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Abstract

We present a new method for approximate nearest neigh-

bour search on large datasets of high dimensional feature

vectors, such as SIFT or GIST descriptors. Our approach

constructs a directed graph that can be efficiently explored

for nearest neighbour queries. Each vertex in this graph

represents a feature vector from the dataset being searched.

The directed edges are computed by exploiting the fact that,

for these datasets, the intrinsic dimensionality of the lo-

cal manifold-like structure formed by the elements of the

dataset is significantly lower than the embedding space.

We also provide an efficient search algorithm that uses this

graph to rapidly find the nearest neighbour to a query with

high probability.

We show how the method can be adapted to give a

strong guarantee of 100% recall where the query is within a

threshold distance of its nearest neighbour. We demonstrate

that our method is significantly more efficient than existing

state of the art methods. In particular, our GPU implemen-

tation can deliver 90% recall for queries on a data set of 1

million SIFT descriptors at a rate of over 1.2 million queries

per second on a Titan X. Finally we also demonstrate how

our method scales to datasets of 5M and 20M entries.

1. Introduction

Large datasets of feature vectors are a common com-

ponent of many computer vision tasks such as object and

scene recognition[25], pose estimation[27, 21], relocal-

isation and loop-closing [20], 3D reconstruction[4] and

machine learning[26]. Image features such as those de-

scribed in SIFT[14], SURF[2] and GIST[22] compress lo-

cal image regions to single points in a high dimensional

space that use between 64 and 512 extrinsic dimensions.

Calculating correspondences between feature vectors can

be achieved by applying a distance function (usually Eu-

clidean) with the assumption that the correct correspon-

dences are more closely located in feature space than incor-

rect ones. The challenge of finding correspondences in large

datasets is computationally demanding and becomes prob-

lematic when there is a requirement for real-time responses

or when a large number of these queries are required. A

naive solution to the feature correspondence problem is to

linearly search all features in the dataset and evaluate each

one as a possible correspondence for a query feature. Un-

fortunately this solution is only suitable for trivially small

datasets and due to the high dimensionality of feature vec-

tors there is no known algorithm for consistently returning

correspondences in a sub-linear time. However for many

applications an approximate search [16] can offer a less

than perfect recall rate while having a considerably smaller

query cost than that of an exhaustive linear search. It is also

possible for the degree of this trade-off to be adjusted so it

provides an acceptable recall rate for a particular applica-

tion. For the applications being considered in this paper we

will be using the Euclidean distance function to calculate

the similarity between feature vectors.

Our approach for finding the approximate nearest neigh-

bours of a dataset involves building a graph where each

vertex represents a feature vector from the dataset being

searched. In this paper we describe our new graph based

method and demonstrate the following key contributions:

• We present algorithms for building graphs and for ef-

ficiently searching them during queries (Sections 3.1,

3.4).

• We exploit the limited dimensionality of the local

manifold-like structure of a dataset without the need

to directly compute that manifold (Section 3.2).

• We present a method that is guaranteed to find the

absolute nearest neighbour for all queries within a

tunable distance threshold of all values in the initial

dataset (Section 3.3).

• We demonstrate that our method achieves much faster

average query times for a given recall rate compared to

current state-of-the-art algorithms (Section 4.2).
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2. Related research

There is a significant literature on algorithms for approx-

imate nearest neighbour search[19], which we divide into

two main categories:

2.1. Hashing and quantisation techniques

Hashing techniques[1] and in particular locality-

sensitive hashing algorithms[15, 30] are characterised by

the construction of multiple hash tables that each map a

query vector to a lower dimensional hash code that can then

be efficiently compared against the hashes that were gen-

erated by the vectors in the dataset. The more hash tables

used the more likely it is that one of the hashes of the query

vector will end up close to its nearest neighbour in the hash

code space. Ultimately memory constraints limit the num-

ber of tables that can be used. In general, hashing algo-

rithms are most computationally efficient when there is a

relatively small distance between a query and its absolute

nearest neighbour. If this distance grows too large, as is

common for real valued features, then the computational

efficiency of the hash functions will rapidly decrease as the

hash codes become separated. This is due to the need for

a large linear search in the original vector space to enable

matching between the discontinuous hash codes.

