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Abstract

Convolutional neural nets (CNNs) have demonstrated

remarkable performance in recent history. Such approaches

tend to work in a “unidirectional” bottom-up feed-forward

fashion. However, practical experience and biological ev-

idence tells us that feedback plays a crucial role, particu-

larly for detailed spatial understanding tasks. This work

explores “bidirectional” architectures that also reason with

top-down feedback: neural units are influenced by both

lower and higher-level units.

We do so by treating units as rectified latent variables

in a quadratic energy function, which can be seen as a hi-

erarchical Rectified Gaussian model (RGs) [39]. We show

that RGs can be optimized with a quadratic program (QP),

that can in turn be optimized with a recurrent neural net-

work (with rectified linear units). This allows RGs to be

trained with GPU-optimized gradient descent. From a the-

oretical perspective, RGs help establish a connection be-

tween CNNs and hierarchical probabilistic models. From a

practical perspective, RGs are well suited for detailed spa-

tial tasks that can benefit from top-down reasoning. We il-

lustrate them on the challenging task of keypoint localiza-

tion under occlusions, where local bottom-up evidence may

be misleading. We demonstrate state-of-the-art results on

challenging benchmarks.

1. Introduction

Hierarchical models of visual processing date back to

the iconic work of Marr [31]. Convolutional neural nets

(CNN’s), pioneered by LeCun et al. [27], are hierarchical

models that compute progressively more invariant represen-

tations of an image in a bottom-up, feedforward fashion.

They have demonstrated remarkable progress in recent his-

tory for visual tasks such as classification [25,38,43], object

detection [8], and image captioning [22], among others.

Feedback in biology: Biological evidence suggests that

vision at a glance tasks, such as rapid scene categoriza-

tion [48], can be effectively computed with feedforward hi-

erarchical processing. However, vision with scrutiny tasks,
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Figure 1: On the top, we show a state-of-the-art multi-scale

feedforward net, trained for keypoint heatmap prediction,

where the blue keypoint (the right shoulder) is visualized

in the blue plane of the RGB heatmap. The ankle keypoint

(red) is confused between left and right legs, and the knee

(green) is poorly localized along the leg. We believe this

confusion arises from bottom-up computations of neural ac-

tivations in a feedforward network. On the bottom, we in-

troduce hierarchical Rectified Gaussian (RG) models that

incorporate top-down feedback by treating neural units as

latent variables in a quadratic energy function. Inference

on RGs can be unrolled into recurrent nets with rectified

activations. Such architectures produce better features for

“vision-with-scrutiny” tasks [17] (such as keypoint predic-

tion) because lower-layers receive top-down feedback from

above. Leg keypoints are much better localized with top-

down knowledge (that may capture global constraints such

as kinematic consistency).

such as fine-grained categorization [23] or detailed spatial

manipulations [19], appear to require feedback along a “re-

verse hierarchy” [17]. Indeed, most neural connections in

the visual cortex are believed to be feedback rather than

feedforward [4, 26].

Feedback in computer vision: Feedback has also

played a central role in many classic computer vision mod-

els. Hierarchical probabilistic models [20, 28, 55], allow
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random variables in one layer to be naturally influenced

by those above and below. For example, lower layer vari-

ables may encode edges, middle layer variables may encode

parts, while higher layers encode objects. Part models [5]

allow a face object to influence the activation of an eye part

through top-down feedback, which is particularly vital for

occluded parts that receive misleading bottom-up signals.

Interestingly, feed-forward inference on part models can be

written as a CNN [9], but the proposed mapping does not

hold for feedback inference.

Overview: To endow CNNs with feedback, we treat

neural units as nonnegative latent variables in a quadratic

energy function. When probabilistically normalized, our

quadratic energy function corresponds to a Rectified Gaus-

sian (RG) distribution, for which inference can be cast as a

quadratic program (QP) [39]. We demonstrate that coordi-

nate descent optimization steps of the QP can be “unrolled”

into a recurrent neural net with rectified linear units. This

observation allows us to discriminatively-tune RGs with

neural network toolboxes: we tune Gaussian parameters

such that, when latent variables are inferred from an image,

the variables act as good features for discriminative tasks.

