairs [31], or high-resolution blurred and low-

resolution sharp image pairs [1, 27].

More accurate information about camera motion can be

obtained using inertial sensors such as gyroscopes and ac-

celerometers, which have been integrated into many ordi-

nary mobile devices. Šindelář and Šroubek [24] proposed

a deblurring system for smartphones that synthesizes lo-

cal blur kernels based on gyroscope readings. The system

compares favorably to recent deblurring algorithms, but re-

quires user interaction to synchronize the camera and gyro-

scope sensors. Joshi et al. [15] built an elaborate DSLR-

based camera system with gyroscope and accelerometer.

The inertial sensors are assumed to have been calibrated

and synchronized beforehand. A similar approach for gy-

roscope calibration was employed by Park and Levoy [19]

for the multiple image deblurring problem. Since noisy sen-

sor readings cause drifting problems, both methods [15, 19]

correct the sensor parameters using image priors or multi-

ple images. All of these works assume their recorded sensor

data to be reliable, or only slightly relax this assumption.

However, there are more challenging issues in using smart-

phone inertial sensors, which cannot provide high-quality

sensor data for effective image deblurring. By contrast, our

method does not directly estimate camera motion from the

sensors as done in these prior techniques [24, 15]. We only

consider sensor readings as guidance for kernel estimation,

and use image priors for further kernel refinement. Instead

of offline calibration commonly used before, we utilize an

online calibration to synchronize cameras and sensors, and

dynamically estimate two neglected factors (i.e., rotational

center and time delay).

3. Practical Issues in using Inertial Sensors

In this section, we first describe how to estimate cam-

era motion and blur kernels from inertial sensor readings.

This estimation, however, is complicated by a few issues

that arise in practice and generally lead to inaccurate results.

We then discuss and provide an analysis of these issues.

3.1. Camera Motion Blur

The spatially-invariant image blurring process can be ex-

pressed as

B = I ∗ k + n, (1)

where B is the input blurred image, I is the latent sharp

image, ∗ is the convolution operator, k is the blur kernel

(point spread function), and n is the noise term. In prac-

tice, camera shake usually results in spatially-variant blur

determined by the underlying 6D camera motion, includ-

ing rotations and translations. Inertial sensors, such as gy-

roscopes and accelerometers, record this information and
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have become standard components in smartphones. From

their measurements of angular motions and accelerations,

camera rotations and translations can be derived and used

to estimate spatially-variant blur.

Gyroscope. A gyroscope provides the rate of change in

angular position θR(t) with respect to time, i.e., the angular

velocity α(t) = dθR(t)
dt

in three dimensions with units of

deg/s. From these measurements, the angular position can

be determined by integrating the angular velocity,

θR(t) =

∫ t

0

α(t)dt ≈
t∑
0

α(t)ts (2)

where ts is the sampling interval and we assume θR = 0 at

t = 0. Since the camera is a rigid body, each point on the

camera shares the same rotation with respect to a certain

rotation center o = (ox, oy, oz). The kernel at each location

is thus dependent on the rotation center.

Accelerometer. We assume that the change of acceleration,

a′s(t), is measured by the accelerometer in three dimensions

with respect to time. With as(t) denoting the measured ac-

celeration, we thus have a′s(t) =
das(t)

dt
. Similar to [15], we

model the actual acceleration a(t) as

as(t) = a(t)+g+(Rθ(t)×(Rθ(t)×r(t)))+(α(t)×r(t)),
(3)

where r(t) represents the vector from the accelerometer to

the center of rotation, o, and g(t) is the gravity expressed in

the current coordinate system. As indicated by this model,

the measured acceleration is affected by the actual acceler-

ation, gravity g, centripetal acceleration caused by rotation,

and the tangential component of angular acceleration. The

position of the accelerometer relative to its initial point at

t = 0 can be expressed in terms of its initial speed v0 as

θT (t) =

∫ t

0

v(t)dt =

∫ t

0

v0 + (as(t)− g)tdt (4)

≈
t∑
0

v0ts + 1/2 ∗ (as(t)− g)t2s. (5)

The estimated angular position θR and translational po-

sition θT are taken as the camera pose θ = (θR, θT ) for

calculating the kernel at each location.

