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Abstract

In this work we propose a technique that transfers su-

pervision between images from different modalities. We use

learned representations from a large labeled modality as

supervisory signal for training representations for a new

unlabeled paired modality. Our method enables learning

of rich representations for unlabeled modalities and can be

used as a pre-training procedure for new modalities with

limited labeled data. We transfer supervision from labeled

RGB images to unlabeled depth and optical flow images and

demonstrate large improvements for both these cross modal

supervision transfers.

1. Introduction

Current paradigms for recognition in computer vision in-

volve learning a generic feature representation on a large

dataset of labeled images, and then specializing or finetun-

ing the learned generic feature representation for the spe-

cific task at hand. Successful examples of this paradigm

include almost all state-of-the-art systems: object detection

[11], semantic segmentation [31], object segmentation [17],

and pose estimation [44], which start from generic features

that are learned on the ImageNet dataset [5] using over a

million labeled images and specialize them for each of the

different tasks. Several different architectures for learning

these generic feature representations have been proposed

over the years [26, 39], but all of these rely on the avail-

ability of a large dataset of labeled images to learn feature

representations.

The question we ask in this work is, what is the analogue

of this paradigm for images from modalities which do not

have such large amounts of labeled data? There are a large

number of image modalities beyond RGB images which are

dominant in computer vision, for example depth images

coming from a Microsoft Kinect, infra-red images from

thermal sensors, aerial images from satellites and drones,

Code, data and pretrained models are available at https://

github.com/s-gupta/fast-rcnn/tree/distillation.
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Figure 1: Architecture for supervision transfer: We train a

CNN model for a new image modality (like depth images), by

teaching the network to reproduce the mid-level semantic repre-

sentations learned from a well labeled image modality (such as

RGB images) for modalities for which there are paired images.

LIDAR point clouds from laser scanners, or even images

of intermediate representations output from current vision

systems e.g. optical flow and stereo images. The number

of labeled images from such modalities are at least a few

orders of magnitude smaller than the RGB image datasets

used for learning features, which raises the question: do we

need similar large scale annotation efforts to learn generic

features for images from each such different modality?

We answer this question in this paper and propose a tech-

nique to transfer learned representations from one modal-

ity to another. Our technique uses ‘paired’ images from

the two modalities and utilizes the mid-level representations

from the labeled modality to supervise learning representa-

tions on the paired un-labeled modality. We call our scheme

supervision transfer and show that our learned representa-

tions perform well on standard tasks like object detection.

We also show that our technique leads to learning useful

feature hierarchies in the unlabeled modality, which can be

improved further with finetuning, and are still complemen-

tary to representations in the source modality.

As a motivating example, consider the case of depth im-

ages. While the largest labeled RGB dataset, ImageNet [5]

consists of over a million labeled images, the size of most

existing labeled depth datasets is of the order of a few thou-

sands [37, 41]. At the same time there are a large number of

unlabeled RGB and depth image pairs. Our technique lever-

ages this large set of unlabeled paired images to transfer the
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ImageNet supervision on RGB images to depth images. Our

technique is illustrated in Figure 1. We use a convolutional

neural network that has been trained on labeled images in

the ImageNet dataset [5], and use the mid-level representa-

tion learned by these CNNs as a supervisory signal to train a

CNN on depth images. This results in improvements in per-

formance for the end task of object detection on the NYUD2

dataset, where we improve the state-of-the-art from 34.2%

to 41.7% when using just the depth image and from 46.2%

to 49.1% when using both RGB and depth images together.

We report similar improvements for the task of simultane-

ous detection and segmentation [17] and also show how su-

pervision transfer can be used for a zero-shot transfer of ob-

ject detectors trained on RGB images to detectors that can

run on depth images.

Though we show detailed experimental results for su-

pervision transfer from RGB to depth images, our technique

is equally applicable to images from other paired modali-

ties. To demonstrate this, we show additional transfer re-

sults from RGB images to optical flow images where we

improve mean average precision for action detection on the

JHMDB dataset [23] from 31.7% to 35.7% when using just

the optical flow image and no supervised pre-training.

Our technique is reminiscent of the distillation idea from

Hinton et al. [20] (its recent extension FitNets by Romero

et al. in [34], and its application to domain adaptation by

Tzeng et al. in [45]). Hinton et al. [20] extended the model

compression idea from Bucilua et al. [3] to what they call

‘distillation’ and showed how large models trained on large

labeled datasets can be compressed by using the soft out-

puts from the large model as targets for a much smaller

model operating on the same modality. Our work here is

a generalization of this idea: we explore transfer of super-

vision at arbitrary semantic levels, and investigate how we

can transfer supervision between different modalities using

paired images. More importantly, our work allows us to ex-

tend the success of recent deep CNN architectures to new

imaging modalities without having to collect large scale la-

beled datasets necessary for training deep CNNs.

