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Abstract

Convolutional Neural Networks (CNNs) have recently

been successfully applied to various Computer Vision (CV)

applications. In this paper we utilize CNNs to predict depth

information for given Light Field (LF) data. The proposed

method learns an end-to-end mapping between the 4D light

field and a representation of the corresponding 4D depth

field in terms of 2D hyperplane orientations. The obtained

prediction is then further refined in a post processing step

by applying a higher-order regularization.

Existing LF datasets are not sufficient for the purpose of

the training scheme tackled in this paper. This is mainly due

to the fact that the ground truth depth of existing datasets is

inaccurate and/or the datasets are limited to a small num-

ber of LFs. This made it necessary to generate a new syn-

thetic LF dataset, which is based on the raytracing software

POV-Ray. This new dataset provides floating point accu-

rate ground truth depth fields, and due to a random scene

generator the dataset can be scaled as required.

1. Introduction

A 4D light field [23, 14] provides information of all light

rays, that are emitted from a scene and hit a predefined sur-

face. Contrary to a traditional image, a LF contains not only

intensity information, but also directional information. This

additional directional information inherent in the LF implic-

itly defines the geometry of the observed scene.

It is common practice to use the so-called two-plane or

light slab parametrization to describe the LF. This type of

parametrization defines a ray by its intersection points with

two planes, that are usually referred to as image plane Ω ⊆
R

2 and lens plane Π ⊆ R
2. Hence the LF can be defined in

mathematical terms as the mapping

L : Ω×Π → R, (p,q) 7→ L(p,q) , (1)

where p = (x, y)⊤ ∈ Ω and q = (ξ, η)⊤ ∈ Π represent the

spatial and directional coordinates.

There are different ways to visualize the 4D LF. One

way of visualizing the LF is as a flat 2D array of 2D ar-
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Figure 1. Illustration of LF data. (a) shows a sub-aperture im-

age with vertical and horizontal EPIs. The EPIs correspond to

the positions indicated with dashed lines in the sub-aperture im-

age. (b) shows the corresponding depth field, where red regions

are close to the camera and blue regions are further away. In the

EPIs a set of 2D hyperplanes is indicated with yellow lines, where

corresponding scene points are highlighted with the same color in

the sub-aperture representation in (b).

rays, which can be arranged position major or direction

major. The direction major representation can be inter-

preted as a set of pinhole views, where the viewpoints are

arranged on a regular grid parallel to a common image

plane (c.f . Figure 2). Those pinhole views are called sub-

aperture images, and they clearly show that the LF provides

information about the scene geometry. When considering

Equation (1) a sub-aperture image is obtained by holding

q fixed and by varying over all spatial coordinates p. An-

other visualization of LF data is called Epipolar Plane Im-

age (EPI) representation, which is a more abstract visualiza-

tion, where one spatial coordinate and one directional coor-

dinate is held constant. For example if we fix y and η, then

we restricts the LF to a 2D function

Σy,η : R2 → R, (x, ξ) 7→ L(x, y, ξ, η) , (2)

that defines a 2D EPI. The EPI represents a 2D slice through

the LF and it also shows that the LF space is largely linear,

i.e. that a 3D scene point always maps to a 2D hyperplane

in the LF space (c.f . Figure 1).

There are basically two ways of capturing a dynamic LF.

First, there are camera arrays [34], that are bulky and ex-
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pensive, but allow to capture high resolution LFs. Second,

more recent efforts in this field focus on plenoptic cam-

eras [1, 24, 25], that are able to capture the LF in a sin-

gle shot. Although LFs describe a powerful concept that is

well-established in CV, commercially available LF captur-

ing devices (e.g. Lytro, Raytrix, or Pelican) currently only

fill a market niche, and are by far outweighed by traditional

2D cameras.

LF image processing is highly interlinked with the devel-

opment of efficient and reliable shape extraction methods.

Those methods are the foundation of all kinds of applica-

tions, like digital refocusing [18, 24], image segmentation

[33], or super-resolution [4, 31], to name but a few. In the

context of Shape from Light Field (SfLF) authors mainly

focus on robustness w.r.t. depth discontinuities or occlusion

boundaries. These occlusion effects occur when near ob-

jects hide parts of objects that are further away from the

observer. In the case of binocular stereo occlusion handling

is a tough problem, because it is basically impossible to es-

tablish correspondences between points that are observed

in one image but occluded in the other image. In this case

only prior knowledge about the scene can be used to resolve

those problems. This prior knowledge is usually added in

terms of a regularizer. In the case of multi-view stereo those

occlusion ambiguities can be addressed by using the differ-

ent viewpoints. This somehow suggests to select for each

image position a subset of viewpoints that, when used for

shape estimation, reduce the occlusion artifacts in the final

result. In this paper we propose a novel method that implic-

itly learns the pixelwise viewpoint selection and thus allows

to reduce occlusion artifacts in the final reconstruction.