Quantisation techniques[9, 6, 10] seek to perform a simi-

lar dimension reduction to hashing algorithms, but in a way

that better retains information about the relative distances

between points in the original vector space. The major ad-

vantage of this approach is that both the access of the origi-

nal dataset and any linear searching of candidate points can

be performed in the reduced dimensional space. As such,

quantisation techniques have been applied successfully to

datasets of up to 1B image descriptors, the size of which

would result in current hardware limitations reducing the

efficiency of other techniques.

Because these methods avoid distance calculations on

the original data vectors, they typically return a set of R can-

didates that contains the nearest neighbour with some prob-

ability (the recall@R criterion). Because of this method

of operation, it can be difficult to compare these methods

for computational efficiency against tree and graph-based

methods in ways other than measuring runtime (which

won’t account for specific implementations, optimisations

and hardware). At least one quantisation method[8] shows

gains of roughly a factor of two over FLANN[18] when they

include the time cost for comparisons against the shortlist of

candidates returned by their method. It can also be seen that

the efficiency of these methods rapidly deteriorates when at

higher recall. As recall approaches 1.0, the required length

of the candidate list approaches the size of the dataset. It is

in these areas of operation that methods capable of contin-

uously partition the original data space can be found to be

more efficient.

2.2. Tree and graph techniques

Tree structures[13, 12] offer a natural way to continu-

ously partition a dataset into discrete regions at multiple

scales. As such, many tree-based structures have been suc-

cessfully applied to the nearest neighbour search problem.

One commonly used method the kd-tree[3, 28] is known

perform poorly on high dimensional data, however in the

same way that building and applying multiple hash tables

improves locality-sensitive hashing, building multiple kd-

trees can greatly improve the recall rate of these methods

for high dimensional data. Equally comparable to kd-trees

in terms of recall rate and search efficiency is the k-means

tree[21, 17]. Rather than clustering the data based on its

extrinsic dimensions, as is done with kd-trees, the k-means

algorithm attempts to group the data based on its intrinsic

structure. The major drawback of using the intrinsic prop-

erties of the data comes as an additional cost when propa-

gating queries through the k-means trees.

In general the propagation of a query from the top to the

bottom of an approximate nearest neighbour tree is com-

putationally efficient. However the average recall rates that

are achieve with a single propagation are very low. For this

reason, backtracking algorithms are used to increase the re-

call to a useful range. The need for large amounts of back-

tracking is an inherent property that is tied to the branching

structure of the trees. During the propagation of a query

vector, each time a branch is taken the decision is based on

a threshold which represents only a small subset of the in-

formation needed to explore the search space. Whenever

a query is close to a threshold value there is a significant

probability that the desired nearest neighbour lies down a

different branch than the one being taken. When low di-

mensional boundaries are used for high dimensional data,

choosing an incorrect branch is almost guaranteed. Every

time an erroneous path is taken there is no way to correct

for the error in the lower layers of the tree, the only solu-

tion is to re-traverse the tree many times taking a slightly

different route each time.

Nearest neighbour graphs are capable of partitioning the

search space in a similar way to tree structures. Algorithms

such as a Delaunay triangulation[11] form a graph with a

vertex at each data point and edges that connect local neigh-

bours. Delaunay graphs can be explored in a deterministic

way that is usually very efficient and can guarantee that the

absolute nearest neighbour to a query point will be found.

Unfortunately, as the dimensionality of a dataset increases,

Delaunay triangulated graphs rapidly reduce in computa-

tional efficiency as they very quickly become almost fully

connected. K-nearest neighbour graphs[23, 5] provide an

approximation of the local neighbourhoods formed in De-

launay graphs. These graphs are able to maintain efficient

exploration costs by limiting the degree (number of outgo-

ing edges) of each vertex in the graph. This restriction re-
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moves any guarantee of finding the absolute nearest neigh-

bour (returning to the idea of an approximate nearest neigh-

bour search) as well as some of the efficiency of the graph

exploration. By placing an artificial limit on the degree of

each vertex some of the intrinsic structure, such as variation

in density, is inevitably lost.