2. Related Work

There has been a large body of work on transferring

knowledge between different visual domains, belonging to

the same modality. Initial work e.g. [1, 7, 13, 27] studied the

problem in context of shallow image representations. More

recently, with the introduction of supervised CNN models

by Krizhevsky et al. [26], the community has been mov-

ing towards a generic set of features which are specialized

to specific tasks and domains at hand [6, 11, 35] and tradi-

tional visual adaptation techniques can be used in conjunc-

tion with such features [9, 22, 32, 45].

All these lines of work study and solve the problem

of domain adaptation within the same modality. In con-

trast, our work here tackles the problem of domain adap-

tation across different modalities. Most methods for intra-

modality domain adaptation described above start from an

initial set of features on the target domain, and a priori

it is unclear how this can be done when moving across

modalities, limiting the applicability of aforementioned ap-

proaches to our problem. This cross-model transfer prob-

lem has received much less attention. Notable among those

include [4, 8, 33, 40, 43]. While [4, 43] hallucinate modali-

ties during training time, [8, 33, 40] focus on the problem of

jointly embedding or learning representations from multiple

modalities into a shared feature space to improve learning

[33] or enabling zero-shot learning[8, 40]. Our work here

instead transfers high quality representations learned from

a large set of labeled images of one modality to completely

unlabeled images from a new modality, thus leading to a

generic feature representations on the new modalities which

we show are useful for a variety of tasks.

3. Supervision Transfer

Let us assume we have a modality U with unlabeled data,

Du for which we would like to train a rich representation.

We will do so by transferring information from a separate

modality, L, which has a large labeled set of images, Dl,

and a corresponding #l layered rich representation. We as-

sume this rich representation is layered although our pro-

posed method will work equally well for non-layered rep-

resentations. We use convolutional neural networks as our

layered rich representation.

We denote this image representation as Φ = {φi ∀i ∈
{1, . . . ,#l}}. φi is the ith layer representation for modality

L which has been trained on labeled images from dataset

Dl, and it maps an input image from modality L to a feature

vector in R
ni

φi : L 7→ R
ni (1)

Feature vectors from consecutive layers in such layered

representations are related to one another by simple opera-

tions like non-linearities, convolutions, pooling, normaliza-

tions and dot products (for example layer 2 features may be

related to layer 1 features using a simple non-linearity like

max with 0: φ2(x) = max(0, φ1(x))). Some of these oper-

ations like convolutions and dot products have free param-

eters. We denote such parameters associated with operation

at layer i by wi
l . The structure of such architectures (the se-

quence of operations, and the size of representations at each

layer, etc.) is hand designed or validated using performance

on an end task. Such validation can be done on a small set

of annotated images. Estimating the model parameters wi
l

is much more difficult. The number of these parameters for

most reasonable image models can easily go up to a few

millions, and state-of-the-art models employ discriminative

learning and use large scale labeled training datasets.
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Now suppose we want to learn a rich representation

for images from modality U , for which we do not have

access to a large dataset of labeled images. We assume

we have already hand designed an appropriate architecture

Ψ = {ψi ∀i ∈ {1, . . . ,#u}}. The task then is to effec-

tively learn the parameters associated with various opera-

tions in the architecture, without having access to a large set

of annotated images for modality U . As before, we denote

these parameters to be learned by W
{1,...,#u}
u = {wi

u ∀i ∈
{1, . . . ,#u}}.

In addition to Dl, let us assume that we have access to

a large dataset of un-annotated paired images from modal-

ities L and U . We denote this dataset by Pl,u. By paired

images we mean a set of images of the same scene in two

different modalities. Our proposed scheme for training rich

representations for images of modality U is to learn the rep-

resentation Ψ such that the image representation ψ#u(Iu)
for image Iu matches the image representation φi

∗

(Il) for

its image pair Il in modality l for some chosen and fixed

layer i∗ ∈ {1, . . . ,#l}. We measure the similarity between

the representations using an appropriate loss function f (for

example, euclidean loss). Note that the representations φi
∗

and ψ#u may not have the same dimensions. In such cases

we embed features ψ#u into a space with the same dimen-

sion as φi
∗

using an appropriate simple transformation func-

tion t (for example a linear or affine function)

min
W

{1,...,#u}
u

∑

(Il,Iu)∈Pl,u

f
(

t
(

ψ#u(Iu)
)

, φi
∗

(Il)
)

(2)

We call this process supervision transfer from layer i∗ in Φ
of modality L to layer #u in Ψ of modality U .