Contribution. The contribution of the presented work is

twofold. First, we propose a novel method to estimate the

shape of a given LF by utilizing deep learning strategies.

More specifically, we propose a method that predicts for

each imaged scene point the orientation of the correspond-

ing 2D hyperplane in the domain of the LF. After the point-

wise prediction, we use a 4D regularization step to over-

come prediction errors in textureless or uniform regions,

where we use a confidence measure to gauge the reliabil-

ity of the estimate. For this purpose we formulated a con-

vex optimization problem with higher-order regularization,

that also uses a 4D anisotropic diffusion tensor to guide the

regularization.

Second, we present a dataset of synthetic LFs, that pro-

vides highly accurate ground-truth depth fields, and where

scenes can be randomly generated. On the one hand, the

generated LFs are used to train a CNN for the hyperplane

prediction. On the other hand, we use the generated data to

analyze the results and compare to other SfLF algorithms.

Our experiments show that the proposed method works for

synthetic and real-world LF data.

2. Related Work

Extracting geometric information from LF data is one

of the most important problems in LF image processing.

We briefly review publications most relevant in this field.

As already mentioned in the introduction, LF imaging can

be seen as an extreme case of a multi-view stereo sys-

tem, where a large amount of highly overlapping views are

available. Hence, it is hardly surprising, that the increas-

ing popularity of LFs renewed the interest on specialized

multi-view reconstruction methods [2, 3, 17, 8]. For in-

stance, in [2] Bishop and Favaro proposed a multi-view

stereo method, that theoretically utilizes the information of

all possible combinations of sub-aperture images. Anyhow,

the paper mainly focuses on anti-aliasing filters, that are

used as a pre-possessing step for the actual depth estima-

tion. In a further work [3] they propose a method that per-

forms the matching directly on the raw image of a plenoptic

camera by using a specifically designed photoconsistency

constraint. Heber et al. [17] proposed a variational multi-

view stereo method, where they use a circular sampling

scheme that is inspired by a technique called Active Wave-

front Sampling (AWS) [11]. In [8] Chen et al. introduced

a bilateral consistency metric on the surface camera to indi-

cate the probability of occlusions. This occlusion probabil-

ity is then used for LF stereo matching.

Another, more classical way of extracting the depth in-

formation from LF data is to analyze the line directions in

the EPIs [30, 13, 16]. Wanner and Goldluecke [30, 13]

for example applied the 2D structure tensor to measure

the direction of each position in the EPIs. The estimated

line directions are then fused using variational methods,

where they incorporate additional global visibility con-

straints. Heber and Pock [16] recently proposed a method

for SfLF, that shears the 4D light field by applying a low-

rank assumption. The amount of shearing then allows to

estimate the depth map of a predefined sub-aperture image.

Unlike all the above mentioned methods, we suggest to

train a CNN that allows to predict for each imaged 3D scene

point the corresponding 2D hyperplane orientation in the LF

domain. This is achieved by extracting information from

vertical and horizontal EPIs around a given position in the

LF domain, and feeding this information to a CNN. In or-

der to handle textureless regions a 4D regularization is ap-

plied to obtain the final result, where a confidence measure

is used to gauge the reliability of the CNN prediction. Our

approach incorporates higher-order regularization, which

avoids surface flattening. Moreover, we also make use of

a 4D anisotropic diffusion tensor, that is calculated based

on the intensity information in the LF. This tensor weights

and orients the gradient during the optimization process.
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Figure 2. Illustration of the patch extraction. The figure to the left

illustrates the LF as a direction major 2D array of 2D arrays, where

the coordinate (p0,q0) is marked. The corresponding vertical and

horizontal patches at that location are shown to the right.

3. Methodology

In this section we describe the methodology of the pro-

posed approach, that can be divided into three main areas:

(1) Utilizing deep learning to predict 2D hyperplane orien-

tations in the LF space (c.f . Section 3.1), (2) formulating a

convex energy functional to refine the predicted orientations

(c.f . Section 3.2), and (3) solving the resulting optimization

problem using a first-order primal-dual algorithm (c.f . Sec-

tion 3.3).

