
Learning Transferrable Knowledge for Semantic Segmentation

with Deep Convolutional Neural Network

Seunghoon Hong†,‡ Junhyuk Oh‡ Honglak Lee‡ Bohyung Han†

†Dept. of Computer Science and Engineering ‡Dept. of Electrical Engineering and Computer Science

POSTECH, Pohang, Korea University of Michigan, Ann Arbor, MI, USA

{maga33,bhhan}@postech.ac.kr {junhyuk,honglak}@umich.edu

Abstract

We propose a novel weakly-supervised semantic segmen-

tation algorithm based on Deep Convolutional Neural Net-

work (DCNN). Contrary to existing weakly-supervised ap-

proaches, our algorithm exploits auxiliary segmentation an-

notations available for different categories to guide seg-

mentations on images with only image-level class labels.

To make segmentation knowledge transferrable across cat-

egories, we design a decoupled encoder-decoder architec-

ture with attention model. In this architecture, the model

generates spatial highlights of each category presented in

images using an attention model, and subsequently per-

forms binary segmentation for each highlighted region us-

ing decoder. Combining attention model, the decoder

trained with segmentation annotations in different cate-

gories boosts accuracy of weakly-supervised semantic seg-

mentation. The proposed algorithm demonstrates substan-

tially improved performance compared to the state-of-the-

art weakly-supervised techniques in PASCAL VOC 2012

dataset when our model is trained with the annotations in

60 exclusive categories in Microsoft COCO dataset.

1. Introduction

Semantic segmentation refers to the task assigning dense

class labels to pixels in an image. Although pixel-wise la-

bels provide richer descriptions of images than bounding

box labels or image-level tags, inferring such labels is a

much more challenging task as it involves a highly com-

plicated structured prediction problem.

Recent breakthrough in semantic segmentation has been

mainly accelerated by the approaches based on Convolu-

tional Neural Networks (CNNs) [4, 21, 11, 10, 25]. Given

a classification network pre-trained on a large image col-

lection, they learn a network for segmentation based on

strong supervision—pixel-wise class labels. Although the

approaches substantially improve the performance over the

prior arts, training CNN requires a large number of fine-

quality segmentation annotations, which are difficult to col-

lect due to extensive labeling cost. For this reason, scaling

up the semantic segmentation task to a large number of cat-

egories is very challenging in practice.

Weakly-supervised learning [5, 27, 29, 31] is an alter-

native approach to alleviate annotation efforts. They infer

segmentation labels from training images given weak la-

bels such as bounding boxes [5] or image-level class la-

bels [31, 27, 29]. Since such annotations are easy to col-

lect and even already available in existing datasets [6], it

is straightforward to apply those approaches to large-scale

problems with many categories. However, the segmenta-

tion quality by the weakly-supervised techniques is typi-

cally much worse than the one by supervised methods since

there is no direct supervision for segmentation such as ob-

ject shapes and locations during training.

The objective of this paper is to reduce the gap between

semantic segmentation algorithms based on strong super-

visions (e.g., semi- and fully-supervised approaches) and

weak supervisions (e.g., weakly-supervised approaches).

Our key idea is to employ segmentation annotations avail-

able for different categories to compensate for missing su-

pervisions in weakly annotated images. No additional cost

is required to collect such data since there are already sev-

eral datasets publicly available with pixel-wise annotations,

e.g., BSD [22], Microsoft COCO [20], and LabelMe [32].

These datasets have not been actively explored yet for se-

mantic segmentation due to the mismatches in semantic

categories with the popular benchmark datasets, e.g., PAS-

CAL VOC [7]. The critical challenge in this problem is

to learn common prior knowledge for segmentation trans-

ferrable across categories. It is not a trivial task with exist-

ing architectures, since they simply pose the semantic seg-

mentation as pixel-wise classification and it is difficult to

exploit examples from the unseen classes.

We propose a novel encoder-decoder architecture with

an attention model, which is conceptually appropriate to

transfer segmentation knowledge from one category to an-
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other. In this architecture, the attention model generates

category-specific saliency on each location of an image,

while the decoder performs foreground segmentation using

the saliency map based on category-independent segmenta-

tion knowledge. Our model trained on one dataset is trans-

ferable to another by adapting the attention model to focus

on unseen categories. Since the attention model is trainable

with only image-level class labels, our algorithm is applica-

ble to semantic segmentation on weakly-annotated images

through transfer learning. The contributions of this paper

are summarized below.