The recent distillation method from Hinton et al. [20] is a

specific instantiation of this general method, where a) they

focus on the specific case when the two modalities L and

U are the same and b) the supervision transfer happens at

the very last prediction layer, instead of an arbitrary internal

layer in representation Φ.

Our experiments in Section 4 demonstrate that this pro-

posed method for transfer of supervision is a) effective at

learning good feature hierarchies, b) these hierarchies can

be improved further with finetuning, and c) the resulting

representation can be complementary to the representation

in the source modality L if the modalities permit.

4. Experiments

In this section we present experimental results on 1) the

NYUD2 dataset where we use color and depth images as the

modality pairs, and 2) the JHMDB video dataset where we

use the RGB and optical flow frames as the modality pairs.

Our general experimental framework consists of two

steps. The first step is supervision transfer as proposed in

Section 3, and the second step is to assess the quality of the

transferred representation by using it for a downstream task.

For both of the datasets we study, we consider the domain

of RGB images as L for which there is a large dataset of la-

beled images in the form of ImageNet [5], and treat depth

and optical flow respectively as U . These choices for L and

U are of particular practical significance, given the lack of

large labeled datasets for depth images, at the same time, the

abundant availability of paired images coming from RGB-D

sensors (for example Microsoft Kinect) and videos on the

Internet respectively.

For our layered image representation models, we use

convolutional neural networks (CNNs) [26, 28]. These net-

works have been shown to be very effective for a variety

of image understanding tasks [6]. We experiment with the

network architectures from Krizhevsky et al. [26] (denoted

AlexNet), Simonyan and Zisserman [39] (denoted VGG),

and use the models pre-trained on ImageNet [5] from the

Caffe [24] Model Zoo.

We use an architecture similar to [26] for the layered rep-

resentations for depth and flow images. We do this in order

to be able to compare to past works which learn features on

depth and flow images [12, 15]. Validating different CNN

architectures for depth and flow images is a worthwhile sci-

entific endeavor, which has not been undertaken so far, pri-

marily because of lack of large scale labeled datasets for

these modalities. Our work here provides a method to cir-

cumvent the need for a large labeled dataset for these and

other image modalities, and will naturally enable exploring

this question in the future, however we do not delve in this

question in the current work.

We next describe our design choices for which layers to

transfer supervision between, and the specification of the

loss function f and the transformation function t. We exper-

imented with what layer to use for transferring supervision,

and found transfer at mid-level layers works best, and use

the last convolutional layer pool5 for all experiments in the

paper. Such a choice also resonates well with observations

from [2, 29, 46] that lower layers in CNNs are modality spe-

cific (and thus harder to transfer across modalities) and vi-

sualizations from [11] that neurons in mid-level layers are

semantic and respond to parts of objects. Transferring at

pool5 also has the computational benefit that training can

be efficiently done in a fully convolutional manner over the

whole image.

For the function f , we use L2 distance between the

feature vectors, f(x,y) = ‖x − y‖22. We also experi-

mented with f(x,y) = 1(y > τ) · log p(x) + 1(y ≤
τ) · log(1 − p(x)) (where p(x) = eαx

1+eαx , 1(x) is the indi-

cator function), for some reasonable choices of α and τ but

this resulted in worse performance in initial experiments.

Finally, the choice of the function t varies with differ-

ent pairs of networks. As noted above, we train using a

fully convolutional architecture. This requires the spatial

resolution of the two layers i∗ in Φ and #u in Ψ to be sim-

ilar, which is trivially true if the architectures Φ and Ψ are

2829



Does supervision transfer work? How good is the transferred representation by itself? Are the representations complementary?

Exp. 1A no init 22.7 Exp. 2A copy from RGB (ft fc only) 19.8 Exp. 3A [RGB]: RGB network on

RGB images AlexNet

22.3

Exp. 1B copy from RGB 25.1 Exp. 2B supervision transfer (ft fc only)

AlexNet ∗ → AlexNet

30.0 Exp. 3B [RGB] + copy from RGB 33.8

Exp. 1C supervision transfer

AlexNet → AlexNet

29.7 Exp. 2C supervision transfer (ft fc only)

VGG ∗ → AlexNet

32.2 Exp. 3C [RGB] + supervision transfer

AlexNet ∗ → AlexNet

35.6

Exp. 1D supervision transfer

AlexNet ∗ → AlexNet

30.5 Exp. 2D supervision transfer

VGG ∗ → AlexNet

33.6 Exp. 3D [RGB]+ supervision transfer

VGG ∗ → AlexNet

37.0

Table 1: We evaluate different aspects of our supervision transfer scheme on the object detection task on the NYUD2 val set using the

mAP metric. Left column demonstrates that our scheme for pre-training is better than alternatives like no pre-training, and copying over

weights from RGB networks. The middle column demonstrates that our technique leads to transfer of mid-level semantic features which by

themselves are highly discriminative, and that improving the quality of the supervisory network translated to improvements in the learned

features. Finally, the right column demonstrates that the learned features on the depth images are still complementary to the features on the

RGB image they were supervised with.

the same. When they are not (for example when we trans-

fer from VGG net to AlexNet), we adjust the padding in the

AlexNet to obtain the same spatial resolution at pool5 layer.