3.1. Hyperplane Prediction

The popularity of CNNs trained in a supervised man-

ner via backpropagation [22] increased drastically after

Krizhevsky et al. [21] utilized them effectively for the task

of large-scale image classification. Inspired by the good

performance on the image classification task, authors pro-

posed numerous works, that apply CNNs to different CV

problems including depth prediction [10], keypoint local-

ization [15], edge detection [12], and image matching [35].

Zbontar and LeCun [35] for example proposed to train a

CNN on pairs of small image patches, to predict stereo

matching costs. Those costs were then refined using cross-

based cost aggregation and semiglobal matching.

In the case of LF data the depth information of an im-

aged scene point is encoded in the orientation of the corre-

sponding 2D hyperplane in the LF domain. In order to be

able to predict this orientation we extract information from

a predefined neighborhood of a given point (p,q) ∈ Ω×Π.

More specifically, a training example comprises two image

patches of size 31 × 11 centered at (p,q), where the first

patch Pv(p,q) ⊆ Σx,ξ is extracted from the vertical EPI,

and the second patch Ph(p,q) ⊆ Σy,η is extracted from

the horizontal EPI. Note, that values outside the domain of

the LF are set to zero. Figure 2 illustrates this patch extrac-

tion step. The figure shows a pair of horizontal and vertical

patches, where the orientation of the line that intersects the

center of the patch defines the orientation of the 2D hyper-

plane.
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Figure 3. Illustration of the network architecture.

(a) 3D view (b) sub-aperture image

Figure 4. Illustration of a rendered LF. (a) provides a 3D view of

a randomly generated scene, where foreground, midground, and

image plane are highlighted in green, blue and purple. (b) shows a

sub-aperture image of the obtained LF.

Network Architecture. The used network architecture is

depicted in Figure 3. The network consists of five layers,

denoted as Li, i ∈ [5] 1. The first four layers are convolu-

tional layers, followed by one fully-connected layer. Each

convolutional layer is followed by a Rectified Linear Unit

(ReLU) nonlinearity. The first and third layer is padded

such that the width and height between input and output

is not changing. The kernel size of the convolutional lay-

ers decreases towards deeper layers. More precisely, we us

kernels of size 7 × 7 for the first two layers, and kernels of

size 5× 5 for the layers three and four. The number of fea-

ture maps also increases towards deeper layers, i.e. we use

64 feature maps for the first two layers and double them for

the following two layers. Note, that there is no pooling in-

volved in the used network architecture, and the inputs are

two RGB image patches of size 31× 11.

POV-Ray Dataset. Despite the success of CNNs, there

are also some drawbacks. One main drawback is the need

of huge labeled datasets, that can be used for the supervised

training. In order to fulfill this requirement we generated a

synthetic LF dataset using POV-Ray [28]. Compared to the

widely used Light Field Benchmark Dataset (LFBD) [32],

which is generated with Blender [5], POV-Ray allows to

calculate floating point accurate ground truth depth maps

without discretization artifacts. In order to be able to in-

crease the dataset as required, we also implemented a ran-

dom scene generator. This scene generator divides the en-

tire scene in foreground, midground, and background, as

illustrated in Figure 4(a). The foreground and midground

1Notation: [N ] := {1, . . . , N}
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Figure 5. Illustration of data augmentation. The figure shows the

original patches to the left and three different augmentation results

to the right.

regions are randomly filled with comparatively small and

large objects, respectively. Those objects are heavily oc-

cluding each other. The resulting occlusion and disocclu-

sion effects lead to a high degree of hyperplane intersections

in the LF domain. The used 3D objects for the foreground

and midground are obtained from the Stanford 3D scanning

repository [9], and from the Oyonale dataset [26]. We use

around 20 different 3D objects, where about half of them

come with random textures from categories like for instance

stone, wood, or metal. Moreover, we also use random fin-

ish properties. Among other things those finish proper-

ties define the non-Lambertian reflectance characteristics

of the different surfaces. The backgrounds of the scenes

are represented by images downloaded from Google image

search, that are labeled for reuse. We use background im-

ages with various resolutions from the categories city, land-

scape, mountain, and street.

