
Pull the Plug? Predicting If Computers or Humans Should Segment Images

Danna Gurari Suyog Dutt Jain Margrit Betke Kristen Grauman

Abstract

Foreground object segmentation is a critical step for

many image analysis tasks. While automated methods can

produce high-quality results, their failures disappoint users

in need of practical solutions. We propose a resource al-

location framework for predicting how best to allocate a

fixed budget of human annotation effort in order to collect

higher quality segmentations for a given batch of images

and automated methods. The framework is based on a pro-

posed prediction module that estimates the quality of given

algorithm-drawn segmentations. We demonstrate the value

of the framework for two novel tasks related to “pulling the

plug” on computer and human annotators. Specifically,

we implement two systems that automatically decide, for

a batch of images, when to replace 1) humans with com-

puters to create coarse segmentations required to initialize

segmentation tools and 2) computers with humans to create

final, fine-grained segmentations. Experiments demonstrate

the advantage of relying on a mix of human and computer

efforts over relying on either resource alone for segmenting

objects in three diverse datasets representing visible, phase

contrast microscopy, and fluorescence microscopy images.

1. Introduction

A common question people ask when needing to anno-

tate images is whether automated options are sufficient for

their images or they should instead bring humans in the loop

to create accurate annotations. We explore this question for

the task of demarcating object regions, i.e., creating fore-

ground object segmentations. Foreground object segmen-

tation is important for many downstream tasks including

collecting measurements (features), differentiating between

types of objects (classification), and finding similar images

in a database (image retrieval). Our goal is to intelligently

distribute segmentation work between humans and comput-

ers when human effort is only available for K% of images.

Our work is partially inspired by the observation that

fully-automated algorithms can produce high-quality fore-

ground object segmentations when they are successful, yet

their performance often is inconsistent on diverse datasets

Figure 1. Use a human-drawn or computer-drawn segmentation?

We propose a task of automatically deciding when to “pull the

plug” on human annotators and use computers instead to create

the initial foreground segmentations (rows 1, 2) that segmenta-

tion tools refine. We also propose a task of automatically deciding

when to “pull the plug” on computers (row 3) and use humans

instead to create high quality segmentations.

(Figure 1). This is because algorithms embed assumptions

about how to separate an object from the background that

are relevant for specific object and background appearances,

yet restrict their widespread applicability [4, 12, 26, 34, 35].

Consequently, the knowledge of when segmentation algo-

rithms will succeed is currently a highly-specialized skill

often resigned to computer vision experts or applications

specialists who spent years studying the algorithms. More-

over, many researchers agree that there is not a one-size-

fits-all segmentation solution. Thus, lay persons need-

ing consistently high quality segmentations currently face

a brute force approach of reviewing all images with avail-

able algorithm-drawn segmentations to identify images that

should be re-annotated by humans.

Our work is also inspired by the observation that widely-

used segmentation tools that rely on initialization are often

inefficient because of their exclusive reliance on human in-

put [9, 18, 20, 23, 27, 35, 39]. Specifically, humans create

initial bounding boxes or coarse segmentations to localize

the object of interest in every image. A motivation for lever-

aging human guidance per image is that a segmentation tool

can only succeed when initializations are sufficiently close

to the true object boundary [23]. A weakness of relying on

humans is that for numerous methods, including level set

based methods [6, 12, 26, 28], humans typically have to wait
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for minutes or more per image to validate whether the tool

successfully converts their coarse input to high quality seg-

mentations. Intuitively, one may expect that computers at

times can create good enough segmentations to replace hu-

man initialization effort (e.g., Figure 1, rows 1 & 2) and so

minimize human effort both for initialization and validation

of the results. Still, lay persons typically lack the expertise

to decide which images to distribute to computers.

To the best of our knowledge, this work is the first to

predict when to “pull the plug” on humans or computers for

segmenting images. We address two novel tasks. First, we

propose a system that intelligently allocates computer effort

to replace human effort to create initial coarse object seg-

mentations for refinement by segmentation tools. Second,

we propose a system that automatically identifies images to

have humans re-annotate from scratch by predicting which

images the automated methods segmented poorly. Both sys-

tems are designed to empower users to consistently collect

higher quality object segmentations with segmentation tools

while using considerably less human involvement. More

broadly, our systems could be exploited to efficiently create

segmentations as input for downstream tasks (e.g., object

recognition, tracking).

