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Abstract

Blind image deconvolution is an ill-posed inverse prob-

lem which is often addressed through the application of ap-

propriate prior. Although some priors are informative in

general, many images do not strictly conform to this, lead-

ing to degraded performance in the kernel estimation. More

critically, real images may be contaminated by nonuniform

noise such as saturation and outliers. Methods for remov-

ing specific image areas based on some priors have been

proposed, but they operate either manually or by defining

fixed criteria.

We show here that a subset of the image gradients are

adequate to estimate the blur kernel robustly, no matter the

gradient image is sparse or not. We thus introduce a gra-

dient activation method to automatically select a subset of

gradients of the latent image in a cutting-plane-based op-

timization scheme for kernel estimation. No extra assump-

tion is used in our model, which greatly improves the accu-

racy and flexibility. More importantly, the proposed method

affords great convenience for handling noise and outliers.

Experiments on both synthetic data and real-world images

demonstrate the effectiveness and robustness of the pro-

posed method in comparison with the state-of-the-art meth-

ods.

1. Introduction

Image blur can be caused by a variety of factors, from

camera movement [9, 29], to depth-of-field effects [21].

Blur removal has thus become one of the standard func-

tions within image processing packages, and anyone who

has used them will understand some of these methods’ de-

ficiencies. Assuming that the blur is spatially invariant, the

observation process of a blurred image y, can be modeled

as a convolution between a latent sharp image x and some
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unknown blur kernel (or point spread function, PSF) k:

y = x ∗ k+ n , (1)

where ∗ denotes the convolution operator, and n usually

refers to additive noise (sampled from an i.i.d. zero-mean

Gaussian distribution [9]). Here y ∈ R
n, x ∈ R

n, k ∈ R
m

and n ∈ R
n. The blur model in (1) can also be represented

in matrix-vector form [19, 36]:

y = H(k)x+ n = A(x)k+ n , (2)

where H(k) ∈ R
n×n and A(x) ∈ R

n×m are convolution

matrices associated with k and x, respectively. In either

formulation the blur kernel and latent (unblurred) image are

unseen, and intrinsically linked. Errors in the estimate of

either inevitably impact upon the quality of the other.

Blind deconvolution, also known as blind deblurring,

seeks to recover the latent sharp image x from the observed

blurry image y. Blind deblurring is a highly ill-posed in-

verse problem since one has to estimate x and k simultane-

ously [22, 27, 36]. Solving the problem thus requires ad-

ditional assumptions or priors on x and k [9, 29, 5, 23, 19,

38, 39, 36]. For example, ℓ2-norm [5, 17, 39] or ℓ1-norm

[29, 18] regularization is often imposed on k to encourage

the smoothness or sparsity. Most methods similarly assume

that x conforms to a prior such as Total-Variation (TV) over

the latent sharp image [4, 29]. However, such priors may

not be adequate for blind image deblurring as they may fa-

vor the trivial solution x = y with k = δ (i.e., the identity

kernel) [22].

A range of methods have been developed to identify

and ignore problematic areas of the image [5, 38, 13, 36].

Whether defined in terms of the image areas to include, or

exclude, these methods develop heuristics, such as manu-

ally defined edge selection criterion [5, 38] and edge re-

weighting [18, 19]. Many researchers have also applied

a sparsity prior on image gradients for kernel estimation

[39, 17, 36, 28], or approximate ℓ0-norm regularization

[39, 26].

These methods have achieved state-of-the-art perfor-

mance on several benchmark data sets [22, 15]. However,
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they exhibit some important limitations in practice. First,

for many real-world images (particularly images with rich

textures), the sparse prior may not hold, thus a simple sparse

regularizer may not be adequate. Similarly, methods like

bilateral filtering [5] may not find the strong edges they re-

quire as cues. Second, these methods may be sensitive to

large noise [10, 31, 44]. Even significant image gradients

become less identifiable as noise increases, and the proba-

bility of being distracted mistakenly increases also.

1.1. Contributions

• Unlike existing methods relying on sharp edge predic-

tion or sparse regularizers, we introduce a gradient ac-

tivation scheme to directly detect significant gradients

that are beneficial for kernel estimation. This idea is

motivated by an important observation that the blur

kernel can be estimated based on a subset of the gra-

dients, no matter the gradients are sparse or not (See

Proposition 1).