• We propose a new paradigm for weakly-supervised se-

mantic segmentation, which exploits segmentation an-

notations from different categories to guide segmenta-

tions with weak annotations. To our knowledge, this

is the first attempt to tackle the weakly-supervised se-

mantic segmentation problem by transfer learning.

• We propose a novel encoder-decoder architecture with

attention model, which is appropriate to transfer the

segmentation knowledge across categories.

• The proposed algorithm achieves substantial perfor-

mance improvement over existing weakly-supervised

approaches by exploiting segmentation annotations in

exclusive categories.

The rest of the paper is organized as follows. We briefly

review related work and introduce our algorithm in Sec-

tion 2 and 3, respectively. The detailed configuration of the

proposed network is described in Section 4. Training and

inference procedures are presented in Section 5. Section 6

illustrates experimental results on a benchmark dataset.

2. Related Work

Recent success in CNN has brought significant progress

on semantic segmentation in the past few years [4, 11, 10,

21, 25]. By posing the semantic segmentation as region-

based classification problem, they train the network to pro-

duce pixel-wise class labels using segmentation annotations

as training data [10, 11, 21, 25]. Based on this framework,

some approaches improve segmentation performance by

learning deconvolution network to capture accurate object

boundaries [26] or adopting fully connected CRF as post-

processing [4, 38]. However, the performance of the super-

vised approaches depends heavily on the size and quality of

training data, which limits the scalability of the algorithms.

To reduce the efforts for annotations, weakly-supervised

approaches attempt to learn the model for semantic seg-

mentation only with weak annotations [5, 27, 29, 31]. To

infer latent segmentation labels, they often rely on the tech-

niques such as Multiple Instance Learning (MIL) [29, 31] or

Expectation-Maximization (EM) [27]. Unfortunately, they

are not sufficient to make up missing supervision and lead

to significant performance degradation compared to fully-

supervised approaches. In the middle, semi-supervised ap-

proaches [13, 27] exploit a limited number of strong annota-

tions to reduce performance gap between fully- and weakly-

supervised approaches. Notably, [13] proposed a decoupled

encoder-decoder architecture for segmentation, where it di-

vides semantic segmentation into two separate problems—

classification and segmentation—and learns a decoder to

perform binary segmentation for each class identified in the

encoder. Although this semi-supervised approach improves

performance by sharing the decoder for all classes, it still

needs strong annotations in the classes of interest for seg-

mentation. We remove this requirement by using segmen-

tation annotations available for other categories.

In computer vision, the idea of employing external data

to improve performance of target task has been explored

in context of domain adaptation [33, 15, 9, 8] or transfer

learning [19, 36]. However, the approaches in domain adap-

tation often assume that there are shared categories across

domains, and the techniques with transfer learning are of-

ten limited to simple classification tasks. We refer [30] for

comprehensive surveys on domain adaptation and transfer

learning. Hoffman et al. [12] proposed a large-scale detec-

tion system by transferring knowledge for object detection

between categories. Our work shares the motivations with

this work, but aims to solve a highly complicated structured

prediction problem, semantic segmentation.

There has been a long line of research on learning visual

attention [1, 2, 3, 18, 24, 37, 35]. Their objective is to learn

the attention mechanism that can adaptively focus on salient

part of an image or video for various computer vision tasks,

such as object recognition [1, 2, 18], object tracking [3],

caption generation [37], image generation [35], etc. Our

work is an extension of this idea to semantic segmentation

by transfer learning.