From a theoretical perspective, RGs help establish a con-

nection between CNNs and hierarchical probabilistic mod-

els. From a practical perspective, we introduce RG variants

of state-of-the-art deep models (such as VGG16 [38]) that

require no additional parameters, but consistently improve

performance due to the integration of top-down knowledge.

2. Hierarchical Rectified Gaussians

In this section, we describe the Rectified Gaussian mod-

els of Socci and Seung [39] and their relationship with rec-

tified neural nets. Because we will focus on convolutional

nets, it will help to think of variables z = [zi] as orga-

nized into layers, spatial locations, and channels (much like

the neural activations of a CNN). We begin by defining a

quadratic energy over variables z:

S(z) =
1

2
zTWz + bT z (1)

P (z) ∝ eS(z)

Boltzmann: zi ∈ {0, 1}, wii = 0

Gaussian: zi ∈ R,−W is PSD

Rect. Gaussian: zi ∈ R+,−W is copositive

where W = [wij ], b = [bi]. The symmetric matrix W cap-

tures bidirectional interactions between low-level features

(e.g., edges) and high-level features (e.g., objects). Prob-

abilistic models such as Boltzmann machines, Gaussians,

and Rectified Gaussians differ simply in restrictions on the

latent variable - binary, continuous, or nonnegative. Hier-

archical models, such as deep Boltzmann machines [36],

can be written as a special case of a block-sparse matrix W

x
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Figure 2: A hierarchical Rectified Gaussian model where

latent variables zi are denoted by circles, and arranged into

layers and spatial locations. We write x for the input image

and wi for convolutional weights connecting layer i−1 to i.

Lateral inhibitory connections between latent variables are

drawn in red. Layer-wise coordinate updates are computed

by filtering, rectification, and non-maximal suppression.

that ensures that only neighboring layers have direct inter-

actions.

Normalization: To ensure that the scoring function can

be probabilistically normalized, Gaussian models require

that (−W ) be positive semidefinite (PSD) (−zTWz ≥
0, ∀z) Socci and Seung [39] show that Rectified Gaussians

require the matrix (−W ) to only be copositive (-zTWz ≥
0, ∀z ≥ 0), which is a strictly weaker condition. Intuitively,

copositivity ensures that the maximum of S(z) is still fi-

nite, allowing one to compute the partition function. This

relaxation significantly increases the expressive power of a

Rectified Gaussian, allowing for multimodal distributions.

We refer the reader to the excellent discussion in [39] for

further details.

Comparison: Given observations (the image) in the

lowest layer, we will infer the latent states (the features)

from the above layers. Gaussian models are limited in that

features will always be linear functions of the image. Boltz-

mann machines produce nonlinear features, but may be lim-

ited in that they pass only binary information across lay-

ers [33]. Rectified Gaussians are nonlinear, but pass contin-

uous information across layers: zi encodes the presence or

absence of a feature, and if present, the strength of this acti-

vation (possibly emulating the firing rate of a neuron [21]).

Inference: Socci and Seung point out that MAP estima-

tion of Rectified Gaussians can be formulated as a quadratic

program (QP) with nonnegativity constraints [39]:

max
z≥0

1

2
zTWz + bT z (2)

However, rather than using projected gradient descent

(as proposed by [39]), we show that coordinate descent

is particularly effective in exploiting the sparsity of W .