Interactive co-segmentation methods address the issue of

relying on human input to initialize segmentation tools for

every image in a batch [5, 14, 29]. However, unlike our ap-

proach, these methods require that all images in the batch

show related content (e.g., dogs). Moreover, interactive co-

segmentation involves continual back-and-forth with an an-

notator to incrementally refine the segmentation. Avoiding

a continual back-and-forth is particularly important for seg-

mentation tools such as level set methods [12, 26] that take

on the order of minutes or more per image to compute a

segmentation from the initialization. We instead recruit hu-

man input at most once per image and consider the more

general problem of annotating unrelated, unknown objects

in a batch.

Our aim to minimize human involvement while collect-

ing accurate image annotations is shared by active learn-

ing [36]. Specifically, active learners try to identify the most

impactful, yet least expensive information necessary to train

accurate prediction models [7, 36, 37]. For example, some

methods iteratively supplement a training dataset with im-

ages predicted to require little human annotation time to la-

bel [37]. Other methods actively solicit human feedback to

identify features with stronger predictive power than those

currently available [7]. Unlike active learners, which lever-

age human input at training-time to improve the utility of

a single algorithm, our method leverages human effort at

test-time to recover from failures by different algorithms.

Our novel tasks rely on a module to estimate the qual-

ity of computer-generated segmentations. Related meth-

ods find top “object-like” region proposals for a given im-

age [3, 10, 15, 24]. However, most of these methods are in-

adequate for ranking “object-like” proposals across a batch

of images because they only return relative rankings of pro-

posals per image [15]. Another method proposes an ab-

solute segmentation difficulty measure based on the image

content alone [30]. However, this method does not account

for differences in segmentation tools and that they perform

differently when applied to segment the same image.

Our prediction framework most closely aligns with

methods that predict the error/quality of a given algorithm-

drawn segmentation in absolute terms [10, 24]. In particu-

lar, we also perform supervised learning to train a regression

model. Unlike prior work, which was proposed indepen-

dently in the medical [24] and computer vision [10] commu-

nities, we aim to develop a single prediction model that is

applicable across domains. Consequently, we populate our

training data with segmentations resulting from a variety of

algorithms on images from three imaging modalities (visi-

ble, phase contrast microscopy, fluorescence microscopy).

Our approach consistently predicts well, outperforming a

widely-used method [10], on three diverse datasets.

More broadly, our work is a contribution to the emerging

research field at the intersection of human computation and

computer vision to build hybrid systems that outperform

relying on humans or computers alone. For example, hy-

brid systems combine non-expert and algorithm strengths to

perform the challenging fine-grained bird classification task

typically performed by experts [8, 38]. While our hybrid

system design complements existing work by also demon-

strating the advantages of combining human and computer

efforts, our work differs by addressing the image segmenta-

tion task rather than the class labeling task.

2. Segmentations by Humans or Computers?

We first describe two prediction systems for creating dif-

ferent levels of segmentations detail (Section 2.1). Then,

we describe the module used by both systems to predict the

quality of algorithm-generated segmentations (Section 2.2).

2.1. Batch Allocation of Humans & Computers

We call our resource allocation framework PTP which

reflects that the system, for each image in a batch, predicts

whether to “Pull The Plug” on humans or computers. In

other words, our framework involves predicting for each

image whether the annotation should come from a human

or computer. We implement two PTP systems to create

coarse and fine-grained foreground object segmentations re-

spectively. We examine the value of our systems with seg-

mentation tools that require initialization. These tools are

well-suited for studying both systems because they require

coarse object segmentation input and aim to output high

quality, fine-grained object segmentations.
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Figure 2. We propose a system to predict when to delegate the task of creating coarse segmentations to an algorithm or a human. The

system decides based on a predicted similarity of each algorithm-generated segmentation (i.e., last eight segmentations per row) to the

unobserved ground truth (i.e., first segmentation per row). Our system is designed for use across domains, to demarcate the foreground

object in fluorescence microscopy (row 1), phase contrast microscopy (row 2), and everyday (row 3) images.

Like existing interactive segmentation methods, we as-

sume the user is interested in a primary foreground ob-

ject [9, 18, 27, 35, 39]. That is, there is a primary object of

interest that the user wishes to isolate from the background.

Foreground object segmentation is therefore distinct from

natural scene segmentation, where methods aim to segment

all objects present in the image or delineate their boundaries

or primary contours [2, 16, 33].