3. Algorithm Overview

This paper tackles the weakly-supervised semantic seg-

mentation problem in transfer learning perspective. Sup-

pose that we have two sets of data, T = {1, ..., Nt} and

S = {1, ..., Ns}, which are composed of Nt and Ns im-

ages, respectively. Note that a set of images in target do-

main, denoted by T , only have image-level class labels

while the other set of data S , referred to as source domain,

have pixel-wise segmentation annotations. Our objective

is to improve the weakly-supervised semantic segmenta-

tion on the target domain using the segmentation annota-

tions available in the source domain. We assume that both

target and source domains are composed of exclusive sets

of categories. In this setting, there is no direct supervision

(i.e., ground-truth segmentation labels) for the categories in

the target domain, which makes our objective similar to a
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Figure 1. Overall architecture of the proposed algorithm. Given a feature extracted from the encoder, the attention model estimates

adaptive spatial saliency of each category associated with input image (Section 4.2). The outputs of attention model are subsequently

fed into the decoder, which generates foreground segmentation mask of each focused region (Section 4.3). During training, we fix the

encoder by pre-trained weights, and leverage the segmentation annotations from source domain to train both the decoder and the attention

model, and image-level class labels in both domains to train the attention model under classification objective. After training, semantic

segmentation on the target domain is performed naturally by exploiting the decoder trained with source images and the attention model

adapted to target domain (Section 5).

weakly-supervised semantic segmentation setting.

To transfer segmentation knowledge from source to tar-

get domain, we propose a novel encoder-decoder architec-

ture with attention model. Figure 1 illustrates the over-

all architecture of the proposed algorithm. The network is

composed of four parts: encoder, attention model, classi-

fier and decoder. In this architecture, the input image is

first transformed to a multi-dimensional feature vector by

the encoder, and the attention model identifies salient re-

gion for each category associated with the image. The out-

put of the attention model reveals location information of

each category in a coarse feature map, where the dense and

detailed foreground segmentation mask for each category is

obtained by the decoder.

Training our network involves different mechanisms for

source and target domain examples, since they are associ-

ated with heterogeneous annotations with different levels

of supervision. We leverage the segmentation annotations

from source domain to train both the decoder and the atten-

tion model with segmentation objective, while image-level

class labels in both target and source domains are used to

train the attention model under classification objective. The

training is performed jointly for both objectives using ex-

amples from both domains.

The proposed architecture exhibits several advantages to

capture transferrable segmentation knowledge across do-

mains. Employing the decoupled encoder-decoder archi-

tecture [13] makes it possible to share the information for

shape generation among different categories. The attention

model provides not only predictions for localization but also

category-specific information that enables us to adapt the

decoder trained in source domain to target domain. The

combination of two components makes information for seg-

mentation transferable across different categories, and pro-

vides useful segmentation prior that is missing in weakly

annotated images in target domain.

4. Architecture

This section describes our framework for semantic seg-

mentation through transfer learning.

4.1. Preliminaries

We first describe notations and general configurations

of the proposed model. Our network is composed of four

parts, fenc, fatt, fcls and fdec, which are neural networks cor-

responding to encoder, attention model, classifier and de-

coder, respectively. Our goal is to train all components us-

ing the examples from both domains except fenc, which ex-

ploits a pre-trained network without fine-tuning.

Let x denote a training image from either source or target

domain. We assume that the image is associated with a set

of class labels L∗, which is given by either ground-truth (in

training) or prediction (in testing). Given an input image x,

the network first extracts a feature descriptor as

A = fenc(x; θe), A ∈ RM×D (1)

where θe is the model parameter for the encoder, and M and

D denote the number of hidden units in each channel and

the number of channels, respectively. We employ VGG-16

layer net [34] pre-trained on ImageNet [6] as our encoder

fenc, and the feature descriptor A is obtained from the last

convolutional layer to retain spatial information in the input

image. The extracted feature and associated labels are then

used to generate attentions and segment objects, which are

discussed in the following subsections.

4.2. Attention model

Given a feature descriptor extracted from the encoder

A ∈ RM×D and its associated class labels L∗, the objec-

tive of our attention model is to learn a set of positive weight

vectors {αl}∀l∈L∗ defined over a 2D space, where each ele-

ment of αl ∈ RM represents the relevance of each location
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Figure 2. Examples of learned attentions. (a) Input image, (b),

(c) and (d) represent attention weights obtained by Eq. (3). The

proposed attention model adaptively focuses on different areas in

an image depending on input labels.

to the lth category. Our attention model is formally given

by

vl = fatt(A,yl; θα), vl ∈ RM (2)

αl
i =

exp
(

vli
)

∑

i exp
(

vli
) , α

l ∈ RM , (3)

where yl is a one-hot label vector for the lth category, θα
denotes parameters of the attention model, and vl represents

unnormalized attention weights. To encourage the model to

pay attention to only a part of the image, we normalize vl

to α
l using a softmax function as suggested in [37].