3.2. Practical Issues

Previous work [15, 24] have made great progress in in-

corporating inertial sensor data in the deblurring process.

These techniques, however, assume that the sensor readings

are reliable and that the model used to generate blur kernels

accounts for all the contributing factors. Here we present

the practical issues involved in using the inertial sensors in

smartphones.

Figure 2. Problem of sensor synchronization. (a) Input blurry

image. (b) Light streak patches from blurry image. (c) Generated

PSFs using inertial sensor data before synchronization. (d) Gener-

ated PSFs after synchronization by our method.

Time Delay. It is well known that the inertial sensors and

camera sensor are not well synchronized in smartphones,

due to differences in warm-up times. The sensors in our

experiment (from an iPhone 6) support a sampling rate of

100 Hz, which is equivalent to a sampling interval of ts =
10 ms. In tests on 20 examples, we found variations in time

delay from 10 ms to 120 ms, which corresponds to 1 to

12 data samples from the inertial sensors. We additionally

found that estimating the correct time delay is critical to the

quality of deblurring, and this variable time delay cannot be

determined by offline calibration. To tackle this issue, an

online calibration method is proposed in Section 4.1. An

example of its effect is shown in Figure 2.

Rotation Center. It is often assumed that the rotation cen-

ter lies at the optical center of the camera [15, 24]. In real-

ity, the center of rotation may be located at a point far away,

such as in the photographer’s wrist if the camera motion is

caused by hand shake. This discrepancy in the rotational

center can significantly affect the computation of blur ker-

nels, as discussed in [19]. Park et al. [19] use multiple shots

with the same exposure time to jointly estimate the rota-

tional center, sensor drift and time delay. Their method as-

sumes that the rotation center does not change when taking

a sequence of images, which is not necessarily the case. In

our tests, we found that the rotation center may even vary

during capture. For a single shot with a not very long expo-

sure, the change in rotation center is generally slight and can

be neglected. But for different shots, the rotation centers are

often varied and this would result in inaccurate motion es-

timation if the rotation center is assumed to be unchanged.

Our single image approach addresses this challenging issue

through an online calibration method, as described in Sec-

tion 4.1. The effect of this online calibration is illustrated in

Figure 3.

Noisy Sensor Data. Since inertial sensors in smartphones

are not intended for high-quality deblurring, the recorded

sensor data are typically noisy, especially for accelerome-

ters. We have examined the noise on our smartphone with

the sensors held stationary, i.e., with zero angular acceler-

ation and a constant acceleration from only gravity. We
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Figure 3. Effect of rotational center estimation. (a) Blurry input

image. (b) Patches from the blurry image. (c) PSFs computed

using the optical center as the rotational center. (d) PSFs generated

using the rotational center estimated by our method.

found that the gyroscope data has relatively less noise, while

the accelerometer data exhibits considerable noise, as sen-

sor drifts arise from the integral over the acceleration data

in (5). To approximate the drift model from noisy data, a

naive idea is to fit a linear function to the resulting devia-

tion of the stationary device. However, the noise with each

captured image appears to be different and cannot be ade-

quately recovered with a generic linear model. Instead, we

propose an image-based method to refine the blur kernels

estimated from sensor data in Section 4.2.

Gravity Effect. As described in Section 3.1, the contribu-

tion of gravity to the measured translation as(t) is unknown,

since it is difficult to estimate the initial orientation and ve-

locity of the camera. If the camera is in an upright position,

then gravity would mainly affect y-axis translation in the

camera’s local coordinate system. If the camera is oriented

instead with a 90o rotation, then the gravity would mainly

affect the x-axis translation. This problem can be partially

addressed by taking the mean of the translation measure-

ments from the accelerometer [15] when the camera has lit-

tle translation and is in an upright position. To address this

issue better, we consider an image-based method (described

in Section 4.2) as well. The errors from both noisy sensor

data and the gravity effect can be regarded as the noise term

in our kernel estimation.