Specifically, let us optimize a single zi holding all others

fixed. Maximizing a 1-d quadratic function subject to non-

negative constraints is easily done by solving for the opti-

mum and clipping:
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max
zi≥0

f(zi) where f(zi) =
1

2
wiiz

2
i + (bi +

X

j 6=i

wijzj)zi

∂f

∂zi
= wiizi + bi +

X

j 6=i

wijzj = 0

zi = −
1

wii

max(0, bi +
X

j 6=i

wijzj) (3)

= max(0, bi +
X

j 6=i

wijzj) for wii = −1

By fixing wii = −1 (which we do for all our experiments),

the above maximization can solved with a rectified dot-

product operation.

Layerwise-updates: The above updates can be per-

formed for all latent variables in a layer in parallel. With

a slight abuse of notation, let us define the input image to

be the (observed) bottom-most layer x = z0, and the vari-

able at layer i and spatial position u is written as zi[u]. The

weight connecting zi−1[v] to zi[u] is given by wi[τ ], where

τ = u − v depends only on the relative offset between u

and v (visualized in Fig. 2):

zi[u] = max(0, bi + topi[u] + boti[u]) where (4)

topi[u] =
X

τ

wi+1[τ ]zi+1[u− τ ]

boti[u] =
X

τ

wi[τ ]zi−1[u+ τ ]

where we assume that layers have a single one-dimensional

channel of a fixed length to simplify notation. By tying

together weights such that they only depend on relative

locations, bottom-up signals can be computed with cross-

correlational filtering, while top-down signals can be com-

puted with convolution. In the existing literature, these are

sometimes referred to as deconvolutional and convolutional

filters (related through a 180◦ rotation) [53]. It is natural

to start coordinate updates from the bottom layer z1, ini-

tializing all variables to 0. During the initial bottom-up co-

ordinate pass, topi will always be 0. This means that the

bottom-up coordinate updates can be computed with simple

filtering and thresholding. Hence a single bottom-up pass of

layer-wise coordinate optimization of a Rectified Gaussian

model can be implemented with a CNN.

Top-down feedback: We add top-down feedback sim-

ply by applying additional coordinate updates (4) in a top-

down fashion, from the top-most layer to the bottom. Fig. 3

shows that such a sequence of bottom-up and top-down

updates can be “unrolled” into a feed-forward CNN with

“skip” connections between layers and tied weights. One

can interpret such a model as a recurrent CNN that is ca-

pable of feedback, since lower-layer variables (capturing

say, edges) can now be influenced by the activations of

high-layer variables (capturing say, objects). Note that we

x

h1

h2

x

h1

h2

x

h1

h2

h1

Bot-up Bot-up + Top-down Recurrent-CNN

w1

w1

w2

wT
2

x

h1

h2

CNN

w1

w2

Layerwise updates on Rectified Gaussian models Feedforward neural nets

Figure 3: On the left, we visualize two sequences of layer-

wise coordinate updates on our latent-variable model. The

first is a bottom-up pass, while the second is a bottom-up

+ top-down pass. On the right, we show that bottom-up

updates can be computed with a feed-forward CNN, and

bottom-up-and-top-down updates can be computed with an

“unrolled” CNN with additional skip connections and tied

weights (which we define as a recurrent CNN). We use T

to denote a 180◦ rotation of filters that maps correlation to

convolution. We follow the color scheme from Fig. 2.

make use of recurrence along the depth of the hierarchy,

rather than along time or spacial dimensions as is typically

done [14]. When the associated weight matrix W is coposi-

tive, an infinitely-deep recurrent CNN must converge to the

solution of the QP from (2).

Non-maximal suppression (NMS): To encourage

sparse activations, we add lateral inhibitory connections

between variables from same groups in a layer. Specifi-

cally, we write the weight connecting zi[u] and zi[v] for

(u, v) ∈ group as wi[u, v] = −∞. Such connections are

shown as red edges in Fig. 2. For disjoint groups (say, non-

overlapping 2x2 windows), layer-wise updates correspond

to filtering, rectification (4), and non-maximal suppression

(NMS) within each group.