To obtain category-specific attention α
l using our atten-

tion model fatt, we employ multiplicative interactions [23]

between feature and label vector. It learns a set of gating pa-

rameters represented by a 3-way tensor to model correlation

between feature and label vectors. For scalability issue, we

reduce the number of parameters by the factorization tech-

nique proposed in [23], and our model can be written as

vl = Watt
(

WfeatA⊙Wlabelyl
)

+ b, (4)

where ⊙ denotes element-wise multiplication and b ∈ RM

is a bias. Note that the weights are given by Wfeat ∈
Rd×MD,Wlabel ∈ Rd×L and Watt ∈ RM×d, where L

and d denote the size of label vector and the number of

factors, respectively. We observe that using multiplica-

tive interaction generally gives better results than additive

ones (e.g., concatenation), because it is capable of captur-

ing high-order dependency between feature and label.

To apply the attention to our transfer-learning scenario,

the model fatt should be trainable in both target and source

domains. Since examples in each domain are associated

with different types of annotations, we train attention model

based on different objectives on two separate branches. In

the following, we first describe the learning objective for at-

tention model with weak annotations, whereas the one with

strong annotations is described in the next subsection.

To train the attention model with only image-level class

labels, we create fcls composed of two fully-connected lay-

ers on top of the attention model, and optimize both fatt and

fcls under a classification objective. To this end, we extract

features based on the category-specific attention by aggre-

gating features over the spatial region as follows:

zl = AT
α

l, zl ∈ RD. (5)

Intuitively, zl represents a category-specific feature defined

over all the channels in the feature map.

Using the images with weak annotations in both target

and source domain, we jointly train attention model and

classifier to minimize the classification loss as follows:

min
θα,θc

∑

i∈T ∪S

∑

l∈L∗

i

ec
(

yl
i, fcls(z

l
i; θc)

)

, (6)

where θc denotes parameters associated with classifier, and

ec denotes the loss between ground-truth yl
i and predicted

label vector fcls(z
l
i; θc). We employ a cross-entropy loss to

measure classification error ec.

The optimization of Eq. (6) is susceptible for overfitting

since the ground-truth class label yl is given as an input to

attention model as well. In practice, we observe that our

model avoids this issue by effectively eliminating the direct

link from attention to label prediction and constructing in-

termediate representation z using the original feature A.

Figure 2 illustrates the learned attention weights for each

class. We observe that the attention model captures spatial

saliency effectively given its input labels.

4.3. Decoder

The attention model described in the previous section

generates a set of adaptive saliency maps for each category

{αl}∀l∈L∗ , which provides useful information for localiza-

tion. Given these attentions, the next step of our algorithm

is to reconstruct dense foreground segmentation mask for

each attended category by the decoder. However, the di-

rect application of attention weights to segmentation may

be problematic, since the activations tend to be sparse due

to the softmax operation in Eq. (3) and may lose informa-

tion encoded in the feature map useful for shape generation.

To resolve this issue and reconstruct useful information

for segmentation, we feed the additional inputs to the de-

coder using attention α
l and the original feature A. Rather

than directly using the attention, we exploit the intermediate

representation zl obtained from Eq. (5). It represents rele-

vance of each channel out of the feature maps with respect

to the lth category. Then we aggregate spatial activations in

each channel of the feature using zl as coefficients, which

is given by

sl = Azl, s ∈ RM (7)

where sl represents densified attention in the same size with

α
l and serves as inputs to the decoder. As shown in Fig-

ure 3, densified attention maps preserve more details of the

object shape compared to the original attention (αl).
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(a) Input image (b) Attention (c) Densified attention

Figure 3. Examples of attention (αl) and densified attention (sl).