After creating a random scene we render it from various

viewpoints, where those viewpoints are placed on a regular

grid (c.f . Figure 2 left). All rendered images use the same

image plane, and the optical axes converge at a predefined

point, that is chosen at random somewhere between the im-

age plane and the background. Note, that due to the non-

parallel viewing directions this results in non-perpendicular

camera vectors, which is intended. Using this procedure

we generate 25 LFs, where we use 20 to extract patches for

training and 5 LFs are used for testing. The spatial reso-

lution of the rendered LFs is set to 640 × 480, and the di-

rectional resolution is set to 11 × 11, which results in 121
sub-aperture images per LF.

Data Augmentation. Data augmentation is a widely used

strategy to generalize neural networks [21, 10]. Although

we could simply increase the dataset, augmentation during

training seems to be important to avoid overfitting. The used

augmentation includes changes in brightness, and color, as

well as additive Gaussian noise. More specifically, the addi-

tive Gaussian noise has a sigma of 0.05. The multiplicative

and additive color changes for each RGB channel are ran-

domly sampled from the interval [0.5, 2] and [−0.15, 0.15],
respectively. Figure 5 provides some augmentation exam-

ples.

Network Training. In order to train the CNN we make

use of the caffe framework [19], where we use Adam [20]

as the optimization method to minimize the Euclidean loss.

From the 20 LFs rendered for training we extract 8e6 train-

ing examples, which are doubled using data augmentation.

We pre-process each patch by subtracting the mean and di-

viding by the standard deviation of the pixel intensities. In

order to monitor overfitting we use a test set of 2e6 exam-

ples. The results presented in this paper are obtained after

150k iterations of backpropagation.

3.2. Refinement Model

In order to refine the predicted orientations we utilize

variational techniques and formulate the following opti-

mization problem

minimize
u

µD(u, f) +R(u) , (3)

where f and u denote tensors of order four. The objective

function in Equation (3) is a combination of the data term

D(u, f), that measures the fidelity of the argument u to

the predicted measurements f , and the regularization term

R(u) that incorporates prior-knowledge about the solution.

The scalar µ is used to balance the influence of the data term

w.r.t. the regularization term.

The data term in our model ensures that the final solution

is close to the predicted measurements of the CNN and is

thus defined as

D(u, f) =
1

2
‖c⊙ (u− f)‖

2
2 , (4)

where c is a confidence measure (c.f . (8)), and ⊙ denotes

the Hadamard product.

The regularization term has to meet the challenges of

removing artifacts and noise and simultaneously preserv-

ing sharp discontinuities in the sub-aperture images and in

the EPIs as well. Common regularization terms are based

on the first-order smoothness assumption. A famous ex-

ample is the Total Variation (TV) semi-norm [29] given

as TV(u) = ‖∇u‖1. This type of regularization favors

piecewise constant solutions an is thus well suited for in-

tensity image denoising. However, when used for range

data this property of the solution to be piecewise constant

results in piecewise fronto-parallel depth reconstructions,

which is not desirable. In order to avoid this effect in the

spatial domain of the reconstruction we use a generalization

of TV called Total Generalized Variation (TGV) introduced

by Bredies et al. [6]. TGV of order k introduces higher or-

der derivatives to incorporate smoothness from the first up

to the kth derivative. In other words, TGV of order k favors

piecewise polynomial solutions of order k− 1. For our pur-

pose TGV of second order is sufficient, since most objects

can be well approximated by piecewise affine surfaces. The
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primal form of TGV of second order is given as

TGV2
α(z) = min

w

{

α1 ‖∇z−w‖1 + α0 ‖Ew‖1

}

, (5)

where Ew is the distributional symmetrized derivative of

w, and αi, i ∈ {0, 1}, are weighting factors. The objective

function in Equation (5) has the following intuitive interpre-

tation. Before the TV of z is measured a vector field w of

low variation is subtracted from the gradient. We choose to

apply the TGV regularization w.r.t. the spatial coordinates

p of the LF, and use a TV regularization w.r.t. to the direc-

tional coordinates q of the LF, which results in the follow-

ing regularization term

R(u) = TGV2
α(u|x,y) + β TV(u|ξ,η) , (6)

where β is a scalar that allows to weight the TV compo-

nent, and u|x,y and u|ξ,η denote the restrictions of u to the

coordinates (x, y) and (ξ, η), respectively.