Unlike max-pooling, NMS encodes the spatial location

of the max by returning 0 values for non-maximal loca-

tions. Standard max-pooling can be obtained as a special

case by replicating filter weights wi+1 across variables zi
within the same group (as shown in Fig. 2). This makes

NMS independent of the top-down signal topi. However,

our approach is more general in that NMS can be guided

by top-down feedback: high-level variables (e.g., car detec-

tions) influence the spatial location of low-level variables

(e.g., wheels), which is particularly helpful when parsing

occluded wheels. Interestingly, top-down feedback seems

to encode spatial information without requiring additional

“capsule” variables [15].

Approximate inference: Given the above global scor-

ing function and an image x, inference corresponds to

argmaxz S(x, z). As argued above, this can be imple-

mented with an infinitely-deep unrolled recurrent CNN.

However, rather than optimizing the latent variables to com-

pletion, we perform a fixed number (k) of layer-wise coor-

dinate descent updates. This is guaranteed to report back

finite variables z⇤ for any weight matrix W (even when not
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copositive):

z⇤ = QPk(x,W, b), z⇤ ∈ RN (5)

We write QPk in bold to emphasize that it is a vector-

valued function implementing k passes of layer-wise coor-

dinate descent on the QP from (2), returning a vector of all

N latent variables. We set k = 1 for a single bottom-up

pass (corresponding to a standard feed-forward CNN) and

k = 2 for an additional top-down pass. We visualize exam-

ples of recurrent CNNs that implement QP1 and QP2 in

Fig. 4.

Output prediction: We will use these N variables as

features for M recognition tasks. In our experiments, we

consider the task of predicting heatmaps for M keypoints.

Because our latent variables serve as rich, multi-scale de-

scription of image features, we assume that simple linear

predictors built on them will suffice:

y = V T z⇤, y ∈ RM , V ∈ RN⇥M (6)

Training: Our overall model is parameterized by

(W,V, b). Assume we are given training data pairs of im-

ages and output label vectors {xi, yi}. We define a training

objective as follows

min
W,V,b

R(W ) +R(V ) +
X

i

loss(yi, V
TQPk(xi,W, b))

(7)

where R are regularizer functions (we use the Frobenius

matrix norm) and “loss” sums the loss of our M prediction

tasks (where each is scored with log or softmax loss). We

optimize the above by stochastic gradient descent. Because

QPk is a deterministic function, its gradient with respect

to (W, b) can be computed by backprop on the k-times un-

rolled recurrent CNN (Fig. 3). We choose to separate V

from W to ensure that feature extraction does not scale with

the number of output tasks (QPk is independent of M ).

During learning, we fix diagonal weights (wi[u, u] = −1)
and lateral inhibition weights (wi[u, v] = −∞ for (u, v) ∈
group).

Related work (learning): The use of gradient-based

backpropagation to learn an unrolled model dates back to

‘backprop-through-structure’ algorithms [11, 40] and graph

transducer networks [27]. More recently, such approaches

were explored general graphical models [41] and Boltz-

mann machines [12]. Our work uses such ideas to learn

CNNs with top-down feedback using an unrolled latent-

variable model.

Related work (top-down): Prior work has explored

networks that reconstruct images given top-down cues.

This is often cast as unsupervised learning with autoen-

coders [16,32,49] or deconvolutional networks [53], though

supervised variants also exist [29, 34]. Our network dif-

fers in that all nonlinear operations (rectification and max-

pooling) are influenced by both bottom-up and top-down

knowledge (4), which is justified from a latent-variable per-

spective.

3. Implementation

In this section, we provide details for implementing

QP1 and QP2 with existing CNN toolboxes. We visual-

ize our specific architecture in Fig. 4, which closely follows

the state-of-the-art VGG-16 network [38]. We use 3x3 fil-

ters and 2x2 non-overlapping pooling windows (for NMS).

Note that, when processing NMS-layers, we conceptually

use 6x6 filters with replication after NMS, which in practice

can be implemented with standard max-pooling and 3x3 fil-

ters (as argued in the previous section). Hence QP1 is es-

sentially a re-implementation of VGG-16.