This apart, we introduce an adaptation layer comprising

of 1 × 1 convolutions followed by ReLU to map from the

representation at layer #u in Ψ to layer i∗ in Φ. This ac-

counts for difference in the number of neurons (for exam-

ple when adapting from VGG to AlexNet), or even when the

number of neurons are the same, allows for domain specific

fitting. For VGG to AlexNet transfer we also needed to intro-

duce a scaling layer to make the average norm of features

comparable between the two networks.

4.1. Transfer to Depth Images

We first demonstrate how we transfer supervision from

color images to depth images as obtained from a range sen-

sor like the Microsoft Kinect. As described above, we do

this set of experiments on the NYUD2 dataset [37] and show

results on the task of object detection and instance segmen-

tation [15]. The NYUD2 dataset consists of 1449 paired

RGB and D images. These images come from 464 different

scenes and were selected from the full video sequence to

ensure diverse scene content [37]. The full video sequence

that comes with the dataset has over 400K RGB-D frames,

we use 10K of these frame pairs for supervision transfer.

In all our experiments we report numbers on the standard

val and test splits that come with the dataset [15, 37]. Im-

ages in these splits have been selected while ensuring that

all frames belonging to the same scene are contained en-

tirely in exactly one split. We additionally made sure only

frames from the corresponding training split were used for

supervision transfer.

The downstream task that we study here is that of object

detection. We follow the experimental setup from Gupta et

al. [15] for object detection and study the 19 category object

detection problem, and use mean average precision (mAP)

to measure performance.

Baseline Detection Model We use the model from

Gupta et al. [15] for object detection. Their method builds

off R-CNN [11]. In our initial experiments we adapted their

model to the more recent Fast R-CNN framework [10]. We

summarize our key findings here. First, [15] trained the fi-

nal detector on both RGB and D features jointly. We found

training independent models all the way and then simply

averaging the class scores before the SoftMax performed

better. While this is counter-intuitive, we feel it is plausible

given limited amount of training data. Second, [15] use fea-

tures from the fc6 layer and observed worse performance

when using fc7 representation; in our framework where we

are training completely independent detectors for the two

modalities, using fc7 representation is better than using

fc6 representation. Finally, using bounding box regression

boosts performance. Here we simply average the predicted

regression target from the detectors on the two modalities.

All this analysis helped us boost the mean AP on the test

set from 38.80% as reported by [14, 15] to 44.39%, us-

ing the same CNN network and supervision. This already

is the state-of-the-art result on this dataset and we use this

as a baseline for the rest of our experiments. We denote

this model as ‘[15] + Fast R-CNN’. We followed the default

setup for training Fast R-CNN, 40K iterations, base learning

rate of 0.001 and stepping it down by a factor of 10 after

30K iterations, except that we finetune all the layers, and

use 688px length for the shorter image side. We used RGB-

D box proposals from [15] for all experiments.

Note that Gupta et al. [15] embed depth images into a

geocentric embedding which they call HHA (HHA encodes

horizontal disparity, height above ground and angle with

gravity) and use the AlexNet architecture to learn HHA fea-

tures and copy over the weights from the RGB CNN that was

trained for 1000 way classification [26] on ImageNet [5] to

initialize this network. All through this paper, we stick with

using HHA embedding1 to represent the input depth images,

1We use the term depth and HHA interchangeably.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 2: Visualization of learned filters (best viewed in color): (a) visualizes filters learned on RGB images from ImageNet data by

AlexNet. (b) shows these filters after the finetuning on HHA images, and hardly anything changes visually. (c) shows HHA image filters

from our pre-training scheme, which are much different from ones that are learned on RGB images. (d) shows HHA image filters learned

without any pre-training. (e) shows optical flow filters learned by [12]. Note that they initialize these filters from RGB filters and these

also do not change much over their initial RGB filters. (f) shows filters we learn on optical flow images, which are again very different

from filters learned on RGB or HHA images. (g) shows image patches corresponding to highest scoring activations for two neurons in

the RGB CNN. (h) shows HHA image patches corresponding to highest scoring activations of the same neuron in the supervision transfer

depth CNN. (i) shows the corresponding RGB image patch for these depth image patches for ease of visualization.