Coarse Segmentation: Computer or Human? Our

first system automatically decides when to delegate the task

of creating coarse segmentations refined by segmentation

tools to computers in an effort to improve upon today’s sta-

tus quo of relying exclusively on human input [5, 14, 29].

The motivation of the system design is to remain agnostic to

the particular segmentation tool. Since some segmentation

tools require minutes or more to refine a single initializa-

tion, we limit our system to run a segmentation tool exactly

once per image with one input. Consequently, in the inter-

est of increasing the chance of computer success, our sys-

tem deploys the best predicted algorithm from a larger list

of eight options for each image.

This system involves six key steps to segment a given

batch of images. First, eight algorithm-drawn foreground

segmentations1 are collected per image (Figure 2). Our

1The system applies algorithms used in current literature for foreground

segmentation [13, 17, 32]: Otsu thresholding[34], adaptive thresholding,

and Hough Transform with circles [4] . The system applies Otsu thresh-

olding and its complement. The system also applies adaptive thresholding

using the local median from a window size of 45 pixels and its comple-

ment as well as a third variant using the local mean from a window size of

45 pixels. Finally, the system applies three variants of Hough Transforms

using a circle radius of 3, 5, and 10. Our system then post-processes each

binary mask by filling all holes and keeping only the largest object.

While other algorithms could easily be integrated into our system, we

found our choices create similar quality for initial segmentations. Specifi-

cally, across the three datasets in our experiments, our choices yield an av-

erage quality (Jaccard index) of 0.59 using the best option per image com-

motivation is to employ fully-automated algorithms appli-

cable across the image modalities investigated in this pa-

per (visible, phase contrast microscopy, fluorescence mi-

croscopy). Then, for each image, the quality of each can-

didate segmentation is predicted using our proposed predic-

tion system discussed in Section 2.2. Third, the top-scoring

segmentation per image is selected as the computer choice.

Next, all images are sorted based on the selected computer

choices, from highest to lowest predicted quality scores.

Fifth, the system allocates the available human budget to

create coarse segmentations for the allotted number of im-

ages with the lowest predicted quality scores. Finally, all

coarse segmentations created by humans and computers are

fed to the segmentation tool of interest for refinement.

Fine-Grained Segmentation: Computer or Human?

A related yet more challenging task is predicting whether a

computer-generated segmentation captures the fine-grained

details describing a true object region or whether humans

should instead segment images from scratch. Whereas

the previous system elicits coarse human input to initialize

a segmentation tool, we now propose a system that elic-

its fine-grained human input to replace segmentation tools

when they segment images poorly. The motivation of the

system design is to offer a better solution than today’s sta-

tus quo of humans reviewing all images with associated seg-

mentations to spot algorithm failures.

This system consists of five key steps to segment a given

batch of images. First, a coarse segmentation is automat-

ically generated for every image. Then, each coarse seg-

mentation is refined by a segmentation tool. Next the pre-

diction framework is applied to all resulting segmentations

from the segmentation tool to estimate the quality of each

pared to 0.57 using MCG’s best option from 8 top-ranked candidates [3],

0.59 using CPMC’s best option from 8 top-ranked candidates [10], and

0.17 using [31].
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result. Then, the system sorts all images from highest to

lowest predicted quality scores for the resulting segmen-

tations. Finally, the system allocates the available human

budget to create fine-grained segmentations for the allotted

number of images with the lowest predicted quality scores.

2.2. Predicting Segmentation Quality

Embedded in both the Coarse and Fine-Grained seg-

mentation systems is a module which automatically predicts

the similarity of a given segmentation to an unseen ground

truth segmentation. We propose as our prediction frame-

work a regression model in order to capture that algorithm-

drawn segmentations can range in quality from complete

failures to nearly perfect (Figures 1, 2). Our key design

decisions lie in how to generate training data and choose

predictive features.

Training Instances. We aim to populate our training

data with segmentation masks that reflect the transition of

segmentation quality from perfect (i.e., ground truth), to

reasonable human mistakes, to a variety of failure behav-

iors. Towards this goal, our system collects 11 binary seg-

mentation masks per training image.

We first derive a variety of binary masks using the same

fully-automated algorithms leveraged in our Coarse seg-

mentation system. Specifically, our system produces eight

segmentations per training image using multiple implemen-

tations of the algorithms Hough Transform with Circles [4],

Otsu Thresholding [34], and adaptive thresholding. An im-

portant distinction of our chosen segmentation algorithms

compared to alternative tools [12, 35] is that they do not

incorporate regularizer terms that can conceal typical fail-

ure behaviors, e.g., smoothing highly-jagged edges. Conse-

quently, the different algorithms capture a variety of types

of failure behaviors (Figure 2).