QP2: Fig. 5 illustrates top-down coordinate updates,

which require additional feedforward layers, skip connec-

tions, and tied weights. Even though QP2 is twice as deep

as QP1 (and [38]), it requires no additional parameters.

Hence top-down reasoning “comes for free”. There is a

small notational inconvenience at layers that decrease in

size. In typical CNNs, this decrease arises from a previ-

ous pooling operation. Our model requires an explicit 2×
subsampling step (sometimes known as strided filtering) be-

cause it employs NMS instead of max-pooling. When this

subsampled layer is later used to produce a top-down sig-

nal for a future coordinate update, variables must be zero-

interlaced before applying the 180◦ rotated convolutional

filters (as shown by hollow circles in Fig. 5). Note that is

not an approximation, but the mathematically-correct appli-

cation of coordinate descent given subsampled weight con-

nections.

Supervision y: The target label for a single keypoint is

a sparse 2D heat map with a ‘1’ at the keypoint location (or

all ‘0’s if that keypoint is not visible on a particular training

image). We score this heatmap with a per-pixel log-loss.

In practice, we assign ‘1’s to a circular neighborhood that

implicitly adds jittered keypoints to the set of positive ex-

amples.

Multi-scale classifiers V : We implement our output

classifiers (7) as multi-scale convolutional filters defined

over different layers of our model. We use upsampling to

enable efficient coarse-to-fine computations, as described

for fully-convolutional networks (FCNs) [29] (and shown

in Fig. 4). Specifically, our multi-scale filters are imple-

mented as 1 × 1 filters over 4 layers (referred to as fc7,

pool4, pool3, and pool2 in [38]). Because our top (fc7)

layer is limited in spatial resolution (1x1x4096), we de-

fine our coarse-scale filter to be “spatially-varying”, which

can alternatively be thought of as a linear “fully-connected”

layer that is reshaped to predict a coarse (7x7) heatmap of
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Figure 4: We show the architecture of QP2 implemented in our experiments. QP1 corresponds to the left half of QP2, which

essentially resembles the state-of-the-art VGG-16 CNN [38]. QP2 is implemented with an 2X “unrolled” recurrent CNN

with transposed weights, skip connections, and zero-interlaced upsampling (as shown in Fig. 5). Importantly, QP2 does not

require any additional parameters. Red layers include lateral inhibitory connections enforced with NMS. Purple layers denote

multi-scale convolutional filters that (linearly) predict keypoint heatmaps given activations from different layers. Multi-scale

filters are efficiently implemented with coarse-to-fine upsampling [29], visualized in the purple dotted rectangle (to reduce

clutter, we visualize only 3 of the 4 multiscale layers). Dotted layers are not implemented to reduce memory.

x

z’1
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z’2

w2

z1

w2
T

z2

pad & interlace 

convolve & 

subsample

w1

…

Figure 5: Two-pass layer-wise coordinate descent for a two-

layer Rectified Gaussian model can be implemented with

modified CNN operations. White circles denote 0’s used

for interlacing and border padding. We omit rectification

operations to reduce clutter. We follow the color scheme

from Fig. 2.

keypoint predictions given fc7 features. Our intuition is that

spatially-coarse global features can still encode global con-

straints (such as viewpoints) that can produce coarse key-

point predictions. This coarse predictions are upsampled

and added to the prediction from pool4, and so on (as in

[29]).

Multi-scale training: We initialize parameters of both

QP1 and QP2 to the pre-trained VGG-16 model [38],

and follow the coarse-to-fine training scheme for learning

FCNs [29]. Specifically, we first train coarse-scale filters,

defined on high-level (fc7) variables. Note that QP1 and

QP2 are equivalent in this setting. This coarse-scale model

is later used to initialize a two-scale predictor, where now

QP1 and QP2 differ. The process is repeated up until the

full multi-scale model is learned. To save memory during

various stages of learning, we only instantiate QP2 up to

the last layer used by the multi-scale predictor (not suitable

for QPk when k > 2). We use a batch size of 40 images,

a fixed learning rate of 10−6, momentum of 0.9 and weight

decay of 0.0005. We also decrease learning rates of param-

eters built on lower scales [29] by a factor of 10. Batch

normalization [18] is used before each non-linearity. Both

our models and code are available online 1.