and their network architecture, and show how our proposed

supervision transfer scheme improves performances over

their technique for initialization. We summarize our vari-

ous transfer experiments below:

Does supervision transfer work? The first question we

investigate is if we are able to transfer supervision to a new

modality. To understand this we conducted the following

three experiments:

1. no init (1A): randomly initialize the depth network us-

ing weight distributions typically used for training on Ima-

geNet and simply train this network for the final task. While

training this network we train for 100K iterations, start with

a learning rate on 0.01 and step it down by a factor of 10

every 30K iterations.

2. copy from RGB (1B): copy weights from a RGB net-

work that was trained on ImageNet. This is same as the

scheme proposed in [15]. This network is then trained us-

ing the standard Fast R-CNN settings.

3. supervision transfer (1C): train layers conv1 through

pool5 from random initialization using the supervision

transfer scheme as proposed in Section 3, on the 5K paired

RGB and D images from the video sequence from NYUD2

for scenes contained in the training set. We then plug in

these trained layers along with randomly initialized fc6,

fc7 and classifier layers for training with Fast R-CNN. We

report the results in Table 1. We see that ‘copy from RGB’

surprisingly does better than ‘no init’, which is consistent

with what Gupta et al. report in [15], but our scheme for

supervision transfer outperforms both these baselines by a

large margin pushing up mean AP from 25.1% to 29.7%.

We also experimented with using a RGB network Ψ that

has been adapted for object detection on this dataset for

supervising the transfer (1D) and found that this boosted

performance further from 29.7% to 30.5% (1D in Table 1,

AlexNet∗ indicates RGB AlexNet that has been adapted for

detection on the dataset). We use this scheme for all subse-

quent experiments.

Visualizations. We visualize the filters from the first

layer for these different schemes of transfer in Figure 2(a-f),

and observe that our training scheme learns reasonable fil-

ters and find that these filters are of different nature than fil-

ters learned on RGB images. In contrast, note that schemes

which initialize depth CNNs with RGB CNNs weights, filters

in the first layer change very little. We also visualize patches

giving high activations for neurons paired across RGB and

D images Figure 2(g-i). High scoring patches from RGB

CNN (AlexNet in this case), correspond to parts of object (g),

high scoring patches from the depth CNN also corresponds

to parts of the same object class (h and i).

How good is the transferred representation by itself?

The next question we ask is if our supervision transfer

scheme transfers good representations or does it only pro-

vide a good initialization for feature learning. To answer

this question, we conducted the following experiments:

1. Quality of transferred pool5 representation (2A,

2B): The first experiment was to evaluate the quality of the

transferred pool5 representation. To do this, we froze the

network parameters for layers conv1 through pool5 to be

those learned during the transfer process, and only learn pa-

rameters in fc6, fc7 and classifier layers during Fast R-CNN
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val AP r at 0.5 AP r at 0.7

fc7 +pool2+conv4 fc7 +pool2+conv4

RGB 26.3 29.8 14.8 18.3

D 28.4 31.5 17.4 19.6

Table 2: Region detection average precision AP
r on NYUD2

val set: Performance on NYUD2 val set where we observe similar

boosts in performance when using hyper-column transform with

our learned feature hierarchies (learned using supervision transfer

on depth images) as obtained with more standard feature hierar-

chies learned on ImageNet on RGB images.

training (2B ‘supervision transfer adapted (ft fc only)’).

We see that there is only a moderate degradation in perfor-

mance for our learned features from 30.5% (1D) to 30.0%

(2B) indicating that the features learned on depth images at

pool5 are discriminative by themselves. In contrast, when

freezing weights when copying from ImageNet (2A), per-

formance degrades significantly to 19.8%.

2. Improved transfer using better supervising net-

work Φ (2C, 2D): The second experiment investigated if

performance improves as we improve the quality of the su-

pervising network. To do this, we transferred supervision

from VGG net instead of AlexNet (2C)2. VGG net has been

shown to be better than AlexNet for a variety of vision tasks.

As before we report performance when freezing parameters

till pool5 (2C), and learning all the way (2D). We see that

using a better supervising net results in learning better fea-

tures for depth images: when the representation is frozen till

pool5 we see performance improves from 30.0% to 32.2%,

and when we finetune all the layers performance goes up to

33.6% as compared to 30.5% for AlexNet.