For large datasets the computational cost of comput-

ing the k-nearest neighbours for each vertex is large. Ap-

proximate k-nearest neighbour graphs[7, 24, 29] provide an

alternative approach to approximating the edges in a De-

launay graph. These and other structures such as small

world graphs[16] offer a significant speed-up for the off-

line building of a graph, but in addition to placing limits on

the degree of each vertex, the decentralised construction of

the graphs acts to further compromise the desirable struc-

tures of Delaunay graphs. This is demonstrated by the need

to perform backtracking and multiple simultaneous graph

explorations, as done with trees, in order to achieve higher

average recall. But, since the graphs avoid using a global

hierarchical structure, the costs of backtracking are uniform

regardless of if an erroneous path is taken at the beginning

or at the end of the exploration.

3. Fast approximate nearest neighbour graphs

The simplest way to use directed graphs for finding the

nearest neighbour to an arbitrary query point is to start at

some vertex in the graph, test each outgoing edge from that

vertex and follow the first edge that gets closer to the query

point. This is repeated until all outgoing edges point to ver-

tices that are further away from the query. This is given

more formally in Algorithm 1.

3.1. Ideal graph structure

The key innovation of this paper is the design of a graph

structure that gives rise to efficient searching. Here, the

ideal graph is defined as a minimal graph for which Algo-

rithm 1 always finds the correct solution when the query

point matches a vertex of the graph. This guarantee still ex-

ists regardless of which vertex of the graph is given as the

starting location. The insight that allows a simple graph to

be constructed with these properties is that it’s only neces-

sary that at each vertex of the graph there is always an edge

that leads to a vertex which is closer to the query. If this cri-

teria holds then the graph can be traversed until the query

vertex is reached. In other words, it is only necessary that

Algorithm 1 be able to make progress and not ‘get stuck’ at

any vertex other than the vertex that matches the query. Be-

cause the distance to query always decreases at each step,

and there are a finite number of vertices, it must converge

on the minimum distance of zero. This means that if the

graph has an edge from p1 to p2, then it is not necessary for

it to have an edge from p1 to any vertex p3 that is closer to

p2 than p1. In this case, the edge from p1 to p2 occludes

Algorithm 1: Naive downhill search

Input: graph vertices P , directed graph edges E,

query point Q, search start index v
Output: nearest neighbour index v

1 for each edge Ei with start vertex Pv do

2 u← index of end vertex of Ei

3 if distance(Q,Pu) < distance(Q,Pv) then

4 v ← u

5 return v

the edge from p1 to p3. To make building efficient, we only

allow shorter edges to occlude longer ones. This process

is illustrated in Figure 1. More formally, given data points

pi ∈ R
n and a distance function d : Rn × R

n → R, occlu-

sion can be defined as:

edge(p1, p2) occludes edge(p1, p3) if

d(p1, p2) < d(p1, p3) and d(p2, p3) < d(p1, p3) (1)

When building these graphs it is sufficient to select edges

for each vertex independently. All but the target vertex are

then sorted by their distance from it and an edge list is built

by considering all vertices in order from nearest to farthest

and adding an edge to each vertex that is not occluded by

any edges already added. This is given more formally in

Algorithm 2.

3.2. Intrinsic dimensionality and vertex degree

Algorithm 2 has the favourable property of creating

graphs of relatively low degree (number of outgoing edges

per vertex). For SIFT data, the average vertex degree is typi-

cally around 25, despite the data living in a 128 dimensional

space. By contrast [7] uses strict k-nearest neighbour graphs

with degree up to 1000. This limited degree arises because

the intrinsic dimensionality of SIFT data is much less than

the space in which it is embedded and the occlusion rule

in Equation 1 prunes the set of outgoing edges from a ver-

tex so that they efficiently span the local neighbourhood of

that vertex. One consequence of the occlusion rule is that

the angle between edges must be at least 60o, and thus the

edges have to be well spread out.