• Relying on the above observation, we formulate the

gradient activation problem as a convex optimization

problem and address it via a cutting-plane method. Af-

ter that, the blur kernel estimation will be conducted

based on the activated gradient only.

• The proposed cutting-plane scheme allows us to eas-

ily drop the problematic components, such as satura-

tion, and hence it affords great convenience for han-

dling noise and outliers.

1.2. Notation

Throughout the paper, let ‖v‖p be the ℓp-norm and ⊙ be

the element-wise product. Given a positive integer n, let [n]
be the set {1, ..., n}. Given any set S ⊆ [n], |S| denotes the

cardinality of S, and S
c is the complementary set, namely

S
c = [n] \ S. For any vector x, let the calligraphic letter

X = support(x) = {i|xi 6= 0} ∈ [n] be its support. For a

vector v ∈ R
n and any S ⊆ [n], let vS denote the subvec-

tor indexed by S, and vi be the i-th component of v. ∇x

denotes the gradients of x.

2. Related Work

Existing methods can be mainly categorized into two

groups, maximum a posterior (MAP) methods [29, 5, 39]

and variational Bayesian (VB) methods [23, 9, 36].

MAP based methods. MAP methods seek to minimize

the negative log-posterior − log p(y|x,k)p(x)p(k) where

p(y|x,k) is the likelihood related to equation (1), p(x) and

p(k) denote the priors on x and k, respectively. The mini-

mization can be achieved by addressing the problem:

min
k,x

1

2
‖y − k ∗ x‖22 + λΩ(x) + γΥ(k), (3)

where λ and γ are trade-off parameters, and Ω(x) and Υ(k)
are regularizers that reflect the priors. Choosing appropri-

ate priors on x and k, or equivalently regularizers Ω(x) and

Υ(k), is critical for the performance. Note that many ex-

isting works operate in the gradient domain rather than the

image domain. In this case, x and y in model (3) are simply

replaced with ∇x and ∇y, respectively [9, 19].

Researchers have shown that promoting sparsity on im-

age gradients is helpful for kernel estimation [9, 39, 36]. To

achieve this, some methods explicitly promote sparsity to

prune detrimental structures using carefully designed regu-

larizers. For example, Chan and Wong use an ℓ1-norm on

image gradients, called the TV norm [4], to choose salient

edges. However, this prior may favor a blurry image in cer-

tain conditions [22, 27]. Shan et.al. [29] thus combine

the ℓ1-norm and a ring suppressing term. Other methods

to suppress small structures include the ℓ1/ℓ2-norm regu-

larization [19] and other reweighted norms [17]. Xu et.al.

[39] propose an approximate ℓ0-norm regularizer on gradi-

ents, but the resultant problem is intractable or can be only

solved approximately. Zuo et.al. [46] learn iteration-wise

hyper-Laplacian prior on gradients.

Rather than using sparse regularizers, some methods ex-

plicitly extract salient structures for kernel estimation. For

example, Joshi et.al. [14, 5] detect edges from the blurry

image for kernel estimation. Cho and Lee [5] extract edges

using a bilateral filter and a shock filter. Sun et.al. [30]

and Lai et.al. [20] predict edges in a similar way to [5],

but they further refine edges using data-driven priors. Xu

and Jia [38] select informative structures and remove tiny

edges based on the relative total variation. Zhou and Ko-

modakis [45] detect edges using a high-level scene-specific

prior. However, these edge prediction methods may fail if

there are not enough strong structures [25]. Regarding this,

some example-based methods [25, 11] are proposed. Other

methods to generate priors can be found in [16, 45, 24, 37].

VB based methods. Unlike MAP methods, VB methods

estimate the blur kernel by minimizing an upper bound of

− log p(k|y), which is the negative log-marginal distribu-

tion of k, i.e., p(k|y) =
∫
x
p(x,k|y)dx [9, 22, 23, 1, 36].

Wipf and Zhang [36] show that minimizing the upper bound

using VB methods is equivalent to solving an MAP problem

with a regularizer coupling x and k. There are some meth-

ods beyond MAP and VB, such as [10, 3, 43].