Given that the training data may be insufficiently popu-

lated with higher-scoring segmentations (if all eight algo-

rithm implementations consistently fail), our system aug-

ments three binary masks based on the ground truth seg-

mentations. The system uses the ground truth directly. Our

system also dilates and erodes the ground truth binary mask

by three pixels to simulate a slightly under-segmented and

over-segmented segmentation respectively where fine de-

tails may get smoothed out or chopped off.

Training Data - Labels. To create each output label,

the system computes a score indicating the quality of each

training instance segmentation. We use the standard Jac-

card index which indicates the fraction of pixels that are in

common to both the training instance and ground truth seg-

mentation (i.e.,
|A∩G|
|A∪G| ).

Training Data - Features. Next, our motivation is to

use knowledge about algorithm behavior on everyday and

biomedical images to choose predictive features. We take

advantage of the observation that the chosen algorithms fail

big when they fail, manifesting appearances unlike what

one would expect from widely meaningful object shapes

(Figure 2). We propose nine features derived from the bi-

nary segmentation mask to capture the failure behaviors.

We hypothesize that, in aggregation, these features may ac-

count for objects of different shapes and sizes. In results,

we will examine their advantages over an off-the-shelf state

of the art image descriptor, i.e., based on CNNs.

Segmentation Boundary. When algorithms fail, result-

ing segmentations often have boundaries characterized by

an abnormally large proportion of highly-jagged edges. We

implement two boundary-based features to capture this ob-

servation. We compute the mean and standard deviation of

the Euclidean distance of every point on the segmentation

boundary to the centroid. The boundary is defined as all

pixels on the exterior of the object in a binary mask using

an 8-connected neighborhood. The centroid is defined as

the center of mass of the segmentation in the binary mask.

Segmentation Compactness. When algorithms fail, seg-

mentations often are not compact. We implement three fea-

tures to capture this observation. Two measures compute

the coverage of segmentation pixels within a bounding re-

gion. Extent is defined as the ratio of the number of pixels in

the segmentation to the number of pixels in the area of the

bounding box. Solidity is defined as the ratio of the number

of pixels in the segmentation to the number of pixels in the

area of the convex hull. We also compute the shape factor

to capture the circularity of the segmentation since a pure

circle is a good measure to indicate highly compact objects.

It is defined as the ratio of region area A to a circle with the

same perimeter P : 4πA

P 2 .

Location of Segmentation in Image. When algorithms

fail, resulting segmentation regions often lie closer to the

edges of images. We compute the normalized x and y cen-

troid coordinates of the segmentation centroid in the image

to capture this observation. Specifically, we compute the x

value of the center of mass divided by the image width and

y value of the center of mass divided by the image height.

Coverage of Segmentation in Image. When algorithms

fail, resulting segmentations often cover abnormally large

and small areas in the image. We implement two features to

capture this observation. First, we compute the fraction of

pixels in the image that belong to the segmentation. Second,

we compute the fraction of pixels in the image that belong

to the bounding box of the segmentation.

See Section 3 for an analysis of the variability of these

cues measured for objects observed within diverse datasets.

Regression Model. We train a multiple linear regression

model with the aforementioned training data. This model

leads to easy to interpret, intuitive systems as it indicates

how to predict the segmentation quality from a weighted

combination of predictive features. Formally, the model

is represented as y = Xβ + e where y denotes an n-
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dimensional vector of segmentation quality scores, X de-

notes a matrix containing feature vectors that characterize

every training instance, β denotes the model parameters to

be learned, and e denotes errors measured between actual

quality scores (y) and predicted quality scores (Xβ). The

objective is to learn β so that e is minimized. We train mod-

els with WEKA [22] using M5 feature selection.

3. Experiments and Results

We conduct studies to analyze the reliability of our pre-

diction framework and its value for deciding when to intelli-

gently target computers versus humans to segment images.