Figure 1. An edge from p1 to p2 occludes an edge from p1 to p3

because p3 is closer to p2 than p1. The edge to p4 is not occluded.
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Algorithm 2: Naive ideal graph construction

Input: graph vertices P
Output: directed graph edges E

1 for each vertex Pi do

2 e← empty sorted list of edges

3 for each vertex Pj 6= Pi do

4 add edge e(Pi, Pj) sorted by distance(Pi, Pj)

5 for each edge ej do

6 u← index of end vertex of ej
7 L← length of ej
8 occluded← false

9 for each edge Ek with start vertex Pi do

10 v ← index of end vertex of Ek

11 if distance(Pu, Pv) < L then

12 occluded← true

13 if not occluded then

14 add edge ej to E

15 return E

The intrinsic dimensionality of a dataset can be esti-

mated using a variant of Hausdorff dimension by comput-

ing all pairwise distances between points and counting the

number of these that lie below a threshold radius r. If this

threshold r is changed, then the number of distances that lie

below it should vary as rD where D is the intrinsic dimen-

sionality of the data at the scale of r. By measuring at two

different values of r, the dimensionality D can be estimated

as:

D(r1, r2) =
log

(

n(r1)
n(r2)

)

log
(

r1
r2

) (2)

where n(r) is the number of pairwise distances in the

dataset that are less than r. Figure 2 shows this dimension-

ality calculation for a SIFT dataset containing 1M points.

In order to validate the impact of intrinsic dimensional-

ity on the average degree of graphs constructed with Al-

gorithm 2, several graphs were constructed on randomly

sampled data that was selected uniformly from within an n-

dimensional hypercube. The average degree of these graphs

is plotted against measured intrinsic dimensionality of the

hypercube data in Figure 3. As can be seen, the hypercube

data suggests that average degree 25 is achieved with a di-

mensionality of around 11, confirming the observations of

the SIFT data.

3.3. Making nearest neighbour guarantees

While Algorithm 1 can be used on graphs built using Al-

gorithm 2 for a arbitrary query point, it is only guaranteed

to find the absolute nearest neighbour for queries that are

Figure 2. Hausdorff dimensionality of SIFT data measured at vary-

ing distance scales. The maximum dimensionality is shown to be

approximately 11.

Figure 3. Average out-degree of graph vertices versus dimension-

ality of uniform hypercube data.

identical to a vertex of the graph. This is of limited use

and in practice, it is desirable to have high recall for query

points anywhere in the space. We present two methods for

achieving this. The first, described in this section modifies

the graph building method, while the second (found in Sec-

tion 3.4) instead modifies the search algorithm.

In some situations, the user is only interested in the near-

est neighbour to a query if it is within some distance τ of

that query. This can arise when matching descriptors, where

there is reason to believe that a true correspondence will

have a distance less than some limit τ . In this case, the

occlusion function used in graph building can be modified.

Where Euclidean distance is used, the modified occlusion

function is given by:

edge(p1, p2) occludes edge(p1, p3) if

d(p1, p2) < d(p1, p3) and

d(p2, p3)
2 < d(p1, p3)

2 − 2τ d(p1, p2) (3)

This modified occlusion function moves the boundary
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between p1 and p2 from the halfway point, a distance τ to-

wards p2. To demonstrate this, consider Figure 4 and the

case of equality in the second condition for occlusion. The

Pythagorean theorem gives

d(p1, p3)
2 = ( 12d(p1, p2) + τ)2 + l2 (4)

and

d(p2, p3)
2 = ( 12d(p1, p2)− τ)2 + l2 (5)

hence

d(p1, p3)
2 − d(p2, p3)

2 = 2τ d(p1, p2) (6)

This ensures that if an edge from p1 to p2 occludes an edge

from p1 to any vertex p3 where d(q, p3) < τ then since

d(q, p2) < d(q, p1), Algorithm 1 will keep moving until it

finds p3 (or an even nearer neighbour).

In situations where it is acceptable to achieve a guar-

anteed recall of less than 1.0 the graph can be built using

a threshold less than the maximum tolerated distance to a

query point τmax. Table 1 shows results for graphs of 100K

SIFT descriptors built according to various thresholds as a

fraction of τmax, which has been set as the largest distance

between a query point and its true nearest neighbour. As can

be seen in practice, it is possible to achieve perfect recall on

the test set using a lower value for τ than is strictly neces-

sary and as such this recall is obtained at a lower average

cost.

It is important to note that building graphs according to

this modified occlusion criterion significantly increases the

average vertex degree. This has two negative consequences;

it increases the space complexity of storing the graph and it

increases the search time because there are more edges to

be considered at each vertex.