Assuming that intensity discontinuities in the LF cor-

respond to depth discontinuities, we will make use of the

intensity information to guide the regularization. More

specifically, we will include an anisotropic diffusion tensor

Γ, that is calculated by analyzing the 4D structure tensor at

each point (p,q) in the discrete domain of the LF. There-

fore we will first calculate the eigenvalues λi and eigenvec-

tors vi, i ∈ [4], of the 4D structure tensor at position (p,q).
Assuming that the eigenvalues are given in ascending order,

λ1 6 . . . 6 λ4, the anisotropic diffusion tensor Γ(p,q) is

given as
∑

i∈[2]

viv
⊤
i +

∑

j∈[4]\[2]

exp(−γ ‖∇L(p,q)‖
δ
)vjv

⊤
j , (7)

where γ and δ adjust the magnitude and the sharpness of

the tensor. Γ will orientate and weight the gradient direc-

tion during the optimization process, which leads to sharp

depth transition at regions with high intensity differences.

Note that a similar strategy was used in [17] to regularize

the depth map of the 2D center view of the LF. The confi-

dence measure c is also calculated based on the information

derived from the structure tensor, i.e. the confidence at po-

sition (p,q) is calculated as

c(p,q) =
∑

i∈[3]

∑

j∈[4]\[i]

(λi − λj)
2 . (8)

The final energy term combines the data term (4), the

confidence measure (8), the regularization term (6), and the

anisotropic diffusion tensor (7), and is given as

min
u,w

{

µ

2
‖c⊙ (u− f)‖

2
2 (9)

+

∥

∥

∥

∥

Γ

[

α1(∇u|x,y −w)
β ∇u|ξ,η

]∥

∥

∥

∥

1

+ α0 ‖Ew‖1

}

.

3.3. Optimization

The optimization problem in Equation (9) is convex but

non-smooth. In order to find a global optimal solution we

will utilize the primal-dual algorithm proposed by Cham-

bolle and Pock [7]. Therefore we reformulate (9) as the

following convex-concave saddle-point problem

min
u,v

max
du,dw

{ µ

2
‖c⊙ (u− f)‖

2
2 (10)

+

〈

Γ

[

α1(∇u|x,y −w)
β ∇u|ξ,η

]

,du

〉

−χB∞(0,1)(du|x,y)− χB∞(0,1)(du|ξ,η)

+ 〈α0 Ew,dw〉 − χB∞(0,1)(dw)
}

,

where we introduced the dual variables du and dw. More-

over, we denote by B∞(0, 1) the ℓ2,∞ norm ball centered

at zero with radius one, and χA denotes the characteris-

tic function of a set A. The saddle-point formulation in

Equation (10) allows to directly apply the primal-dual al-

gorithm. Moreover, using adequate symmetric and posi-

tive definite preconditioning matrices as suggested in [27]

the convergence speed of the algorithm can be further im-

proved. Note however that the diagonal preconditioning re-

sults in dimension-dependent step lengths, instead of global

step lengths, i.e. the global complexity of the algorithm does

not change. The final algorithm is iterated for a fixed num-

ber of iterations or till a suitable convergence criterion is

fulfilled. The involved gradient and divergence operators

are approximated using forward/backward differences with

Neumann and Dirichlet boundary conditions, respectively.

4. Experiments

In this section we will evaluate the proposed method on

synthetic and real world LF data. For the synthetic eval-

uation we will use the test set of the generated POV-Ray

dataset. For the real world evaluation we use the Stan-

ford Light Field Archive (SLFA), that includes LFs captured

with a multi-camera array [34], where each LF contains 289
sub-aperture images on a 17× 17 grid.

Synthetic Evaluation. We start with the synthetic eval-

uation. When considering Figure 6, that provides network

predictions and refinement results for two examples of the

POV-Ray test set, we see that the CNN is able to predict

reasonable 2D hyperplane orientations. The predicted ori-

entations are accurate in well textured regions, but degrade

in regions with less texture. Note that predicted orienta-

tions are barely effected by depth discontinuities. When

comparing the network predictions with the refinement re-

sults, we see that the additional refinement model allows to

reduce the errors in textureless regions and simultaneously

preserves sharp depth discontinuities, as expected.
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Figure 6. Illustration of reconstruction results for example scenes from the POV-ray dataset. The figure shows, from left to right, the LF

data, the color-coded ground truth, the CNN prediction, and the refinement result.