Prior work: We briefly compare our approach to re-

cent work on keypoint prediction that make use of deep

architectures. Many approaches incorporate multi-scale

cues by evaluating a deep network over an image pyra-

mid [44, 46, 47]. Our model processes only a single image

scale, extracting multi-scale features from multiple layers of

a single network, where importantly, fine-scale features are

refined through top-down feedback. Other approaches cast

the problem as one of regression, where (x,y) keypoint loca-

tions are predicted [54] and often iteratively refined [3, 42].

Our models predict heatmaps, which can be thought of as

marginal distributions over the (x,y) location of a keypoint,

capturing uncertainty. We show that by thresholding the

heatmap value (certainty), one can also produce keypoint

visibility estimates “for free”. Our comments hold for our

bottom-up model QP1, which can be thought of as a FCN

tuned for keypoint heatmap prediction, rather than seman-

1https://github.com/peiyunh/rg-mpii
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tic pixel labeling. Indeed, we find such an approach to be a

surprisingly simple but effective baseline that outperforms

much prior work.

4. Experiment Results

We evaluated fine-scale keypoint localization on several

benchmark datasets of human faces and bodies. To bet-

ter illustrate the benefit of top-down feedback, we focus on

datasets with significant occlusions, where bottom-up cues

will be less reliable. All datasets provide a rough detec-

tion window for the face/body of interest. We crop and re-

size detection windows to 224x224 before feeding into our

model. Recall that QP1 is essentially a re-implementation

of a FCN [29] defined on a VGG-16 network [38], and so

represents quite a strong baseline. Also recall that QP2

adds top-down reasoning without any increase in the num-

ber of parameters. We will show this consistently improves

performance, sometimes considerably. Unless otherwise

stated, results are presented for a 4-scale multi-scale model.

AFLW: The AFLW dataset [24] is a large-scale real-

world collection of 25,993 faces in 21,997 real-world im-

ages, annotated with facial keypoints. Notably, these faces

are not limited to be responses from an existing face detec-

tor, and so this dataset contains more pose variation than

other landmark datasets. We hypothesized that such pose

variation might illustrate the benefit of bidirectional rea-

soning. Due to a lack of standard splits, we randomly

split the dataset into training (60%), validation (20%) and

test (20%). As this is not a standard benchmark dataset,

we compare to ourselves for exploring the best practices

to build multi-scale predictors for keypoint localization

(Fig. 6). We include qualitative visualizations in our sup-

plementary material.

COFW: Caltech Occluded Faces-in-the-Wild

(COFW) [2] is dataset of 1007 face images with se-

vere occlusions. We present qualitative results in Fig. 7 and

Fig. 8, and quantitative results in Table 1 and Fig. 9. Our

bottom-up QP1 already performs near the state-of-the-art,

while the QP2 significantly improves in accuracy of visible

landmark localization and occlusion prediction. In terms

of the latter, our model even approaches upper bounds that

make use of ground-truth segmentation labels [7]. Our

models are not quite state-of-the-art in localizing occluded

points. We believe this may point to a limitation in the

underlying benchmark. Consider an image of a face mostly

occluded by the hand (Fig. 7). In such cases, humans

may not even agree on keypoint locations, indicating that

a keypoint distribution may be a more reasonable target

output. Our models provide such uncertainty estimates,

while most keypoint architectures based on regression

cannot.