3.4. Fast approximate search using backtracking

A (much) more efficient alternative to the guarantee of-

fered by the build method above is to modify the downhill

Figure 4. The occlusion boundary has been moved a distance τ

towards p2. p3 lies on the new occlusion boundary and a circle

of radius τ is shown around it. Any query point within this circle

(within τ of p3) must be nearer to p2 than p1 and so an edge from

p1 to p3 is unnecessary. Although p4 is nearer to p2 than p1, it is

not occluded because it is possible for a query point within τ of p4
to be nearer p1 than p2. Length l is the orthogonal distance to p3

from the line joining p1 and p2.

τ/τmax Recall Avg. cost per query Avg. degree

0.00 0.7098 110.52 24.329

0.38 0.9984 360.05 127.51

0.50 0.9999 547.80 232.04

0.75 1.0000 1315.5 753.53

1.00 1.0000 3123.2 2182.9

Table 1. Results for graphs built with varying τ as a fraction of the

worst case query distance τmax. Cost per query is calculated as

the number of distance calculations needed to search the graph on

a given query.

search algorithm. Rather than terminating when no progress

can be made, the algorithm uses a version of depth-first-

search to backtrack to the second closest vertex and consid-

ers any edges from that vertex that have not been explored

yet. If that vertex’s edges are exhausted, the third closest

vertex is considered and so on.

This is implemented by maintaining a priority queue of

vertices whose edges have not yet been fully explored. Ex-

ploring an edge requires first computing the distance from

the query point to vertex at the end of the directed edge

and then placing the vertex in the priority queue according

its distance (shortest first). The tradeoff between recall and

computational cost is managed by placing a hard limit on

the number of distances that will be computed. Once all of

this computation is exhausted, the closest observed vertex

is returned. This search strategy is detailed in Algorithm

3. Alternative strategies involving combinations of random

restarts, edge weighting schemes and potential early termi-

nation conditions were explored and found to provide no

significant gains to the computational efficiency.

3.5. Returning k nearest neighbours

It is often valuable for a nearest neighbour algorithm to

return more than just the single nearest neighbour. Algo-

rithm 3 can be easily modified to return an approximation

of the k nearest neighbours to a query point by returning

a list of the k vertices observed during graph exploration

that where nearest to the query point. This can be imple-

mented by maintaining a (possibly truncated) sorted list or

heap of vertices visited instead of just the nearest neighbour

seen. Efficient implementations (such as our GPU code)

can merge this data structure with the priority queue and

the visited test on line 8 of Algorithm 3.

3.6. Efficient graph construction

The ideal graph construction given in Algorithm 2 has

complexity O(n2 log(n)) because it requires sorting a list of

n distances for each of n vertices. This complexity makes

the construction method prohibitively expensive for build-

ing large graphs and so more efficient methods are needed.

This section presents two algorithms for constructing ap-

proximations to this ideal with significantly lower cost.
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Algorithm 3: Backtrack search

Input: graph vertices P , directed graph edges E,

query point Q, search start index v, maximum

distance calculations M
Output: nearest neighbour index n

1 X ← empty priority queue // closest to Q first

2 add edge e0 with start vertex Pv to X
3 m← 1 // count distance computed to Q

4 n← v
5 while m < M do

6 ei ← remove top of X
7 u← = index of end vertex of ei
8 if Pu has not been visited yet then

9 add edge e0 with start vertex Pu to X
10 m← m+ 1 // add 1 to compute count

11 if distance(Q,Pu) < distance(Q,Pn) then

12 n← u

13 v ← = index of start vertex of ei
14 if i < number of edges with start vertex Pv then

15 add edge ei+1 with start vertex Pv to X

16 return n

The first method takes in two randomly chosen vertex

ids, v1 and v2. It then uses naive downhill search (Algo-

rithm 1) to try to get from v1 to v2 and if it fails to ar-

rive at v2, an edge is added from the last vertex visited to

v2. If applied to an empty graph; this method will sim-

ply add an edge between v1 and v2. Otherwise, there may

be some book-keeping where the newly inserted edge oc-

cludes a longer edge already in graph, in which case, the

longer edge must be removed so that the occlusion rule is

maintained. Some gains in efficiency can be achieved by

testing that the destinations of the removed edges can still

be reached as well as by checking the reverse direction for

each pair of test vertices. This method is detailed in Al-

gorithm 4. Our build phase calls this function repeatedly

with randomly selected nodes. Typically we repeat until it

is achieving a 90% success rate averaged over a sufficiently

large number of calls to the naive downhill search function

(we used 50N calls, where N is the size of the dataset).