Handling noise and outliers. Most of the above methods

are sensitive to noise and outliers. Recently, some methods

focus on handling noise and outliers (e.g. saturation). Tai

and Lin [31] propose to estimate the blur kernel and remove

noise alternatively. Zhong et.al. [44] use a set of directional

filters to remove noise. Zhang and Yang [42] estimate the

kernel from a set of blurry images smoothed by Gaussian

filters in different scales. Hu et.al. [12] explicitly detect sat-

urated pixels and light streaks and handle them separately in
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kernel estimation.

3. Deblur by Gradient Activation

The proposed blur kernel estimation method applies only

a specific, but as-yet-undetermined, subset of the image gra-

dients. During the kernel estimation, a subset of non-zero

gradients will be activated and updated for kernel estima-

tion.

3.1. Motivation

The quality of the deblurred image depends critically

upon the quality of blur kernel estimate. We here show that,

whether the gradient image is sparse or not, the blur ker-

nel can be estimated from a subset of the gradient image.

This observation is the corner stone of our framework. To

demonstrate this fact, we begin with the common formula-

tion [9, 19, 41, 36],

∇y = H(k)∇x+∇n = A(∇x)k+∇n , (4)

where ∇y, ∇x and ∇n are the gradients of y, x and the

noise n, respectively. Given any intermediate ∇x, based on

model (3), we may estimate the kernel by solving

min
k

‖∇y −∇x ∗ k‖22 + γ‖k‖22, s.t.‖k‖1 = 1,k ≥ 0. (5)

where k is constrained in a simplex derived from [4]. Here

the ℓ2-norm regularizer ‖k‖22 is often used to avoid the triv-

ial solutions where x = y.

Let ∇x0 be gradient of the ground truth image x0, and

k0 be the ground truth kernel1. Hereafter, we focus on only

a subset of ∇x0 which is indexed by a set S. Let ̺ =
‖∇x0S‖2 and A(∇x0S) be the corresponding convolution

matrix regarding ∇x0S. Moreover, based on ∇x and S, we

define a new vector ∇̃x such that

∇̃xSc = 0 and ∇̃xS = ∇xS. (6)

Focusing on the subset ∇x0S, problem (5) for kernel esti-

mation is equivalent to the following problem:

min
k

‖∇y − ∇̃x ∗ k‖22 + γ‖k‖22, s.t. k ∈ K, (7)

where K = {k : ‖k‖1 = 1, ki ≥ 0, ∀i} be the domain of k.

By neglecting the boundary effect of convolution, we then

have the following proposition.

Proposition 1. For any intermediate ∇x, let e = ∇x −
∇x0, ǫ2 = ‖eS‖

2
2 and ∆ = (ǫ2 + 3ǫ̺ + γ). If ∇x0S

satisfies inf‖v‖2=1 ‖A(∇x0S)v‖2 = ω > ∆, the solution

to (7), denoted by k̂, follows

‖k̂− k0‖2 ≤
∆

ω −∆
‖k0‖2 +

ǫ+ ̺

ω −∆
‖∇nS‖2.

1We assume that the image is much larger than the latent blur kernel,

e.g. n ≫ m, and hence the boundary effect of convolution can be ne-

glected.

The proof can be found in the long version of this paper.

Remark 1. From the definition of ∆, the accuracy of kernel

estimation is not dependent on the sparsity of image gradi-

ent. Conversely, it is mainly affected by three factors, i.e.,

the accuracy of ∇x to ∇x0 w.r.t. S (i.e., ǫ = ‖eS‖), the

chosen ∇x0S which determines ̺, and the parameter γ.

From Remark 1, to estimate k accurately, we need to

obtain an accurate ∇x. We address this by a two-step it-

erative approach, i.e., compute the intermediate ∇x with k

and then estimate the kernel k with ∇x (See Algorithm 2)

which is motivated by the following corollary and remarks.

Corollary 1. In Proposition 1, ‖A(∇x0S)v‖2 =

‖∇z‖2 =
(∑

i∈S′(∇zi)
2
)1/2

where ∇z = ∇̃x ∗ v and

S
′ is the support of ∇z. It implies that, given size of the

kernel v, inf‖v‖2=1 ‖A(∇x0S)v‖2 is large only if ‖∇̃x‖2
(also ‖∇x0S‖2) is large.

Remark 2. From Corollary 1, to ensure the condition

inf‖v‖2=1 ‖A(∇x0S)v‖2 = ω > ∆ > 0, 1) the size of

S (i.e. |S|) should be large enough, and 2) the magnitude

of elements in ∇x0S should be as large as possible. Con-

versely, insignificant gradients may lead to poor perfor-

mance in kernel estimation and could be even suppressed

by noise.