Pascal Person: The Pascal 2011 Person dataset [13]

consists of 11,599 person instances, each annotated with a
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Figure 6: We plot the fraction of recalled face images whose

average pixel localization error in AFLW (normalized by

face size [56]) is below a threshold (x-axis). We compare

our QP1 and QP2 with varying numbers of scales used

for multi-scale prediction, following the naming convention

of FCN [29] (where the Nx encodes the upsampling factor

needed to resize the predicted heatmap to the original image

resolution.) Single-scale models (QP1-32x and QP2-32x)

are identical but perform quite poorly, not localizing any

keypoints with 3.0% of the face size. Adding more scales

dramatically improves performance, and moreover, as we

add additional scales, the relative improvement of QP2 also

increases (as finer-scale features benefit the most from feed-

back). We visualize such models in Fig. 10.

Figure 7: Visualization of keypoint predictions by QP1 and

QP2 on two example COFW images. Both our models pre-

dict both keypoint locations and their visibility (produced

by thresholding the value of the heatmap confidence at the

predicted location). We denote (in)visible keypoint predic-

tions with (red)green dots, and also plot the raw heatmap

prediction as a colored distribution overlayed on a darkened

image. Both our models correctly estimate keypoint visibil-

ity, but our bottom-up models QP1 misestimate their loca-

tions (because bottom-up evidence is misleading during oc-

clusions). By integrating top-down knowledge (perhaps en-

coding spatial constraints on configurations of keypoints),

QP2 is able to correctly estimate their locations.

bounding box around the visible region and up to 23 hu-

man keypoints per person. This dataset contains signifi-

cant occlusions. We follow the evaluation protocol of [30]
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(a) (b)

Figure 8: Facial landmark localization and occlusion pre-

diction results of QP2 on COFW, where red means oc-

cluded. Our bidirectional model is robust to occlusions

caused by objects, hair, and skin. We also show cases where

the model correctly predicts visibility but fails to accurately

localize occluded landmarks (b).

Visible Points All Points

RCPR [2] - 8.5

RPP [51] - 7.52

HPM [6] - 7.46

SAPM [7] 5.77 6.89

FLD-Full [50] 5.18 5.93

QP1 5.26 10.06

QP2 4.67 7.87

Table 1: Average keypoint localization error (as a fraction

of inter-ocular distance) on COFW. When adding top-down

feedback (QP2), our accuracy on visible keypoints signifi-

cantly improves upon prior work. In the text, we argue that

such localization results are more meaningful than those for

occluded keypoints. In Fig. 9, we show that our models

significantly outperform all prior work in terms of keypoint

visibility prediction.

and present results for localization of visible keypoints on

a standard testset in Table 2. Our bottom-up QP1 model

already significantly improves upon the state-of-the-art (in-

cluding prior work making use of deep features), while our

top-down models QP2 further improve accuracy by 2%

without any increase in model complexity (as measured by

the number of parameters). Note that the standard evalu-

ation protocols evaluate only visible keypoints. In supple-

mentary material, we demonstrate that our model can also

accurately predict keypoint visibility “for free”.

MPII: MPII is (to our knowledge) the largest available

articulated human pose dataset [1], consisting of 40,000

people instances annotated with keypoints, visibility flags,

and activity labels. We present qualitative results in Fig. 11
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Figure 9: Keypoint visibility prediction on COFW, mea-

sured by precision-recall. Our bottom-up model QP1 al-

ready outperforms all past work that does not make use of

ground-truth segmentation masks (where acronyms corre-

spond those in Table 1). Our top-down model QP2 even

approaches the accuracy of such upper bounds. Follow-

ing standard protocol, we evaluate and visualize accuracy

in Fig. 8 at a precision of 80%. At such a level, our

recall (76%) significantly outperform the best previously-

published recall of FLD [50] (49%).