When Algorithm 4 is called repeatedly, its progress in

improving the graph will eventually slow down. It is at this

stage that we switch to a second efficient graph construction

method to further improve the graph. The second method

uses the current graph to obtain a list of some thousands of

approximate nearest neighbours to a vertex using the algo-

rithm described in Section 3.5. Algorithm 3 is given the

vertex in question as both the starting point for searching

and the query point. This provides a list of neighbours that

closely approximate a large set of nearest neighbours of the

Algorithm 4: Traverse-add

Input: graph vertices P , directed graph edges E,

search start index v1, search end index v2
Output: directed graph edges E

1 u← NaiveDownhillSearch(P , E, Pv2
, v1)

2 if u 6= v2 then

3 add edge e(Pu, Pv2) to E // keep E sorted

4 for each edge Ei with start vertex Pu do

5 if e(Pu, Pv2
) occludes Ei then

6 remove edge Ei from E
7 v ← index of end vertex of Ei

8 E ← TraverseAdd(P , E, u, v)

9 E ← TraverseAdd(P , E, v2, u) // test reverse

10 return E

vertex. The set of outgoing edges for the vertex can then be

rebuilt by running through this list applying the occlusion

rule in the same manner as in the ideal construction Algo-

rithm 2, lines 5-14. This method can be applied in parallel

to each vertex in the graph to quickly build a graph of higher

quality.

3.7. Truncating for increased efficiency

A final significant contribution to efficiency is obtained

by truncating the edge list of each vertex in the graph to

limit the degree to T edges. Although the mean degree for

SIFT data is around 25, the maximum vertex degree is of-

ten around 300. By truncating to a maximum degree of be-

tween 25 and 32 a significant further speedup can be ob-

tained. In practise, the optimal truncation depends on the

recall rate demanded from nearest neighbour queries. High

recall rates (e.g. 99% or 99.9%) are typically more efficient

with slightly higher node degrees, while lower recall rates

(e.g. 50% or 90%) are more efficient with lower degrees.

Fortunately a graph of higher degree can be dynamically

truncated at query time by passing T as an additional pa-

rameter to Algorithm 3 and adding a comparison i < T to

the test on line 14. This only has a small effect on efficiency

(a few percent) and a single truncation value (e.g. 30 for

SIFT) works well across a large range of recall values. Us-

ing dynamic truncation adds a second tuning parameter to

the algorithm (the other being the maximum number of dis-

tance calculations M ), while making the algorithm generic

across all types of graphs.

The very last minor improvement in efficiency comes

from a judicious choice of starting vertex. We select the

vertex nearest to the mass centre of the data which typically

gives a few percent speedup over making a random choice.
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Figure 5. Comparison of k-nearest neighbour graphs with our ideal

graph and a truncated ideal graph.

4. Results

We first present results to justify the design decisions

presented in this paper and then compare FANNG to other

methods. It is conventional to plot the performance of

a method as speedup relative to brute force linear search

(measured as the number of distance calculations made)

against recall (the fraction of nearest neighbours returned

that are correct) on a log-linear scale. These graphs can be

hard to read at high recall because when for all methods

considered, the speedup drops rapidly as recall approaches

1.0. Here we plot speedup against error rate (1-recall), us-

ing a log-log scale. This approach improves the clarity of

the relative performance of different algorithms at high re-

call. We use the BIGANN dataset[8] of 1B SIFT descrip-

tors at various levels of truncation and the set of 1M GIST

descriptors for all the comparative results. We measure per-

formance using the provided test set and ground truth files.

4.1. Occlusion pruning vs Knearest neighbours

Figure 5 compares performance of our ideal graph and

its truncation to 25 edges against two plain k-nearest neigh-

bour graphs with all four of them using backtracking as the

search algorithm. As the figure shows, k-nearest neighbour

graphs are inefficient both in time and space complexity.

Keeping the 25 nearest neighbours penalises computational

efficiency substantially and even keeping the 250 nearest

neighbours is computationally inefficient by comparison to

our methods, while also being ten times less memory ef-

ficient. Truncating to a maximum of 25 edges per vertex

gives us further small gains in time efficiency over the ideal

graph as well as improving the memory efficiency.