Datasets. We evaluate our methods on three datasets

that represent three imaging modalities: Boston Univer-

sity Biomedical Image Library (BU-BIL:1-5) [21] includes

271 gray-scale images coming from three fluorescence mi-

croscopy image sets and two phase contrast microscopy

image sets, Weizmann [1] consists of 100 grayscale im-

ages showing a variety of everyday objects, and Interac-

tive Image Segmentation [19] (IIS) includes 151 RGB im-

ages showing a variety of everyday objects. Each dataset

includes human-drawn segmentations that serve as pixel-

accurate ground truth segmentations for evaluation.

Together, the three datasets exhibit large variability with

respect to object and image properties (Table 1). The

datasets depict objects that vary greatly in size (e.g., BU-

BIL vs IIS), coverage of the image (e.g., BU-BIL vs Weiz-

mann), shape (i.e., large Shape σσσ for all datasets), and tex-

ture (i.e., large FG Var σσσ for all datasets). Furthermore, our

analysis suggests that image backgrounds can be compli-

cated and/or cluttered (i.e., large BG Var µµµ and σσσ). This

diversity is important to ensure our method is challenged to

learn generic cues predictive of segmentation failure.

Table 1. Characterization of studied datasets to reveal the diversity

of image content with respect to object area (# pixels), centroid

location (X Loc, Y Loc), shape (Sec. 2.2; shape factor), and cov-

erage in image ( FG Area
Image Area

) as well as image texture (FG Var, BG

Var = variance of Laplacian values for object and background pix-

els respectively).
BU-BIL Weizmann IIS

µµµ σσσ µµµ σσσ µµµ σσσ

Area 7927 13,109 24,315 16,815 40,119 41,387

X Loc 126 129 146 29 251 80

Y Loc 115 106 158 61 223 63

Shape 0.48 0.25 0.41 0.2 0.4 0.2
FG Area

Image Area
0.12 0.04 0.27 0.14 0.19 0.12

FG Var 54 51 1663 1271 2227 1909

BG Var 28 36 540 835 1568 1521

3.1. Quality Prediction for Algorithm Set

We first analyze the predictive power of our proposed

framework (Section 2.2) to automatically estimate the qual-

ity of foreground object segmentations.

Baselines. We compare our method to the CPMC [10]

approach that also predicts a Jaccard score indicating the

quality of a given object segmentation. This baseline

stresses generality by learning statistics typical for real

world objects. The method learns to predict Jaccard scores

on everyday images using a combination of shape and

intensity-based features. We use publicly-available code.

Given the recent rise of CNN features as standard base-

lines for learning, we also examine the value of a CNN base-

line for making predictions. We employ the same training

instances using features extracted from the last fully con-

nected layer of AlexNet [25] to train linear regression mod-

els. Consequently, each training instance is characterized

with a 4096-dimensional vector that is extracted from the

image patch created by using the bounding box of the auto-

matically generated segmentation.

Evaluation Metrics. We evaluate each prediction model

using Pearson’s correlation coefficient (CC) and mean ab-

solute error (MAE). CC indicates how strongly correlated

predicted scores are to actual Jaccard scores for all fore-

ground object segmentations evaluated. Values range be-

tween +1 and -1 inclusive, with values further from 0 indi-

cating stronger predictive power. MAE is the average size

of prediction errors, computed as the mean absolute differ-

ence between all predicted and actual Jaccard scores.

Ours: Cross-Set Generalization. To minimize con-

cerns that prediction successes are due to over-fitting to the

statistics of a particular dataset, we first evaluate how well

our prediction models trained on two of the datasets perform

on the third dataset. Overall, our approach performs well,

as indicated by high CCs and low MAEs (Table 2, row 3).

The system is successful, even when trained on completely

disjoint datasets; e.g., what the system learned on everyday

images (Weizmann, IIS) can successfully be leveraged on

biomedical images (BU-BIL: CC = 0.61). This is possibly

because algorithms tend to create binary masks that have

consistent properties at various levels of success and failure

severity, regardless of the dataset.