Given densified attention sl as input, the attention model

and decoder are jointly trained to minimize the segmenta-

tion loss by the following objective function

min
θα,θs

∑

i∈S

∑

l∈L∗

i

es
(

dl
i, fdec(s

l
i; θs)

)

, (8)

where dl
i denotes a binary segmentation mask of the ith

image for the lth category, and es denotes pixel-wise loss

function between ground-truth and predicted segmentation

masks. Similar to classification, we employ a cross-entropy

loss function for es. Since training requires ground-truth

segmentation annotations, the objective function is only op-

timized with images in source domain. Note that the above

equation involves optimization of attention model. During

training, the attention model is learned using data with two

different types of annotations under both Eq. (6) and (8).

We employ recently proposed deconvolution network

[26] for our decoder architecture fdec. Given an input to

the decoder sl, it generates a segmentation mask in the

same size as the input image by multiple successive opera-

tions of unpooling, deconvolution and rectification. Pooling

switches are shared between pooling and unpooling layers,

which is appropriate to recover accurate object boundary.

We refer to [26] for more details about this network.

We train the decoder for segmentation given attention

α
l. By decoupling classification, which is a domain specific

task, from decoding [13], we capture category-independent

information for shape generation and apply the architecture

to any unseen categories. Since all weights in the decoder

are shared between different categories, it potentially en-

courages the decoder to capture common shape information

that can be generally applicable to multiple categories.

5. Training and Inference

This section describes the training and inference proce-

dure of the proposed algorithm. Combining Eq. (6) and (8),

the overall objective function is given by

min
θα,θc,θs

∑

i∈T ∪S

∑

l∈L∗

i

ec
(

yl
i, fcls(z

l
i; θc)

)

(9)

+ λ
∑

j∈S

∑

l∈L∗

j

es
(

dl
j , fdec(s

l
j ; θs)

)

,

where λ controls balance between classification and seg-

mentation losses. Note that it allows joint optimization

of attention model for both classification and segmenta-

tion. Although our attention model is generally good even

trained with only class labels (see Figure 3), training atten-

tion based only on classification objective sometimes leads

to noisy predictions due to missing supervision of localiza-

tion. By jointly training with segmentation objective, we

regularize to avoid finding noisy solution for target domain

categories. After training, we remove the classification lay-

ers fcls since it is required only in training to learn attentions

for the data from target domain categories.

For inference of target domain images, we first apply a

separate classifier to identify a set of labels L̃∗ associated

with the image. Then, for each identified label l ∈ L̃∗, we

iteratively construct attention weights α
l
i and obtain fore-

ground segmentation mask fdec(s
l
i) from the decoder out-

put. Given foreground probability maps from all labels

{fdec(s
l
i)}∀l∈L̃∗ , the final segmentation label is obtained by

taking the maximum probability across channels.

6. Experiments

This section describes detailed information in implemen-

tation and discusses experimental results.

6.1. Implementation Details

Datasets We employ PASCAL VOC 2012 [7] as target

domain and Microsoft COCO (MS-COCO) [20] as source

domain, which have 20 and 80 labeled semantic categories,

respectively. To simulate the transfer learning scenario,

we remove all training images relevant to 20 PASCAL

VOC categories from MS-COCO dataset, and use only

17,443 images from 60 categories (excluding the ones in

the PASCAL VOC dataset) to construct the source domain

data. We train our model using image-level class labels in

both datasets and segmentation annotations in MS-COCO

dataset, and evaluate the performance on PASCAL VOC

2012 benchmark dataset.

Training We initialize the encoder by fine-tuning the pre-

trained CNN from ImageNet [6] to perform multi-class

classification on the combined datasets of PASCAL VOC

and MS-COCO. The weights in the attention model and

classification layers (θα and θc, respectively) are pre-trained

by optimizing Eq. (6). Then we optimize both decoder, at-

tention model and classification layers jointly using the ob-

jective function in Eq. (9) with λ = 2, while the weights in
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Table 1. Evaluation results on PASCAL VOC 2012 validation set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Weakly-supervised:

EM-Adapt [27] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8

CCNN [28] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

MIL+seg [31] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

Semi-supervised:

DecoupledNet [13] 86.5 69.9 33.6 58.5 42.4 50.4 68.8 63.2 67.5 11.5 61.8 20.0 61.2 66.7 60.1 50.8 30.2 67.9 33.9 59.2 51.0 53.1

EM-Adapt [27] - - - - - - - - - - - - - - - - - - - - - 47.6

Transfer:

TransferNet 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1

TransferNet-GT 85.2 70.6 25.3 61.7 42.2 38.9 67.5 53.9 73.3 20.6 81.5 26.9 69.6 73.2 66.6 36.7 26.9 82.9 42.2 54.4 39.3 54.3

DecoupledNet† 79.2 13.1 7.7 38.4 14.3 15.0 14.7 46.0 60.5 3.7 28.0 1.7 54.0 37.5 24.0 9.2 4.5 46.2 3.4 18.7 13.0 25.4

BaselineNet 79.1 49.4 15.8 41.5 33.1 38.6 48.4 44.8 57.6 13.1 63.5 3.7 48.4 56.1 50.7 41.4 20.3 61.4 25.4 35.1 24.4 40.6

Table 2. Evaluation results on PASCAL VOC 2012 test set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Fully-supervised:

FCN-8s [21] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

CRF-RNN [38] 93.1 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

DeepLab-CRF [4] 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

DeconvNet [26] 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

Weakly-supervised:

EM-Adapt [27] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

CCNN [28] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

MIL+seg [31] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

Transfer:

TransferNet 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2

the decoder (θs) are initialized with zero-mean Gaussians.

We fix the weights in the encoder (θe) during training.

Optimization We implement the proposed algorithm

based on Caffe [14] library. We employ Adam optimiza-

tion [16] to train our network with learning rate 0.0005 and

default hyper-parameter values proposed in [16]. The size

of mini-batch is set to 64. Training our model takes 4 hours

for pre-training attention model including classification lay-

ers, and 10 hours for joint training of all other parts, using

NVIDIA Titan X GPU.

Inference We adopt VGG 16-layer net [34] as an addi-

tional classifier, which is pre-trained on ImageNet [6] and

fine-tuned on PASCAL VOC dataset. The predicted class

labels are used to generate class-specific attention and seg-

mentation as described in Section 5. Optionally, we employ

post processing using fully-connected CRF [17]. In this

case, we apply the CRF on foreground/background prob-

ability maps for each class label independently, and obtain

combined segmentations by taking pixel-wise maximums

of foreground probabilities across labels.

6.2. Comparison to Other Methods

This section presents comparative evaluation results of

our algorithm PASCAL VOC 2012 benchmark dataset. We

follow comp6 evaluation protocol, and scores are mea-

sured by computing Intersection over Union (IoU) between

ground truth and predicted segmentation.

Table 1 summarizes the evaluation results on PASCAL

VOC 2012 validation dataset. We compared the pro-

posed algorithm with state-of-the-art weakly- and semi-

supervised algorithms1. Our method is denoted by Trans-

ferNet, and TransferNet-GT indicates our method with

ground-truth class labels for segmentation inference, which

serves as the upper-bound performance of our method since

it assumes classification is perfect. The proposed algo-

rithm outperforms all weakly-supervised semantic segmen-

tation techniques with substantial margins, although it does

not employ any ground-truth segmentations for categories

used in evaluation. The performance of the proposed algo-

rithm is comparable to semi-supervised semantic segmen-

tation methods, which exploits a small number of ground-

truth segmentations in addition to weakly-annotated images

for training. The results suggest that segmentation annota-

tions from different categories can make up missing super-

vision in weakly-annotated images; the proposed encoder-

decoder architecture based on attention model successfully

captures transferable segmentation knowledge from the ex-

clusive segmentation annotations and uses it as prior for

segmentation in unseen categories.

Table 2 summarizes our results on PASCAL VOC 2012

test dataset. Our algorithm exhibits superior performance to

weakly-supervised approaches, but there are still large per-

1Strictly speaking, our method is not directly comparable to both ap-

proaches since we use auxiliary examples. Note that we do not use ground-

truth segmentation annotations for the categories used in evaluation, since

the examples are from different categories.
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formance gaps with fully-supervised approaches. It shows

that there is domain-specific segmentation knowledge that

cannot be made up by annotations form different categories.

The qualitative results of the proposed algorithm are pre-

sented in Figure 5. Our algorithm often produces accurate

segmentations in the target domain by transferring the de-

coder trained with source domain examples, although it is

not successful in capturing some category-specific fine de-

tails in some examples. The missing details can be recov-

ered through post-processing based on CRF. Since the at-

tention model in the target domain may not be perfect due

to missing supervisions, our algorithm sometimes produces

noisy predictions as illustrated in Figure 5(b).