Is the learned representation complementary to the

representation on the source modality? The next ques-

tion we ask is if the representation learned on the depth im-

ages complementary to the representation on the RGB im-

ages from which it was learned. To answer this question

we look at the performance when using both the modali-

ties together. We do this the same way that we describe for

the baseline model and simply average the category scores

and regression targets from the RGB and D detectors. Ta-

ble 1(right) reports our findings. Just using RGB images

(3A) gives us a performance of 22.3%. Combining this

with the HHA network as initialized using the scheme from

Gupta et al. [15] (3B) boosts performance to 33.8%. Ini-

tializing the HHA network using our proposed supervision

transfer scheme when transferring from AlexNet∗ to AlexNet

(3C) gives us 35.6% and when transferring from VGG∗ to

AlexNet (3D) gives us 37.0%. These results show that the

representations are still complementary and using the two

together can help the final performance.

2 To transfer from VGG to AlexNet, we use 150K transfer iterations

instead of 100K. Running longer helps for VGG to AlexNet transfer by

1.5% and much less (about 0.5%) for AlexNet to AlexNet transfer.

test modality RGB Arch. D Arch. AP r at 0.5 AP r at 0.7

[18] RGB AlexNet - 23.4 13.4

Gupta et al. [14] RGB + D AlexNet AlexNet 37.5 21.8

Our (supervision transfer) RGB + D AlexNet AlexNet 40.5 25.4

[18] RGB VGG - 31.0 17.7

Our (supervision transfer) RGB + D VGG AlexNet 42.1 26.9

Table 3: Region detection average precision on NYUD2 test set.

Transfer to other architectures. We also conducted

preliminary experiments of transferring supervision from

RGB VGG to a depth VGG network, and found a perfor-

mance of 33.5% (RGB only VGG performance on the val

set is 28.0%). Thus, supervision transfer can be used to

transfer supervision to different target architectures.

Does supervision transfer lead to meaningful inter-

mediate layer representations? The next questions we in-

vestigate is if the intermediate layers learned in the target

modality U through supervision transfer carry useful infor-

mation. [25] hypothesize that information from intermedi-

ate layers in such hierarchies carry information which may

be useful for fine grained tasks. Recent work as presented

in [18, 31, 36] operationalize this and demonstrate improve-

ments for fine grained tasks like object and part segmen-

tation. Here we investigate if the representations learned

using supervision transfer also share this property. To test

this, we follow the hyper-column architecture from Hariha-

ran et al. [18] and study the task of simultaneous detection

and segmentation (SDS) [17] and investigate if the use of

hyper-columns with our trained networks results in simi-

lar improvements as obtained when using more tradition-

ally trained CNNs. We report the results in Table 2. On the

NYUD2 dataset, the hyper-column transform improvesAP r

from 26.3% to 29.8% when using AlexNet for RGB images.

We follow the same experimental setup as proposed in [16],

and fix the CNN parameters (to a network that was finetuned

for detection on NYUD2 dataset) and only learn the classifier

parameters and use features from pool2 and conv4 layers

in addition to fc7 for figure ground prediction. When doing

the same for our supervision transfer network we observe a

similar boost in performance from 28.4% to 31.5% when

using the hyper-column transform. This indicates that mod-

els trained using supervision transfer not only learn good

representations at the point of supervision transfer (pool5

in this case), but also in the intermediate layers of the net.

How does performance vary as the transfer point is

changed? We now study how performance varies as we

vary the layer used for supervision transfer. We stick to the

same experimental setup as used for Exp. 1D in Table 1,

and conduct supervision transfer at different layers of the

network. Layers above the transfer point are initialized ran-

domly and learned during detector training. For transfer-

ring features from layers 1 to 5, we use fully convolutional

training as before. But when transferring fc6 and fc7 fea-
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pool1 pool2 conv3 conv4 pool5 fc6 fc7 conv3 + fc7

24.4 28.4 30.6 29.9 30.5 29.7 27.7 31.3

Table 4: Mean AP on NYUD2 val set as a function of layer

used for supervision transfer.

tures we compute them over bounding box proposals (we

use RGB-D MCG bounding box proposals [15]) using Spa-

tial Pyramid Pooling on conv5 [10, 19].

We report the obtained AP on the NYUD2 val set in Ta-

ble 4. We see performance is poor when transferring at

lower layers (pool1 and pool2). Transfer at layers conv3,

conv4, pool5, fc6 works comparably, but performance

deteriorates when moving to further higher layers (fc7).

This validates our choice for using an intermediate layer

as a transfer point. We believe the drop in performance at

higher layers is an artifact of the amount of data used for

supervision transfer. With a richer and more diverse dataset

of paired images we expect transfer at higher layers to work

similar or better than transfer at mid-layers. Explained vari-

ance during supervision transfer is also higher for transfers

at layers 3, 4, and 5 than other layers.