While the CPMC method was designed to generalize

across different object types, it had less predictive strength

than our approach on all studied datasets (Table 2, row

Table 2. Comparison of our model with CPMC [10] and CNN fea-

tures [25] for predicting the Jaccard score indicating the quality

of a foreground segmentation. We report performance scores for

our method learned with cross-set training (“Ours:C”) as well as

single-set training (“Ours:S”). Higher correlation coefficient (CC)

scores and lower mean absolute error (M) scores are better.
BU-BIL Weizmann IIS All

CC M CC M CC M CC M

[10]:C 0.36 0.33 0.61 0.32 0.67 0.31 0.53 0.32

CNN:C -0.01 3.22 -0.1 26.7 -0.01 45 NA NA

Ours:C 0.61 0.31 0.64 0.24 0.68 0.22 NA NA

Ours:S 0.69 0.18 0.69 0.2 0.78 0.18 0.68 0.2
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1 versus row 3). This suggests a possible value in learn-

ing the statistics of specific tools one intends to use rather

than relying on one-size-fits-all approaches. In addition,

CPMC’s greater error on the everyday images (Weizmann

& IIS; MAE scores) highlights a potential value of pop-

ulating training data with images from different modali-

ties to promote learning generic algorithm behavior rather

than particular data properties. Finally, our clear predictive

strength over CPMC on the biomedical images (BU-BIL:

CC scores of 0.36 vs 0.61) reveals a plausible limitation

that intensity features do not generalize well for objects ob-

served in images captured with different image acquisition

technologies, while our binary mask features remain rele-

vant across domains.

We observe that the off-the-shelf CNN feature yields

negligible predictive power (Table 2, row 2). We hypoth-

esize the high MAE arises from an accumulation of errors

due to using a high dimensional feature space. Our results

further support our findings that the characteristics of seg-

mentation errors are robustly and sufficiently learned from

a small set of features describing the binary mask alone.

Ours: Single-Set Analysis. We next evaluate our pre-

diction framework per dataset (i.e., Weizmann, IIS, BU-

BIL) as well as across the three datasets (All). To evaluate,

we train and test each of the four configurations using 10-

fold cross-validation. We consistently observe performance

gains over CPMC and cross-set results (Table 2, row 4 ver-

sus rows 1–3). These findings highlight a possible benefit

of learning how an algorithm behaves with a particular type

of image set, when one can know the image type to be en-

countered at test time.

3.2. Initializing Segmentation Tools

We next examine the value of our PTP framework to

predict when to pull the plug on human annotators and use

computers instead, when segmenting a batch of images with

a given human budget. Our focus is on initializing segmen-

tation tools. The status quo is either that humans create

coarse object segmentation input for every image or com-

puters automatically position rectangles based on the im-

age dimensions [6, 11, 12]. Our system, instead, intelli-

gently decides which among multiple automatic initializa-

tion methods is preferable for each image and then decides

whether to involve humans instead (Section 2.1, Coarse

Segmentation system).

We evaluate with all 522 images from Weizmann, IIS,

and BU-BIL. We collect a coarse segmentation per image

from crowd workers on Amazon Mechanical Turk. We

compare the following methods for creating coarse segmen-

tation inputs:

- Ours: For each image, the system deploys either a)

the algorithm from eight options that has the largest

predicted Jaccard score or b) a human. We leverage

cross-dataset predictions (Section 3.1) to estimate the

quality of algorithm-generated segmentations. We chose

this predictor so our method cannot inadvertently learn and

exploit any dataset-specific idiosyncrasies.

- Perfect Predictor: For each image, this system de-

ploys the algorithm from eight options that has the largest

actual Jaccard score. Images are then ordered by the actual

quality scores. Human involvement is allocated to the

images with lowest quality scores. This predictor reveals

the best initializations possible with our system.

- Chance Predictor: For each image, the system ran-

domly deploys one algorithm from the eight options. Then,

images for human involvement are randomly selected. This

predictor illustrates the best a user can achieve today with

the initialization options available in our system.

- Rectangle [6, 11, 12]: This method illustrates the

commonly-adopted automated method of positioning a

bounding rectangle with respect to the image dimensions.

Following [12], we set the foreground region based on

the image boundary. We position the rectangle to occupy

the image region after cropping 5% of pixels from the

minimum image dimension on all sides. We randomly

select images for human involvement.

To illustrate the versatility of our initialization system as a

general-purpose approach for use with segmentation tools,

we integrate our initialization method and the baselines with

three tools important in the computer vision and medical

imaging communities - Grab Cut [35], Chan Vese level

sets [12], and Lankton level sets [26] (Figure 4).

Figure 4. Illustration of the quality of resulting segmentations cre-

ated by three segmentation tools from the initial segmentation se-

lected by our system from the eight initialization options.