Remark 3. It seems that a small γ would be favorable when

estimating k. However, if γ is too small, it may incur triv-

ial solution. On the simple noiseless case, setting γ = 0 in

(7) at the beginning where ∇x = ∇y will lead to k = δ

regarding any S. This suggests applying a homotopy strat-

egy for setting γ, that is, monotonically decreasing γ from

a large initial value to a small target value.

3.2. Proposed Model

From Remark 1 we see that the accuracy of the kernel

estimate is not dependent on the sparsity of the gradient im-

age. Motivated by this, rather than enforcing sparsity over

the whole latent ∇x, we introduce a binary activation vec-

tor τ ∈{0, 1}n which indicates the areas where we believe

the prior applies. Having specified τ allows us to ignore

other latent image gradients by considering only (∇x⊙ τ ).
We constrain ‖τ‖0 ≤ κ, where the integer κ controls the

the number of latent image gradients not set to zero. To

avoid the degenerate solution, one may impose additional

constraints on τ . For example, considering that the can-

didates of activated gradients should not be isolated, we

can constrain τ to exclude distracting gradients or outliers

(more detail is provided in Section 4.2). For convenience,

let Λ = {τ : ‖τ‖0 ≤ κ, τ ∈{0, 1}n, τ ∈ Π} be the domain

of τ , where Π represent some additional constraint set.
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Algorithm 1: Kernel Estimation by Gradient Activa-

tion

Input: Blurry image y, η < 1, γtar, initial k1 and γ1.

1 for t = 1 : T do

2 Given kt, find set St = support(τ t) by solving

(9), and obtain ∇xt
S

.

3 Given S
t, ∇xt

S
and γt, estimate kt by solving (7).

4 Set γt+1 = max(ηγt, γtar).

5 Return kt.

With the introduction of τ , our image deblurring model

can be formulated into the following optimization problem:

min
τ∈Λ,k,∇x

1

2
‖∇y−k∗(∇x⊙τ )‖22+λΩ(∇x⊙τ )+γ||k||22 ,

(8)

where Ω(∇x⊙τ ) denotes any regularizer that might be ap-

plied to (∇x⊙τ ). Note that τ is directly coupled with ∇x.

Once obtaining τ , we can immediately obtain ∇̃x accord-

ing to equation (6).

Note that there are
∑κ

i=0

(
n
i

)
feasible τ ’s in Λ. The

problem of how to choose the best τ still remains. From Re-

mark 2, the activated gradients should reflect the observed

gradients in ∇y (so that ‖∇x0S‖ will be large). Given fixed

k, based on (8), we propose to find the best τ from the fea-

sible set to minimize the following objective:

min
τ∈Λ

(
min
∇x

1

2
‖∇y − k ∗ (∇x⊙ τ )‖22 + λΩ(∇x⊙ τ )

)
.

(9)

This problem is non-convex. To address it efficiently, we

introduce a tight convex relation of this problem, and then

propose a cutting plane algorithm to solve the relaxed prob-

lem instead. For convenience, we leave details in Section 4.

After obtaining S coupled with ∇x, we now address prob-

lem (7) to update the kernel k.

3.3. General Optimization Scheme

Based on the gradient activation model, the general

scheme of the proposed kernel estimation, which is shown

in Algorithm 12. In Step 2, with fixed k, we solve problem

(9) to select a subset of non-zero gradients indicated by set S

and obtain ∇xS. In Step 3, with fixed S, ∇xS, we construct

∇̃x by equation 6, and then estimate kt by solving prob-

lem (7) which is addressed by a proximal gradient method

[8]. Note that in Step 4, motivated by Remark 3, we apply

a homotopy strategy to set the regularization parameter γ,

which monotonically decreases from a initial value γ1 to a

target value γtar.

2To improve the robustness, Algorithm 1 is implemented in a coarse-

to-fine scheme following the image pyramid.

After obtaining the final kernel, we will recover the sharp

image by non-blind deconvolution algorithms, for instance,

the hyper-Laplacian based method [18].

Setting κ. In this paper, we set κ adaptively. Let β =
HT∇y. We set κ as the number of βj that satisfies βj >

η‖β‖∞, where η ∈ (0, 1]. In general, a bigger η will lead

to a smaller κ. In this paper, we empirically set η to 0.5.