We also conducted some initial experiments with using

multiple transfer points. When transferring at conv3 and

fc7 we observe performance improves over transferring at

either layer alone, indicating learning is facilitated when su-

pervision is closer to parameters being learned. We defer

exploration of other choices in this space for future work.

Is input representation in the form of HHA images

still important? Given our tool for training CNNs on depth

images, we can now investigate the question whether hand

engineering the input representation is still important. We

conduct an experiment in exactly the same settings as Exp.

1D except that we work with disparity images (replicated to

have 3 channels) instead of HHA images. This gives a mAP

of 29.2% as compared to 30.5% for the HHA images. The

difference in performance is smaller than what [15] reports

but still significant (14 of 19 categories improve), which

suggests that encoding the depth image into a geocentric

coordinate frame using the HHA embedding is still useful.

Applications to zero-shot detection on depth im-

ages. Supervision transfer can be used to transfer detectors

trained on RGB images to depth images. We do this by the

following steps. We first train detectors on RGB images.

We then split the network into two parts at an appropriate

mid-level point to obtain two networks Γlower
rgb and Γupper

rgb .

We then use the lower domain specific part of the network

Γlower
rgb to train a network Γlower

d on depth images to gen-

erate the same representation as the RGB network Γlower
rgb .

This is done using the same supervision transfer procedure

as before on a set of unlabeled paired RGB-D images. We

then construct a ‘franken’ network with the lower domain

specific part coming from Γlower
d and the upper more se-

mantic network coming from Γupper
rgb . We then simply use

Train on MS COCO and adapt to NYUD2 using supervision transfer Train on NYUD2

bed chair sink sofa table tv toilet mean mean

RGB 51.6 26.6 25.1 43.1 14.4 12.9 57.5 33.0 35.7

D 59.4 27.1 23.8 32.2 13.0 13.6 43.8 30.4 45.0

RGB + D 60.2 35.3 27.5 48.2 16.5 17.1 58.1 37.6 54.4

Table 5: Adapting RGB object detectors to RGB-D images: We

transfer object detectors trained on RGB images (on MS COCO

dataset) to RGB-D images in the NYUD2 dataset, without using

any annotations on depth images. We do this by learning a model

on depth images using supervision transfer and then use the RGB

object detector trained on the representation learned on depth im-

ages. We report detection AP(%) on NYUD2 test set. These trans-

ferred detectors work well on depth images even without using

any annotations on depth images. Combining predictions from the

RGB and depth image improves performance further.

the output of this franken network on depth images to obtain

zero-shot object detection output.

More specifically, we use Fast R-CNN with AlexNet CNN

to train object detectors on the MS COCO dataset [30]. We

then split the network right after the convolutional layers

pool5, and train a network on depth images to predict the

same pool5 features as this network on unlabeled RGB-

D images from the NYUD2 dataset (using frames from the

trainval video sequences). We study all 7 object categories

that are shared between MS COCO and NYUD2 datasets, and

report the performance in Table 5. We observe our zero-shot

scheme for transferring detectors across modalities works

rather well. While the RGB detector trained on MS COCO

obtains a mean AP of 33.0% on these categories, our zero-

shot detector on D images performs comparably and has a

mean AP of 30.4%. Note that in doing so we have not used

any annotations from the NYUD2 dataset (RGB or D im-

ages). Furthermore, combining predictions from RGB and D

object detectors results in boost over just using the detector

on the RGB image giving a performance of 37.6%. Perfor-

mance when training detectors using annotations from the

NYUD2 dataset (Table 5 last column) is much higher as ex-

pected. This can naturally be extended to incorporate anno-

tations from auxiliary categories as explored in [21], but we

defer this to future work.

Performance on test set. Finally, we report the perfor-

mance of our best performing supervision transfer scheme

(VGG ∗ → AlexNet) on the test set in Table 6. When used

with AlexNet for obtaining color features, we obtain a final

performance of 47.1% which is about 2.7% higher than the

current state-of-the-art on this task (Gupta et al. [15] Fast

R-CNN). We see similar improvements when using VGG for

obtaining color features (46.2% to 49.1%). The improve-

ment when using just the depth image is much larger, 41.7%

for our final model as compared to 34.2% for the baseline

model which amounts to a 22% relative improvement. Note

that in obtaining these performance improvements we are

using exactly the same CNN architecture and amount of la-
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method modality RGB Arch. D Arch. mAP