Fully-Automated Initialization. For each segmentation

tool, we compute the average segmentation quality resulting

after the tool refines all computer-generated initializations

for all 522 images. As seen on the left side of the three

plots (Figure 3, 0% human involvement), predicting a best-

suited automated input from eight options produces coarse

segmentation estimates that the segmentation tools can re-

fine more successfully than existing baselines (i.e., Chance

Predictor, Rectangle). For example, for the Lankton level

set algorithm, the resulting segmentation quality improves

by 20 percentage points over the Rectangle baseline by us-

ing our approach. The one exception is with Grab Cut ini-

tialized with the Rectangle baseline. We hypothesize this

exception is due to Grab Cut’s shrinking bias, which means

Grab Cut cannot recover when the initialization occupies a
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Figure 3. We compare four methods for distributing varying levels of human involvement to create initializations for three segmentation

tools (a-c). Each plot shows the mean quality for 522 segmentations that resulted after the tools refined the initializations. Our pre-

dictor, which identifies the best input option produced by eight algorithms and a human, facilitates segmentation quality comparable to

today’s status quo (Rectangle, Chance Predictor) with significantly less human involvement. The brown circles identify where our system

achieves comparable segmentation quality to relying exclusively on human input. On average, our approach eliminates the need for human

annotation effort for 44% of images while achieving segmentation quality comparable to relying exclusively on human input.

region smaller than the object itself.

Reducing Human Initialization Effort. We next ex-

amine the impact of actively allocating human involvement

to create coarse segmentation input as a function of the

budget of human effort available. For each segmentation

tool, we compute the average segmentation quality result-

ing after the tool refines the collection of chosen computer

and human initializations for all 522 images (Figure 3).

Our approach typically outperforms random decisions (i.e.,

Chance Predictor, Rectangle) regarding how to distribute

the initialization effort to humans and computers for all bud-

get levels. Our approach also has the potential to outper-

form all three baselines for all segmentation tools by greater

margins given improved prediction accuracy, as exemplified

by the Perfect Predictor.

In the more challenging setting of eliminating human

effort without compromising segmentation quality, our

system yields exciting results. Specifically, our system

achieves comparable quality to relying exclusively on hu-

man input (i.e., 100% human involvement) while using

computer involvement for 67.5% of images for Grab Cuts,

35% of images for Chan Vese level sets, and 30% of im-

ages for Lankton level sets (Figure 3; see brown circles).

Our results reveal that different segmentation tools can tol-

erate different amounts of unreliable computer input with-

out compromising the overall segmentation quality attained

when relying exclusively on human input.

Peak Segmentation Quality. Relying on a mix of hu-

man and computer efforts can outperform relying on either

resource alone to create initial segmentations. For exam-

ple, peak accuracy for Grab Cuts with our initialization ap-

proach is achieved with 70% human and 30% computer in-

volvement (Figure 3a). There is a six percentage point im-

provement from relying on a mix of human and computer

input over human input alone. For Chan Vese and Lankton

level sets algorithms, performance gains are slight with the

tools fluctuating around a peak plateau value from 65% to

100% human involvement (Figures 3b,c). We attribute the

latter performance fluctuations to slight differences when

the two tools expand and shrink the human and algorithm

initializations as needed to recover the desired boundaries.

We attribute the larger performance gains for Grab Cut to

the tool’s shrinking bias, which means Grab Cut fails when

humans produce boundaries that do not entirely subsume

the true object region. More generally, our findings reveal

that intelligently replacing human effort with computer ef-

fort is not only desirable to save money and time, but also

to collect higher quality segmentations.

3.3. Segmentation Tool Output

Lastly, we examine the value of our PTP framework to

predict when to pull the plug on computers and use human

annotation instead. For this second task, given segmenta-

tions from algorithms, the system predicts which images

humans should re-annotate in order to recover from failures

(Section 2.1, Fine-Grained Segmentation system).

Implementation. The system automatically feeds ini-

tializations from the best stand-alone method (i.e., Hough

Transforms with radius 5) to the top-performing Lankton

level set algorithm. Quality estimates of resulting segmen-

tations are then predicted using our cross-dataset predictor

(Section 3.1).