Scene Depth. Scene depth is a critical element for esti-

mating spatially-variant blur, and its effects always appear

when there are camera translations. However, scene depth is

usually unknown and difficult to infer from a single image.

Assuming a constant depth for the whole scene would in-

troduce errors to kernels at locations with large depth differ-

ences. In this work, we take advantage of the phase-based

auto-focus built into most popular smartphones to provide

sparse depth information, which can be helpful to verify and

refine our kernel estimation. The details will be described

in Section 4.2.

The aforementioned issues are usually neglected in previ-

ous work and cannot be well addressed solely using sensor

readings. We therefore advocate using image data to help

calibrate camera/sensor parameters online and to reduce er-

rors in blur kernel estimation. The joint use of image and

sensor data leads to better performance than using either

one alone.

4. Deblurring System

Based on the previous analysis, we propose a deblurring

system using the data from inertial sensors in smartphones.

Our test platform is an iPhone 6 with iOS 8. The device is

equipped with a 8MP camera, gyroscope and accelerome-

ter. Our data capturing app supports adjustments of expo-

sure time and focus, and our deblurring framework consists

of online calibration, kernel estimation and refinement, and

non-blind image deconvolution.

4.1. Online Calibration

In this work, we propose an image-based online cali-

bration approach to estimate the time delay and rotational

center. Whenever available, we specifically take advantage

of light streaks, a commonly existing phenomenon first ex-

ploited by Hu et al. [13]. Light streaks are imaged paths

of point light sources, which indicate the PSFs at the cor-

responding locations and thus provide reliable shape cues

for estimating blur kernels. We adopt the method in [13] to

extract light streaks and use them as visual cues in the cali-

bration. We denote a set of detected light streaks (flipped to

match the blur kernel) as {li}i, and we use k(i)(ts, o) to rep-

resent the corresponding kernel at location i with respect to

time delay ts and rotational center o. The exact time delay

is adjusted according to the kernel location i and the rolling

shutter effect. We interpolate the sensor data by a factor of 4
to account for the higher sampling rate of the rolling shutter

effect. The calibration process can thus be formulated as

(t̂s, ô) = argmin
ts,o

∑
i

||k(i)(ts, o)− li||2. (6)

With the rotational center assumed to be constant during the

exposure time and located in the imaging plane, i.e. oz = 0,

we need only to estimate ox and oy . The parameters are

estimated in a coarse-to-fine manner.

If no light streaks are detected in an image, we instead

make use of the power spectrum analysis presented in [7]

and reformulate the calibration in (6) as

(t̂s, ô) = argmin
ts,o

∑
i

||P (k(i)(ts, o))− P (pi ∗ L)||2, (7)

where P is the spectral autocorrelation, and L is the square

root of the Laplacian filter (please see [7] for details). Here,

pi denotes a region that covers a significant number of

salient edges determined from the magnitude of image gra-

dients. Since we consider spatially-varying blur in this

work, the region size of pi cannot be large, and it is set

to twice the kernel support size in our implementation.
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Since noise and saturation in light streaks and patches

may reduce accuracy, we fine-tune the parameters by

searching within a neighborhood of their values estimated

from (6), and identify the solution with the lowest blur level

in the results. This is done by first extracting a few non-

saturated regions {rj}j similar to {pi}i that contain salient

edges but are of a larger size. For each region, we generate

its kernel using the estimated parameters and apply non-

blind deconvolution to obtain the deblurred results. Deter-

mining the blur level is a challenging task that has been ad-

dressed in recent algorithms [18, 23] using measures based

on image statistics and learning techniques. In our task,

there exists a true pair of parameter settings with which the

correct kernels can be approximately derived from the sen-

sor readings. Thus, we propose a measure on sharpness to

identify the correct setting.