Now we highlight some differences and advantages of

our model over existing methods. (1) Unlike existing meth-

ods which apply various sparse regularizers to induce a

sparse solution, we use τ to explicitly and automatically

detect a subset of non-zero gradients. Even ∇x may not

be sparse, due to the constraint ‖τ‖0 ≤ κ, our proposed

method (See Algorithm 2) can still find a sparse subset of

non-zero gradients for kernel estimation. (2) It is worth

mentioning that, if the gradients are not sparse, using sparse

regularizer may be suboptimal as one should sacrifice fit-

ting accuracy to achieve sparsity. In fact, the sparsity of the

solution is often controlled by the parameter λ: a large λ
is necessary for inducing sparsity but often causes solution

bias [7]; while a small λ will enforce non-sparse solutions.

In our model, relying on the constraint ‖τ‖0 ≤ κ and the

optimization scheme (Algorithm 2), a small λ can be used

to achieve high fitting accuracy on the required image areas

(See Figure 4(a) for the importance of a small λ).

4. Activate Gradients Automatically

We are now ready to solve problem (9). Let H(k) be the

convolution matrix of k, and hence we have ∇y−k∗(∇x⊙
τ ) = ∇y −H(k)(∇x ⊙ τ ). Since k is fixed at this stage,

for simplicity, we use H to denote the convolution matrix

H(k). Here we use Ω(∇x⊙ τ ) = 1

2
‖∇x⊙ τ‖22.

By introducing an auxiliary variable ξ = ∇y−H(∇x⊙
τ ), problem (9) can be rewritten as

min
τ∈Λ

min
∇x, ξ

λ

2
‖∇x⊙ τ‖22 +

1

2
‖ξ‖22,

s.t. ξ = ∇y −H(∇x⊙ τ ).

(10)

This problem is a non-convex problem, so it is difficult to

solve. Motivated by [32], we solve a convex relaxation of

problem (10). To achieve this, we introduce a dual variable

α ∈ R
n to the constraint ξ = ∇y − H(∇x ⊙ τ ) w.r.t.

any fixed τ , and transform (10) into a minimax problem by

introducing the dual form of the inner problem of (10):

min
τ∈Λ

max
α∈Rn

α
T∇y−

α
THdiag(τ )HT

α

2λ
−
α

T
α

2
.

Define ψ(α, τ )= 1

2λα
THdiag(τ )HTα+ 1

2
αTα−αT∇y.

By applying a convex relaxation min
τ∈Λ

max
α∈Rn

−ψ(α, τ ) ≥

max
α∈Rn

min
τ∈Λ

−ψ(α, τ ) [2], we achieve the following quadrat-

ically constrained quadratic program (QCQP) problem:

min
α∈Rn,θ∈R

θ, s.t. ψ(α, τ ) ≤ θ, ∀ τ ∈ Λ , (11)
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where θ ∈ R is an auxiliary variable.

Note that there are many elements in Λ (i.e., |Λ| =∑κ
i=0

(
n
i

)
). Therefore, problem (11) involves many con-

straints. We then adopt a cutting-plane algorithm, which

iteratively detects the most-active constraint from Λ. The

overall cutting-plane algorithm is shown in Algorithm 2. In

Step 4, the most-active constraint selection reflects the acti-

vation of the appropriate gradients. Let

g = HTξi−1. (12)

The most-active constraint can be selected by choosing the

κ largest |gj | and recording their indices into a set Ci. After

that, we update S
i by S

i = S
i−1 ∪ C

i, and update ∇xSi by

solving a group lasso problem which is the primal form of

problem (11) with chosen τ ’s [32]:

min
∇x

Si

1

2
‖∇y −H∇xSi‖22 +

λ

2

(
i∑

o=1

‖∇xCo‖2

)2

, (13)

where ∇xSi = [∇xT

C1 , ...,∇xT

Ci ]T.

In Algorithm 2, each iteration includes κ informative el-

ements. Note that due to the relaxation, there may be more

than one active constraints τ ’s, and |S| can be larger than κ.

This is reasonable since κ is just an estimation of the active

gradients. Nevertheless, due to the introduction of τ and an

elegant early stopping strategy below, a subset of gradients

will be obtained.