Baselines. To our knowledge, no prior work addressed

predicting when to enlist human versus computer segmenta-

tion effort. Therefore, we use as a baseline the related state-

of-art system of Jain & Grauman [23] (J & G) which pre-

dicts how to best allocate a given budget of human time to

annotate a batch of images. In particular, it predicts whether

388



Figure 5. Predicting when to replace segmentations created by a

semi-automatic segmentation tool with segmentations created by

(a) experts and (b) online crowd workers for 522 images. With

both experts and crowd workers, our system typically achieves

state-of-art performance (J & G method [23]) while saving up to

60 minutes of human effort (b; time difference between curves in

the human budget range of 140 to 190 minutes).

to have humans draw a segmentation from scratch (54 sec-

onds) versus supply a bounding box (7 seconds) or coarse

segmentation (20 seconds) as input to Grab Cut. The sys-

tem was trained on everyday images for Grab Cut. We use

publicly-available code. Note that the J & G [23] system

requires human involvement for every image and so only

becomes relevant at the budget level that supports human-

created bounding boxes for all images (i.e., 61 minutes).

Moreover, that system is designed for Grab Cut, whereas

our system is agnostic to the segmentation tool.

We also compare the quality of predictions from our ap-

proach to perfect and chance predictions for deciding when

humans versus computers should segment images.

Experiments. We conduct studies on all 522 images from

Weizmann, IIS, and BU-BIL. Following prior work [23],

we budget 54 seconds for each segmentation a human cre-

ates from scratch. We examine the impact of actively al-

locating human effort using a budgeted approach, in terms

of minutes, ranging from no human involvement (0 min-

utes) to getting all 522 images manually annotated (470

minutes). We compute the average segmentation quality

resulting for all chosen human-drawn and computer-drawn

segmentations at each allotted time budget.

For human input, we analyze both the settings where seg-

mentations are created locally and remotely. For the local

setting, we leverage the ground truth segmentations as per-

fect expert annotations (i.e., Jaccard score of 1). For the

web-based setting, we collect segmentations from online

crowd workers and measure quality as the Jaccard similarity

of each crowdsourced segmentation to the ground truth.

Results. Our system consistently outperforms the

baselines for a wide range of budgets, both for expert

(Figure 5a) and crowd (Figure 5b) involvement. For ex-

ample, the benefit of our approach is greatest at about 50%

human budget (i.e., 222 minutes), eliminating an average of

70 minutes of human annotation effort to achieve compa-

Figure 6. Examples of images which computers segment more

similarly to experts than crowd workers. As intended, our system

often avoids involving crowd workers for these images.

rable segmentation quality to the Chance baseline. In ad-

dition, our system achieves segmentation quality compara-

ble to the state of art interactive approach [23] but often re-

quires 30-60 minutes less human annotation time. This time

savings to achieve same segmentation quality is typically

observed in the human budget range of 50 to 220 minutes

(Figure 5a). Our findings highlight the value of our generic

prediction framework today as well as its rich potential for

use with future improved segmentation tools.

Finally, our findings reveal that relying on a mix of hu-

man and computer effort can outperform methods that al-

ways assume human involvement. In particular, for the last

100 images assigned to receive human annotations (i.e., im-

ages with highest predicted algorithm scores), the system

appropriately chooses computer-drawn segmentations over

human-drawn segmentations for 10% of images. In other

words, for those 10% of images, computers create segmen-

tations more similar to the ground truth than crowd workers

(i.e., higher Jaccard scores). Example images where algo-

rithms segment better than the crowd are shown in Figure 6.

4. Conclusions

We proposed two novel tasks for intelligently distribut-

ing segmentation effort between computers and humans.

Both tasks relied on our proposed prediction module that

successfully predicts the quality of candidate segmenta-

tions from three diverse datasets, with stronger predictive

capabilities than the baselines. For the first task of creating

initializations that segmentation tools refine, our proposed

system eliminated the need for human annotation effort for

an average of 44% of images while preserving the resulting

segmentation quality achieved when relying exclusively

on human input. For the second task of creating high

quality segmentation results, our proposed system consis-

tently preserved the resulting segmentation quality from a

state of art interactive segmentation tool while regularly

eliminating 30-60 minutes of human annotation time. We

share our code to support application and future extensions

of this work (http://vision.cs.utexas.edu/

HybridAlgorithmCrowdSystems/PullThePlug).

389



Acknowledgments

The authors gratefully acknowledge funding from the Of-

fice of Naval Research (ONR YIP N00014-12-1-0754) and

National Science Foundation (IIS-1421943). We thank

Mehrnoosh Sameki and Bo Xiong for their assistance with

experiments as well as Qinxun Bai, Ajjen Joshi, and the

anonymous reviewers for feedback to improve the article.

References

[1] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image seg-

mentation by probabilistic bottom-up aggregation and cue

integration. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1–8, 2007. 5

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(5):898–916, 2011. 3
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