According to [12, 7], the spectral autocorrelation of im-

age derivatives in a sharp image is close to that of a delta

function. We use this property to fine-tune the estimates for

(ts, o) as

(t̄s, ō) = arg max
(ts,o)∈N (t̂s,ô)

∑
j

(wjR(∇Ij(ts, o))), (8)

where R represents the maximum response of the autocor-

relation function, ∇Ij is the deblurred patch correspond-

ing to rj using the kernels generated by the parameter set-

ting (ts, o), and wj are weights that give greater emphasis

to patches with more texture. For deconvolution, we em-

ploy the Richardson-Lucy (RL) method due to its simplic-

ity. Moreover, since the RL method acts as an inverse filter,

the sum of the intensity values does not change much. In

Figure 3, we display an example of kernels recovered us-

ing our estimated rotational center, which are seen to be

more accurate than those computed using the optical cen-

ter as the rotational center. In this example, we minimize

the influence of translational blur by deliberately avoiding

translations in our hand shake and capturing a distant scene.

4.2. Blur Kernel Refinement

The cumulative errors from sensor noise, scene depth,

and calibration error can lead to inaccurately estimated ker-

nels from sensor readings. We consider the errors in the

noise term and propose to refine the blur kernels in a non-

uniform deblurring framework. Similar to [11], we employ

a region-based non-uniform blur model that assumes a lo-

cally uniform kernel within each region:

B =
∑
r

k(r) ∗ (ω(r) ⊙ I) + n, (9)

where r is a region index, and ω(r) is an image of weights

with the same dimensions as the latent image I , such that

the pixels in region r can be expressed as ω(r) ⊙ I with ⊙

denoting the pixel-wise product. Here, k(r) represents the

kernel at region r and is modeled as a linear combination of

kernel bases b:
k(r) =

∑
θ

µθb
(r)
θ . (10)

Each kernel basis bθ is induced by the homography Hθ of a

sampled camera pose θ [11]:

bθ = C(Rθ +
1

d
Tθ[0, 0, 1])C

−1 (11)

where Rθ and Tθ are the rotation matrix and translation vec-

tor for pose θ. C denotes the intrinsic matrix of the camera,

which needs to be calibrated beforehand. d represents scene

depth. The variables µ are the coefficients of the kernel

bases, which are determined by the rotational and transla-

tional camera movement.

To remove the blur and recover the latent image, we

solve an optimization problem for both the latent image I
and the coefficients µ:

argmin
I,µ

‖
∑
r

∑
θ

µθb
(r)
θ ∗(ω(r)⊙I)−B‖2+βϕ(I)+γϕ(µ),

(12)

where ϕ(I) and ϕ(µ) are regularization terms for the latent

image I and the coefficients µ. The two regularization terms

are weighted respectively by the parameters β and γ.

The refinement is performed in a coarse-to-fine manner,

with the kernels estimated from the sensor readings as ini-

tialization. For efficiency, the kernels are refined for each

region rj . Using the geometric model in (12), we alternat-

ingly estimate the coefficients µ:

argmin
µ

‖
∑
θ

µθ(
∑
rj

b
(rj)
θ T (rj))−B(rj)‖2+γϕ(µ), (13)

and regions of the latent image T (rj) = ω(r) ⊙ I:

arg min
T

(rj)
‖(
∑
θ

µθb
(rj)
θ )T (rj)−B(rj)‖2+βϕ(T (rj)), (14)

where B(rj) and I(rj) represent corresponding regions in

the blurry image and latent image, respectively. The regu-

larization term ϕ(T (rj)) is defined as ϕ(T (rj)) = ∂xT
(rj)+

∂yT
(rj), and has been shown to be effective in recovering

smooth results in recent work [22, 4]. We set the term ϕ(µ)
so that the coefficients µ are similar to the coefficients up-