Fast R-CNN [10] RGB AlexNet - 27.8

Fast R-CNN [10] RGB VGG - 38.8

Gupta et al. [15] RGB + D AlexNet AlexNet 38.8

Gupta et al. [14] RGB + D AlexNet AlexNet 41.2

Gupta et al. [15] + Fast R-CNN RGB + D AlexNet AlexNet 44.4

Our (supervision transfer) RGB + D AlexNet AlexNet 47.1

Gupta et al. [15] + Fast R-CNN RGB + D VGG AlexNet 46.2

Our (supervision transfer) RGB + D VGG AlexNet 49.1

Gupta et al. [15] + Fast R-CNN D - AlexNet 34.2

Our (supervision transfer) D - AlexNet 41.7

Table 6: Object detection mean AP(%) on NYUD2 test set: We

compare our performance against several state-of-the-art methods.

RGB Arch. and D Arch. refers to the CNN architecture used by

the detector. We see when using just the depth image, our method

is able to improve performance from 34.2% to 41.7%. When

used in addition to features from the RGB image, our learned

features improve performance from 44.4% to 47.1% (when using

AlexNet RGB features) and from 46.2% to 49.1% (when using

VGG RGB features) over past methods for learning features from

depth images. We see improvements across almost all categories,

performance on individual categories is tabulated in supplemen-

tary material.

beled data. We also report performance on the SDS task in

Table 3 and obtain state-of-the-art performance of 40.5% as

compared to previous best 37.5% [14] when using AlexNet,

using VGG CNN for the RGB image improves performance

further to 42.1%.

Training Time. Finally, we report the amount of time

it takes to learn a model using supervision transfer. For

AlexNet to AlexNet supervision transfer we trained for 100K

iterations which took a total of 2.5 hours on a NVIDIA k40

GPU. This is a many orders of magnitude faster than train-

ing models from random initialization on ImageNet scale

data using class labels.

4.2. Transfer to Flow Images

We now report our experiments for transferring supervi-

sion to optical flow images. We consider the end task of

action detection on the JHMDB dataset. The task is to detect

people doing actions like catch, clap, pick, run, sit

in frames of a video. Performance is measured in terms of

mean average precision as in the standard PASCAL VOC

object detection task and what we used for the NYUD2 ex-

periments in Section 4.1.

A popular technique for getting better performance at

such tasks on video data is to additionally use features com-

puted on the optical flow between the current frame and the

next frame [12, 38]. We use supervision transfer to learn

features for optical flow images in this context.

Detection model For JHMDB we use the experimental

RGB optical flow

[12] [12] + [10] [12] [12] + [10] Random Init Our

Sup PreTr Sup PreTr No PreTr Sup Transfer

mAP 27.0 32.0 24.3 38.4 31.7 35.7

Table 7: Action Detection AP(%) on the JHMDB test set: We

report action detection performance on the test set of JHMDB us-

ing RGB or flow images. Right part of the table compares our

method supervision transfer against the baseline of random initial-

ization, and the ceiling using fully supervised pre-training method

from [12]. Our method reaches more than half the way towards

fully supervised pre-training.

setup from Gkioxari and Malik [12] and study the 21 class

task. Here again, Gkioxari and Malik build off of R-CNN

and we first adapt their system to use Fast R-CNN, and ob-

serve similar boosts in performance as for NYUD2 when go-

ing from R-CNN to Fast R-CNN framework (Table 7, full ta-

ble with per class performance is in the supplementary ma-

terial). We denote this model as [12]+[10]. We attribute this

large difference in performance to a) bounding box regres-

sion and b) number of iterations used for training.

Supervision transfer performance We use the videos

from UCF 101 dataset [42] for our pre-training. Note that

we do not use any labels provided with the UCF 101 dataset,

and simply use the videos as a source of paired RGB and

flow images. We take 5 frames from each of the 9K videos

in the train1 set. We report performance on JHMDB test set

in Table 7. Note that JHMDB has 3 splits and as in past

work, we report the AP averaged across these 3 splits.

We report performance for three different schemes for

initializing the flow model: a) Random Init (No PreTr)

when the flow network is initialized randomly using the

weight initialization scheme used for training a RGB model

on ImageNet, b) Supervised Pre-training ([12]+[10] Sup

PreTr) on flow images from UCF 101 for the task of

video classification starting from RGB weights as done by

Gkioxari and Malik [12] and c) supervision transfer (Our

Sup Transfer) from an RGB model to train optical flow

model as per our proposed method. We see that our scheme

for supervision transfer improves performance from 31.7%

achieved when using random initialization to 35.7%, which

is more than half way towards what fully supervised pre-

training can achieve (38.4%), thereby illustrating the effi-

cacy of our proposed technique.
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