Algorithm 2: Solving (10) by a cutting-plane method

Input: Blurry image y and H

1 Initialize ∇x0 = 0, ξ0 = ∇y, S0 = ∅, i = 0;

2 while Stopping conditions are not achieved do

3 Let i = i+ 1;

4 Gradient activation:

Compute g = H⊤ξi−1, and record the indices of

κ largest |gj | into C
u, where j ∈ [n] \ Si−1;

5 Let Si = S
i−1 ∪ C

i;

6 Update ∇xSi by solving (13);

7 Update ξ by ξi = ∇y −H∇xi ;

8 Compute S = support(∇x). Output ∇xi and S.

4.1. Stopping Conditions

Early stopping in Algorithm 2 plays a very critical role

in the proposed method. Here, we apply two early stopping

conditions. First, we stop Algorithm 2 if

|f(∇xi)− f(∇xi−1)|/|κf(∇x0)| ≤ ε, (14)

where ε is a small tolerance and f(∇x0) denotes the initial

objective value. In this paper, we set ε = 10−4 for all cases.

Early stopping when gradients are not exactly sparse.

In this case, condition in (14) may be hard to achieve. We

then stop the algorithm after a maximum number iterations

Imax is achieved. In this paper, we set Imax = 15.

The importance of the above condition is shown in Fig-

ure 1 on a toy image whose ground-truth is known and gra-

dients are not exactly sparse (Figure 1. (b)). We report

the sum-of-squared-difference (SSD) errors using different

Imax. From Figure 1. (a), the SSD error keeps stable when

5 < Imax < 30. However, when Imax > 35, the SSD error

becomes very large, where we choose a very large num-

ber of gradients and the algorithm fails. This verifies our

Remark 2 that more gradients may even degrade the perfor-

mance.

10 20 30 40 50
0

100

200

300

400

500

S
S

D
 e

rr
o

r

# Maximum Iteration in Algorithm (2)

(a) (b)

Figure 1. (a) SSD error with increasing number of iterations on

non-sparse gradients; (b) Gradients of the input image.

4.2. Handling Noise and Outliers

The performance of most existing kernel estimation

methods may degrade significantly when there are non-

negligible noise and/or outliers [44, 42] that cannot be han-

dled by the priors [31] (See Figure 2. (c)-(d)).

The gradient activation scheme in Algorithm 2 provides

great convenience for handling noise and outliers. Specifi-

cally, for uniform noise, relying on the early stopping strate-

gies, noise contaminated weak gradients will not be in-

cluded for the kernel estimation. As a result, the influence

of uniform noise can be avoided (Figure 3 (e)).

Outliers are referred to non-Gaussian noise, which are

unavoidable in some special scenarios such as low-light

conditions, in which outliers usually appear as saturated

pixels, strong light streaks, impulse noise and so on [6, 12].

In the gradient domain, those pixels often have very high

values, but should not be activated. However, the sparse

regularization methods will tend to choose them mistakenly.

To handle the saturations and light streaks, in Step 4

of Algorithm 2, we can simply discard those gradients cor-

responding to high-intensity pixels by forcing C
i ∩ [y >

h] = ∅, where [y > h] denotes the index set of pixels with

intensity higher than a threshold h. Similarly, for impulse

noise, they can be easily avoided by discarding isolated gra-

dients (discarding any activated gradients with less than 4

elements), since impulse noise is often disconnected with

other gradients in gradient domain.
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(a) Input image y, true kernel (b) |∇x|, Cho and Lee [5] (c) |∇x|, ℓ0 [39] (d) |∇x|, Levin et.al. [23] (e) |∇x|, Ours

Figure 2. Intermediate results from a noisy input. For visualization, we define |∇x| = |∇hx|+ |∇vx| as the summation of the absolute of

gradients on horizontal and vertical directions. All kernels are zoomed and visualized using pseudo-color. (a) Synthetic input image with

5% noise and ground truth kernel. A local part is zoomed to show noise. (b)-(e) Intermediate gradients by different methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (m) (o) (p)

Figure 3. Examples of handling saturation and impulse noise. (a)-

(h) An example with saturation. (i)-(p) An example with impulse

noise. Columns from left to right: Blurry image and ground truth

kernel, results of Pan et.al. [26] ((b) and (f)) or Zhong et.al. [44]

((j) and (m)), Our results without outlier discarding, our results

with outlier discarding. (f)-(h) and (m)-(p) are estimated interme-

diate gradients. (e) and (m) are gradients of blurry image.