sampled from the coarser level µc: ϕ(µ) = ||µ− (µc) ↑ ||2,

where ↑ denotes bilinear upsampling in the camera pose

space. The initial coefficients at the coarsest level are ob-

tained by downsampling the values estimated from the iner-

tial sensors. We note that the coarse-to-fine scheme cannot

have too many levels, otherwise the kernels estimated from

the inertial sensors would have little effect on the optimiza-

tion at the finest level. The number of levels should depend

1859



on the accuracy of the initial estimation. In this work, we

use three levels with a downsampling factor of
√
2.

The kernel basis is built using angular position θR and

translational position θT from sensor readings in (11). Here,

to get the depth information, we make use of the built-in

phase-detection based auto-focus that is equipped in mobile

devices such as the iPhone and Samsung Galaxy. With the

help of this component, we are able to obtain a factor value

related to depth at each focus point sampled on a grid prior

to image capture. In this work, we directly extract the factor

values using the iOS API, and calibrate its correspondence

to exact scene depth by shooting objects at known depths.

In the experiments, we use 6×9 overlapping tiles discussed

in (9), and depth values are sampled at the centers of the

regions. Each region is associated with a depth value ob-

tained using our data capture app. The depth at each site is

then used to determine the blur kernel using (10) and (11).

4.3. Non­Blind Deconvolution

Once we estimate the coefficients µ, we synthesize the

blur kernels using (10) and apply non-blind deconvolution

to recover the latent sharp image. For the non-blind decon-

volution, we employ the method of [28], which is able to

handle outliers such as saturation which often exist in low-

light images. To better handle noise in the blurry image, the

method in [33] could be used.

5. Experimental Results

In this section, we show the results of our sensor-based

deblurring method on downsampled images of resolution

800×600. We evaluate each step of our method and present

results on real blurry images.

Figure 4. Rotation center estimation with respect to shift distance

on synthetic examples. x-axis: distance between the true rotation

center and the optical center; y-axis: average distance between

estimated rotation centers and the optical center.

5.1. Calibration

To validate our proposed method in estimating the time

delay ts and rotational center o, we test the optimization

of (6) as well as the measure in (8) on synthetic examples.

For evaluating the rotational center estimation, we syn-

thesize blurry images with selected rotation centers, and

(a) Input image (b) Patches from (a), (d) and (f)

(c) Originally generated PSFs (d) Recovered image using (c)

(e) Refined PSFs (f) Recovered image using (e)

Figure 6. Examples of PSF refinement with inaccurate sensor

readings. (c)(e) Zoom-in views are shown at the bottom-left cor-

ners.

with camera motions of data sequences collected from in-

ertial sensors. The dataset consists of 2 sharp images, 5 sets

of sensor readings and 9 selected rotation centers shifted

from the optical center by 0, 50, . . . , 400 pixels, for a total

of 90 blurry test images. We present the errors with re-

spect to shift distance in Figure 4. As shown in the figure,

the proposed method performs consistently well in terms of

shift distance, with the estimated rotation centers slightly

displaced from the correct values.

To evaluate the autocorrelation-based measure of image

sharpness in (8), we test it on four regions of a synthetic

image. Blurry images are synthesized from it by applying

the blurs for different camera motions taken from the iner-

tial sensors at different time periods. Figure 5(b) depicts the

normalized response curve for each region with respect to

time period, where each time period is a forward shift from

the previous time period by 10 ms (one sample period of

the inertial sensors). Here, the x-axis represents the time

delay with respect to the number of samples. The max-

imum responses of the curves occur at time periods near

to the correct period. An alternative measure based on the

average of the cumulative power spectrum was proposed

in [23], where the measure is smaller for a blurry patch

than for a sharp patch. We apply the measure of [23] on
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(a) (b) (c)