4.2. Comparison to other methods

Here we compare to two state-of-the-art methods that

perform well at high recall, Small World graphs [19] and

FLANN [18]. As noted in section 2.1, it is much more

difficult to compare to quantisation techniques. We note,

Figure 6. Comparison of FANNG to FLANN on a dataset of 5M

SIFT descriptors.

Figure 7. Comparison of FANNG to FLANN and Small World on

a dataset of 5M SIFT descriptors using 10-NN overlap.

however that [8] reports search times on the order of sec-

onds when comparing to FLANN. As described below, our

system can obtain query times of 812 ns per query at 90%

recall (although they did not utilise a GPU). Because [18]

and [19] use different performance measures we present re-

sults using both.

4.2.1 Comparison at 1-NN

[18] uses the recall (termed ‘precision’ in their paper) when

a system is asked to return a single nearest neighbour. Fig-

ure 6 compares our work to FLANN on the 5M subset of

BIGANN.

4.2.2 Comparison at 10-NN

[19] uses the mean overlap between the true 10 nearest

neighbours and a system’s estimate of the 10 neighbours.

Figure 7 compares our work to both FLANN and Small

World Graphs on the 5M subset of BIGANN.

5719



Figure 8. FANNG performance on 1M SIFT and 1M GIST.

Searching the SIFT graph is consistently around 3x more efficient

than searching the GIST graph.

Figure 9. Growth in number of distance calculations against

dataset size for fixed recall values.

4.3. Complexity

Here we show how the computational cost (average

number of distance calculations per query) of our system

changes with the dataset. Figure 8 shows performance on

two different types of image descriptors. The higher dimen-

sional data found in the GIST descriptors results in a higher

average vertex degree than that of the SIFT graph. De-

spite the differing graph structures the computational cost

of the search remains consistent across a wide range of re-

call. This suggests that our approach is free from any bias

that would favour a particular type of data. Figure 9 shows

how the number of calculations needed for various rates of

recall changes as the size of the dataset increases. There

are only four datapoints for each graph, however, the evi-

dence here suggests that our method scales as roughly the

fifth root of graph size, i.e. cost complexity and thus time

complexity vary as O(N0.2).

4.4. GPU Implementation

We have created specialised GPU implementations for

SIFT data for both our method and for linear search to ob-

Data Method Recall Time per GFLOPS

points query (µs)

linear search 1.0 473.7 861

1M FANNG 0.95 1.264 273

FANNG 0.9 0.812 265

5M linear search 1.0 2433 789

FANNG 0.9 1.743 187
Table 2. Timing results for our GPU implementations of linear

search and backtracking on FANNG.

tain real-world speedup timings that can take into account

the book-keeping overhead of running our search algorithm.

For both methods, we batch all 10K queries in the standard

set into a single kernel call and then divide by 10K to obtain

time per query.

As can be seen from the raw GFLOPS results in Ta-

ble 2, the book-keeping overhead is roughly a factor of 3,

i.e. our efficient search method accesses elements and com-

pares distances at 1
3 of the rate of linear search. Despite

this, our method is approximately 500 times faster than lin-

ear search at 90% recall on a dataset of size 1M and approx-

imately 1400 times faster on a dataset of size 5M.

5. Conclusions

This paper offers a new approach for finding the approx-

imate nearest neighbours of high dimensional datasets. Our

method focuses on building graphs as a structure for ef-

ficiently exploring the dataset during a nearest neighbour

query. More specifically our method utilises a directed

graph structure that is able to minimise the backtracking

costs associated with tree structures. Additionally, much of

the efficiency of our method comes from our ability to ex-

ploit the local intrinsic structures of a dataset without need-

ing to directly compute a manifold that approximates the

feature vectors being searched. Our method is able to di-

rectly trade-off computation time against recall by choosing

a limit on the number of distance comparisons per query. A

strengths of our approach to building explorable graphs is

the guarantee it offers for finding the absolute nearest neigh-

bour for all queries within a tunable distance threshold of all

values in the initial dataset. Lastly when we compared our

approach to a number of current state-of-the-art algorithms

we found our method capable of achieving faster average

query times than any of the other methods.
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