α 0.10 0.20

CNN+prior [30] 47.1 -

QP1 66.5 78.9

QP2 68.8 80.8

Table 2: We show human keypoint localization performance

on PASCAL VOC 2011 Person following the evaluation

protocol in [30]. PCK refers to the fraction of keypoints

that were localized within some distance (measured with re-

spect to the instance’s bounding box). Our bottom-up mod-

els already significantly improve results across all distance

thresholds (α = 10, 20%). Our top-down models add a 2%

improvement without increasing the number of parameters.

and quantitative results in Table 3. Our top-down model

QP2 appears to outperform all prior work on full-body key-

points. Note that this dataset also includes visibility labels

for keypoints, even though these are not part of the standard

evaluation protocol. In supplementary material, we demon-

strate that visibility prediction on MPII also benefits from

top-down feedback.

TB: It is worth contrasting our results with TB [45],

which implicitly models feedback by (1) using a MRF to

post-process CNN outputs to ensure kinematic consistency

between keypoints and (2) using high-level predictions from

a coarse CNN to adaptively crop high-res features for a fine

CNN. Our single CNN endowed with top-down feedback

is slightly more accurate without requiring any additional

parameters, while being 2X faster (86.5 ms vs TB’s 157.2

ms). These results suggest that top-down reasoning may el-

egantly capture structured outputs and attention, two active

areas of research in deep learning.
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Figure 10: We visualize bottom-up and top-down models trained for human pose estimation, using the naming convention

of Fig. 6. Top-down feedback (QP2) more accurately guides finer-scale predictions, resolving left-right ambiguities in the

ankle (red) and poor localization of the knee (green) in the bottom-up model (QP1).

Figure 11: Keypoint localization results of QP2 on the

MPII Human Pose testset. We quantitatively evaluate re-

sults on the validation set in Table 2. Our models are able to

localize keypoints even under significant occlusions. Recall

that our models can also predict visibility labels “for free”,

which are evaluated in supplementary material.

Head Shou Elb Wri Hip Kne Ank Upp Full

GM [10] - 36.3 26.1 15.3 - - - 25.9 -

ST [37] - 38.0 26.3 19.3 - - - 27.9 -

YR [52] 73.2 56.2 41.3 32.1 36.2 33.2 34.5 43.2 44.5

PS [35] 74.2 49.0 40.8 34.1 36.5 34.4 35.1 41.3 44.0

TB [45] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 84.5 82.0

QP1 94.3 90.4 81.6 75.2 80.1 73.0 68.3 82.4 81.1

QP2 95.0 91.6 83.0 76.6 81.9 74.5 69.5 83.8 82.4

Table 3: We show PCKh-0.5 keypoint localization results

on MPII using the recommended benchmark protocol [1].

More recurrence iterations: To explore QPK’s per-

formance as a function of K without exceeding memory

limits, we trained a smaller network from scratch on 56X56

K 1 2 3 4 5 6

Upper Body 57.8 59.6 58.7 61.4 58.7 60.9

Full Body 59.8 62.3 61.0 63.1 61.2 62.6

Table 4: PCKh(.5) on MPII-Val for a smaller network

sized inputs for 100 epochs. As shown in Table 4, we con-

clude: (1) all recurrent models outperform the bottom-up

baseline QP1; (2) additional iterations generally helps, but

performance maxes out at QP4. A two-pass model (QP2)

is surprisingly effective at capturing top-down info while

being fast and easy to train.

Conclusion: We show that hierarchical Rectified Gaus-

sian models can be optimized with rectified neural net-

works. From a modeling perspective, this observation al-

lows one to discriminatively-train such probabilistic models

with neural toolboxes. From a neural net perspective, this

observation provides a theoretically-elegant approach for

endowing CNNs with top-down feedback – without any in-

crease in the number of parameters. To thoroughly evaluate

our models, we focus on “vision-with-scrutiny” tasks such

as keypoint localization, making use of well-known bench-

mark datasets. We introduce (near) state-of-the-art bottom-

up baselines based on multi-scale prediction, and consis-

tently improve upon those results with top-down feedback

(particularly during occlusions when bottom-up evidence

may be ambiguous).
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