Figure 5. Measure from (8) for identifying the correct parameters. (a) Input blurry image and selected regions. (b) Responses from our

method on different regions. (c) Average of the cumulative power spectrum [23] on different regions. The black lines in the figures indicate

the correct time periods.

the deblurred regions as well and present the results in Fig-

ure 5(c). The results show that our method performs more

consistently in this task, and the measure of [23] produces

similar values for different periods. The reason is that the

kernels generated from these time periods are similar and

therefore lead to similar deblurred results, which are not

distinguished well using the cumulative power spectrum in

comparison to our method based on the maximum spectral

autocorrelation response.

5.2. Kernel Refinement

We also validate the kernel refinement step using blurry

images synthesized from camera motions computed from

the data sequences of the inertial sensors. Noise with the

standard deviation of the sensor readings is added to simu-

late our inaccurate sensor inputs, which are used to compute

our kernel initialization. We perform tests on 20 synthetic

examples and obtain an average PSNR of 26.62 after refine-

ment, in comparison to 25.05 before refinement. Figure 6

shows an example of our kernel refinement. With the refine-

ment step, more accurate blur kernels are estimated, leading

to better deblurring results.

5.3. Deblurring Results

Here, we qualitatively compare our method to state-of-

the-art general image deblurring techniques [4, 30, 16, 7],

the method based on light streaks [13], and a non-uniform

deblurring method [28] on some real-world examples. As

shown in Figure 7, previous single-image deblurring meth-

ods that do not utilize inertial sensor data perform poorly on

these images. For images with insufficient salient edges for

kernel estimation, they are likely to converge to a delta ker-

nel. We also compare to results without the rotational cen-

ter estimation and kernel refinement step, which is similar

to previous sensor-based methods [15, 24]. In Figure 7(a)-

(f), our method obtains results of higher quality than other

methods, though our results exhibit some ringing artifacts.

This is because the varying depth values of the foosball ta-

ble degrade kernel estimation. The method in [13] fails in

situations where light streaks cannot be well extracted. In

Figure 7(g)-(l), the results from our method without the ker-

nel refinement step contain some blurs, while those after

kernel refinement are sharper, which also demonstrates the

effectiveness of the refinement process.

6. Discussion

In this work, we examine the problems that arise in im-

age deblurring with smartphone inertial sensors and pro-

pose a single-image deblurring method to address these

practical issues. A central element of our method is an

image-based technique for calibrating the sensors online

and refining the inaccurate spatially-variant blur kernels.

There are a few limitations of the proposed method. One

is that the method is unable to handle cases when the blur

kernels initially estimated from the sensor readings differ

substantially from the true kernels. This may occur when

the scene depth is shallow, e.g. less than 0.5 meter, and the

camera undergoes significant translational motion. Since

our kernel refinement method is initialized by the kernels

estimated from the sensor readings, poor initial kernels may

bias the final results. Another limitation is the amount

of computation. Since our method employs a refinement

step involving a joint optimization of the non-uniform blur

model, the computational load is heavier than that of sim-

ply applying non-blind deconvolution with the kernels di-

rectly reconstructed from the sensor. A possible solution is

to employ cloud processing by uploading the blurred image

and sensor readings. How to make the computation effi-

cient on mobile devices is an interesting direction for future

work. Moreover, we only obtain depth values at sparsely

sampled points and correspond them to tiled regions. To

obtain dense depth estimation, a multiple camera system,

e.g., the Amazon Fire phone, could instead be used with

stereo algorithms.
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(a) Input image (b) Cho and Lee [4] (c) Xu et al. [30]

(d) Hu et al. [13] (e) Whyte et al. [28] (f) Our method

(g) Input image (h) Krishnan et al. [16] (i) Goldstein and Fattal [7]

(j) Hu et al. [13] (k) Ours without kernel refinement (l) Our method

Figure 7. Comparisons on real examples. The results are best viewed on a high-resolution digital display.
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