6.3. Comparison to Baselines

To better understand the benefits from the attention

model in our transfer learning scenario, we compare the

proposed algorithm with two baseline algorithms, which are

denoted by DecoupledNet† and BaselineNet.

DecoupledNet† has identical to the architecture proposed

in [13], but has a direct connection between encoder and de-

coder without attention mechanism. Note that the decoder

of DecoupledNet† is trained on MS-COCO dataset while

segmentation is tested on PASCAL VOC dataset. The result

in Table 1 shows that the model trained on source domain

fails to adapt to target domain categories. It is mainly be-

cause the decoder cannot interpret the features from unseen

categories in target domain. Our model mitigates this issue

since the attention model provides coherent representations

to decoder across domains.

Although the above baseline shows the benefits of the

attention model in our architecture, the advantage of atten-

tion estimation from the intermediate layer is still not clear

enough. To verity the benefit of attention, we employ an-

other baseline similar to FCN [21] denoted by BaselineNet,

which uses class score map as input to the decoder. It can

be considered as a special case of our method that the atten-

tion is extracted from the final layer of the classification net-

work (fatt = fcls). The performance of BaselineNet is bet-

ter than DecoupledNet† since the class score map provides

category-invariant representations to the decoder. However,

the performance is considerably worse than the proposed

method as shown in Table 1 and Figure 5. We observe that

the class score map is sparse and focused on discriminative

regions, while densified attention map in our model contains

richer information for segmentation.

The comparisons to the baseline algorithms show that

transferring segmentation knowledge across categories is

a very challenging task. The naı̈ve extensions of existing

architectures have troubles in generalizing the knowledge

invariant to categories. In contrast, our model effectively

transfers segmentation knowledge by learning general fea-

tures through attention mechanism.
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Figure 4. Performance of the proposed algorithm with varying

number of annotations in the source domain.

6.4. Impact of Annotation Size in Source Domain

To see the impact of number of annotations in the source

domain, we conduct additional experiments by varying the

number of annotations in the source domain (MS-COCO).

We randomly construct subsets of training data by varying

their sizes in ratios (50%, 25%, 10%, 5% and 1%) and aver-

age the performance in each size with 3 subsets. The results

are illustrated in Figure 4. In general, more annotations in

the source domain improve the segmentation quality on the

target domain. The performance of the proposed algorithm

is still better than other weakly-supervised methods even

with a very small fraction of annotations. It suggests that

exploiting even small number of segmentations from other

categories can effectively reduce the gap between the ap-

proaches based on strong and weak supervisions.

7. Conclusion

We propose a novel approach for weakly-supervised se-

mantic segmentation, which exploits extra segmentation

annotations in different categories to improve segmenta-

tion performance on the dataset with missing supervisions.

The proposed encoder-decoder architecture with attention

model is appropriate to capture transferable segmentation

knowledge across categories. The results on a challeng-

ing benchmark dataset suggest that the gap originated from

missing strong supervision can be reduced by transfer learn-

ing. We believe that scaling up the proposed algorithm to a

large number of categories would be one interesting future

research direction, e.g., semantic segmentation on 7.6K cat-

egories in ImageNet dataset using segmentation annotations

from 20 PASCAL VOC categories.
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Input Image Ground-truth Densified attention BaselineNet TransferNet TransferNet+CRF

(a) Examples that our method produces accurate segmentation.

(b) Examples that our method produces inaccurate segmentation due to misclassification (top) or inaccurate attention (bottom).

Figure 5. Examples of semantic segmentation on PASCAL VOC 2012 validation images. The attentions (the 3rd column) are extracted

from the model trained using Eq. (9), and aggregated over all categories for visualization. (a) Our methods based on attention model (Trans-

ferNet and TransferNet+CRF) produce accurate segmentation results even without CRF by transferring learned segmentation knowledge

from source domain. Our results tend to be denser and more accurate than the results from BaselineNet, which generates segmentation from

class score map. (b) Our algorithm sometimes produces inaccurate segmentations when the input labels are wrong due to misclassification

(top) or attention output is noisy (bottom).
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