In Figure 7 we compare our method to the works of Wan-

ner and Goldluecke [30] and Heber and Pock [16]. The

method by Wanner and Goldluecke [30] makes use of the

EPI representation of the LF and calculates a globally con-

sistent depth labeling. Heber and Pock [16] proposed a vari-

ational multi-view stereo model based on low rank mini-

mization, where they use ideas from Robust Principal Com-

ponent Analysis (RPCA), to define an all vs. all match-

ing term. Compared to the method by Wanner and Gold-

luecke [30] we observe that the proposed method provides a

more accurate reconstruction. This is mainly due to the fact

that the proposed method provides continuous estimates and

the method of Wanner and Goldluecke only provides a dis-

crete depth labeling. Also note that the method by Wanner

and Goldluecke fails if the hyperplane orientations are too

close to the orientation of the xy plane. In this case the lines

in the EPIs disconnect and the 2D structure tensor fails to

estimate the correct orientation of the line. This is for ex-

ample the reason for the large reconstruction errors of this

method in scene1 (c.f . Figure 7). Compared to the varia-

tional model by Heber and Pock [16] the proposed method

provides more details and sharper depth discontinuities for

objects close to the camera. Hence the proposed method is

especially useful in areas with severe occlusion effects. The

Table 1. Quantitative results for the POV-Ray test set. The ta-

ble shows the RMSE scaled by a factor of 100 for the different

synthetic scenes shown in Figure 6 and Figure 7. Note, that the

results for the methods proposed by Wanner and Goldluecke [30]

and Heber and Pock [16] are obtained by running the source code

provided by the authors.

#
Wanner and

Goldluecke [30]
Heber and
Pock [16]

CNN proposed

1 2.1309 0.2501 0.2593 0.2575
2 0.6334 0.7610 0.5577 0.5202
3 0.2574 0.2094 0.2027 0.1847
4 0.9546 0.1760 0.1829 0.1408
5 0.6080 0.4903 0.4110 0.4018

0.9168 0.3774 0.3227 0.3010

method by Heber and Pock [16] suffers from a lose of detail

mainly due to the required coarse to fine warping scheme.

Quantitative results in terms of the root mean squared

error (RMSE) are presented in Table 1 for the entire test

set. When considering the results of the individual scenes

we see that the proposed method is able to outperform the
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Figure 7. Comparison to state-of-the-art methods on the synthetic POV-Ray dataset. The figure shows, from left to right, the center view

of the LF, the color-coded ground truth, the results for two state-of-the-art SfLF methods [30, 16], followed by the refinement result of the

proposed method.
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center view Wanner et al. [30] Heber and Pock [16] proposed

Figure 8. Qualitative comparison for a LF from the SLFA. The figure shows, from left to right, the center view of the LF, the results for

two state-of-the-art SfLF methods [30, 16], and the refinement result of the proposed method, where we also show the network prediction

in the purple sub-window.
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competing methods on all but one scene. Furthermore, on

average the proposed method is able to clearly outperform

the other state-of-the-art methods. However, it should be

emphasized that a main drawback of the presented method

is to apply the CNN in a sliding window fashion, which

results in considerable high computational costs.

Real World Evaluation. We continue with a short real

world evaluation. Figure 8 provides a qualitative compari-

son of different SfLF methods, where a LF from the SLFA

is used as input. Note that the scene is quite challenging

because of the high degree of specularity. The result of the

proposed method basically shows that the trained model can

be applied to reconstruct real world LF data.

5. Conclusion

In this paper we proposed a novel method for SfLF. Our

method is a combination of deep learning and variational

techniques. We trained a CNN to predict 2D hyperplane

orientations in the LF domain. Knowing these orientations

allows to reconstruct the geometry of the scene. In addition

to the learning approach we formulated a global energy op-

timization problem with a higher-order regularization to re-

fine the network predictions. For numerical optimization of

the variational model we use a first-order primal-dual algo-

rithm. Overall the presented method demonstrates the pos-

sibility to use deep learning strategies for the task of shape

estimation in the LF setting.

In order to provide enough data to train the network we

generated a synthetic dataset by using the raytracing soft-

ware POV-Ray. To generate an arbitrary amount of scenes

we also implemented a random scene generator. The gen-

erated data was not just used to train the CNN, but also to

provide quantitative and qualitative comparisons to existing

SfLF methods. The qualitative evaluation of reconstruction

results of synthetic and real world LF data showed that the

proposed method is able to provide accurate reconstructions

with sharp depth discontinuities. Moreover, our quantita-

tive experiments showed that the proposed method is able

to outperform existing methods on the POV-Ray test set in

terms of the RMSE.
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