The effectiveness of the above strategy can be found in

Figure 3, which shows that the pruning of the high-intensity

pixels is essential for handling outliers.

5. Experiments

We evaluate the performance of our method on both syn-

thetic data and real-world images, and compare with several

state-of-the-art image deblurring methods. We implement

our method in Matlab and evaluate the efficiency on an In-

tel Core i7 CPU with 8GB of RAM.

5.1. Evaluation on Synthetic Data

Noise-free images. We investigate a benchmark dataset of

Levin et.al. [22] which contains 32 blurry images of size

255 × 255 generated by blurring 4 images using 8 ground-

truth blur kernels. To evaluate the accuracy of estimated

blur kernels, we recover the sharp image with the same non-

blind deconvolution method in [21], and then measure the

sum-of-squared-difference (SSD) error between the recov-
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Figure 4. Comparison on the noise free synthetic data in [22]. (a)

cumulative curves of SSD error ratio. (b) Mean SSD error ratio

and mean running time (seconds).

ered image and the ground truth image.

We evaluate our method and compare with other meth-

ods from Cho and Lee [5], Krishnan et.al. [19], Levin

et.al. [23], Wipf and Zhang [36], Xu et.al. [39], Sun

et.al. [30], Perrone and Favaro [28]. Figure 4(a) records

the cumulative curves of SSD error ratio [22] which show

that our method is comparable with the state-of-art log-

prior based method [28], and outperforms the other meth-

ods. In this experiment, we study three values to λ (i.e.

λ = 0.001, 0.005, 0.01) for our method. We can see that

the proposed method with λ = 0.005 consistently performs

better than others. A proper λ can help the proposed method

handle the noise and estimation error when solving (13).

Even so, the performances of the other two parameter set-

tings are still on par with other state-of-the-art methods,

which suggests that our method is relative insensitive to the

regularization parameter, and a small λ is enough for gen-

erating high quality blur kernels.

Figure 4(b) shows the mean SSD error rate and the run-

ning time of competing methods, which suggests that our

method can estimate an accurate kernel in a little time. The

methods of Cho and Lee [5] and Xu et.al. [39] are imple-

mented in C/C++, thus they are much faster than others.

Noisy images. To validate the noise robustness of the pro-

posed method, we add i.i.d. Gaussian noise with zero mean

to Levin et.al. ’s data [22], and then perform kernel estima-

tion on the noisy images. The estimated kernels are used to

recover the noise-free blurry images via the non-blind de-

convolution [21]. In this way, the evaluation for the kernel

1832



Table 1. Comparison on Köhler et.al. ’s dataset [15].

Image 1 Image 2 Image 3 Image 4 Total Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Whyte et.al. [35] 27.5475 0.7359 22.8696 0.6796 28.6112 0.7484 24.7065 0.6982 25.9337 0.7155

Krishnan et.al. [10] 26.8654 0.7632 21.7551 0.7044 26.6443 0.7768 22.8701 0.6820 24.5337 0.7337

Cho and Lee [5] 28.9093 0.8156 24.2727 0.8008 29.1973 0.8067 26.6064 0.8117 27.2464 0.8087

Xu and Jia [38] 29.4054 0.8207 25.4793 0.8045 29.3040 0.8162 26.7601 0.7967 27.7372 0.8095

Yue et.al. [40] 30.1340 0.8819 25.4749 0.8439 30.1777 0.8740 26.7661 0.8117 28.1158 0.8484

Ours 30.3572 0.8611 25.5210 0.8483 31.6577 0.9268 27.4804 0.8807 28.7541 0.8768
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Figure 5. Comparison on noisy synthetic data. (a) SSD error with

increasing noise level. (b) Cumulative curves of SSD error ratio.

estimation ability will not be influenced by the performance

of the non-blind deconvolution on noisy data [5, 42]. Two

methods with specific noise handling strategies [44, 42] are

also evaluated in this experiment.

We first evaluate the different methods with increasing

noise levels from 1% to 10%, and record the SSD error val-

ues of different methods in Figure 5(a) 3. From this figure,

all compared methods perform well with low noise levels,

but the performances of most methods degrades dramati-

cally when noise becomes relatively severe. However, the

method of Zhong et.al. [44], Zhang and Yang [42] and our

method still work robustly against the increase of noise.

Note that due to the absence of source code, the results

of Zhang and Yang is drawn from their paper [42]. Since

their experimental setting may be different from ours, the

comparison with this method is only for reference. We also

show the cumulative curves of SSD error ratio on the 32

blurry image with 5% Gaussian noise in Figure 5(b). From

the above comparison, only the results of several top meth-

ods are recorded in Figure 5(b) for visualization.

5.2. Evaluation on Real­world Images

Dataset from Köhler et.al. [15]. We also test our algorithm

on a real-world dataset [15] that contains 48 (800 × 800)

real blurry images from 4 sharp images and 12 blur kernels.

The ground truth images are recorded in this dataset. Table

1 shows the PSNR and SSIM [33] based qualitative com-

parison, which suggests that the proposed method achieves

3Images with 1%−10% noise are generated by adding Gaussian noise

with zero mean and standard deviations from 0.01 to 0.1 respectively for

images with [0, 1] intensity range [44].

the better performance than other state-of-art methods.

We further evaluate the deblurring performance on sev-

eral real-world images. As the ground truth images of real-

world blurry images are unavailable, we only evaluate the

visual performances. For fairness, the recovered images on

each testing image are generated using the same non-blind

deconvolution methods [21, 44, 34].

Images with mild noise. Blurry images photographed in

normal condition usually contain mild noise, which can be

handled by many methods [31]. For the images with mild

noise, we compare the proposed method with the methods

studied in 5.1. In Figure 6, an example [38] with a large

blur kernel is shown. The estimated blur kernels of most

previous methods are damaged or noisy, thus the recovered

images suffer from server ring artifacts, partially because

the blur kernel is large. The results of Xu et.al. [39] and

Sun et.al. [30] suffer less from ringing than others, although

our method preforms even better, benefiting from the intact

and noiseless kernel.

Images with high levels of noise. Most state-of-art meth-

ods are less effective in processing blurry images with high

levels of noise [44]. As is shown on synthetic data, the pro-

posed method can handle noise well. Figure 7 (a) shows

a real blurry image containing severe noise from [31].

We compare our method with several state-of-art methods

[31, 44, 42] which seek to handle noise in deblurring. As

is shown in Figure 7, our deblurred image contains more

details but no strong ringing artifacts due to the accurate

kernel estimation.

Images with saturation. As discussed in 4.2, saturated re-

gions interfere with the kernel estimation. We compare with

the previous state-of-art methods which achieve good per-

formances on images with saturation [26, 12]. As shown

in Figure 8, the method of Hu et.al. [12] and ours reveal

more details benefiting from the accurate blur kernel. Our

method is slightly better than that of Hu et.al. [12] (See the

zoomed area.).

6. Conclusion

In this paper, we propose an effective and robust method

for blind image deconvolution. The proposed method is

based on an observation that only a subset of the gradients

of latent image is sufficient for kernel estimation. We have
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(a) Input (b) Cho and Lee [5] (c) Krishnan et.al. [19] (d) Levin et.al. [23]

(e) Xu et.al. [39] (f) Sun et.al. [30] (g) Perrone and Favaro [28] (h) Ours

Figure 6. Deblurring results on real-world image toy where he blur kernel size is 51 × 51. Our results are sharper and have less ringing

artifacts.

(a) Input (b) Tai and Lin [31] (c) Zhong et.al. [44] (d) Zhang and Yang [42] (e) Ours

Figure 7. Deblurring results on a noise contaminated real-world image kyoto where the blur kernel size is 35 × 35. Our method can

recover sharp image with more details and less artifacts than others. Note that the kernel of [42] is unavailable.

(a) Input (b) Pan et.al. [26] (c) Hu et.al. [12] (d) Ours

Figure 8. Deblurring results on a low-light image with saturation where the blur kernel size is 45× 45. Ours has more details.

introduced a gradient activation vector, and proposed a new

model for kernel estimation based only on activated gradi-

ents. Thanks to the gradient activation vector, we devel-

oped a cutting-plane method which incrementally activate

the appropriate gradients for the blur kernel estimation. Our

method is robust to noise and outliers, and significantly im-

proves the quality of blur kernel estimation. Experimental

results on both synthetic and real-world data show the ex-

cellence of the proposed method.
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