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Abstract

We propose a novel object localization methodology with

the purpose of boosting the localization accuracy of state-

of-the-art object detection systems. Our model, given a

search region, aims at returning the bounding box of an ob-

ject of interest inside this region. To accomplish its goal,

it relies on assigning conditional probabilities to each row

and column of this region, where these probabilities provide

useful information regarding the location of the boundaries

of the object inside the search region and allow the accu-

rate inference of the object bounding box under a simple

probabilistic framework.

For implementing our localization model, we make use of

a convolutional neural network architecture that is properly

adapted for this task, called LocNet. We show experimen-

tally that LocNet achieves a very significant improvement on

the mAP for high IoU thresholds on PASCAL VOC2007 test

set and that it can be very easily coupled with recent state-

of-the-art object detection systems, helping them to boost

their performance. Finally, we demonstrate that our de-

tection approach can achieve high detection accuracy even

when it is given as input a set of sliding windows, thus prov-

ing that it is independent of box proposal methods.

1. Introduction

Object detection is a computer vision problem that has

attracted an immense amount of attention over the last

years. The localization accuracy by which a detection sys-

tem is able to predict the bounding boxes of the objects of

interest is typically judged based on the Intersection over

Union (IoU) between the predicted and the ground truth

bounding box. Although in challenges such as PASCAL

VOC an IoU detection threshold of 0.5 is used for deciding

whether an object has been successfully detected, in real

life applications a higher localization accuracy (e.g. IoU

> 0.7) is normally required (e.g., consider the task of a

This work was supported by the ANR SEMAPOLIS project. Code

and trained models are available on:

https://github.com/gidariss/LocNet

Figure 1: Illustration of the basic work-flow of our localization

module. Left column: our model given a candidate box B (yellow

box) it ”looks” on a search region R (red box), which is obtained

by enlarging box B by a constant factor, in order to localize the

bounding box of an object of interest. Right column: To localize

a bounding box the model assigns one or more probabilities on

each row and independently on each column of region R. Those

probabilities can be either the probability of an element (row or

column) to be one of the four object borders (see top-right image),

or the probability for being on the inside of an objects bounding

box (see bottom-right image). In either case the predicted bound-

ing box is drawn with blue color.

robotic arm that must grasp an object). Such a need is

also reflected in the very recently introduced COCO detec-

tion challenge [23], which uses as evaluation metric the tra-

ditional average precision (AP) measurement but averaged

over multiple IoU thresholds between 0.5 (loosely localized

object) and 1.0 (perfectly localized object) so as to reward

detectors that exhibit good localization accuracy.

Therefore, proposing detectors that exhibit highly accu-

rate (and not loose) localization of the ground truth objects

should be one of the major future challenges in object detec-

tion. The aim of this work is to take a further step towards

addressing this challenge. In practical terms, our goal is to

boost the bounding box detection AP performance across a

wide range of IoU thresholds (i.e., not just for IoU thresh-
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old of 0.5 but also for values well above that). To that end,

a main technical contribution of this work is to propose a

novel object localization model that, given a loosely local-

ized search region inside an image, aims to return the accu-

rate location of an object in this region (see Figure 1).

A crucial component of this new model is that it does

not rely on the commonly used bounding box regression

paradigm, which uses a regression function to directly pre-

dict the object bounding box coordinates. Indeed, the moti-

vation behind our work stems from the belief that trying to

directly regress to the target bounding box coordinates, con-

stitutes a difficult learning task that cannot yield accurate

enough bounding boxes. We argue that it is far more effec-

tive to attempt to localize a bounding box by first assigning

a probability to each row and independently to each column

of the search region for being the left, right, top, or bottom

borders of the bounding box (see Fig. 1 top) or for being on

the inside of an object’s bounding box (see Fig. 1 bottom).

In addition, this type of probabilities can provide a measure

of confidence for placing the bounding box on each location

and they can also handle instances that exhibit multi-modal

distributions for the border locations. They thus yield far

more detailed and useful information than the regression

models that just predict 4 real values that correspond to es-

timations of the bounding box coordinates. Furthermore, as

a result of this, we argue that the task of learning to predict

these probabilities is an easier one to accomplish.

To implement the proposed localization model, we rely

on a convolutional neural network model, which we call

LocNet, whose architecture is properly adapted such that

the amount of parameters needed on the top fully connected

layers is significantly reduced, thus making our LocNet

model scalable with respect to the number of object cate-

gories.

Importantly, such a localization module can be easily in-

corporated into many of the current state-of-the-art object

detection systems [9, 11, 28], helping them to significantly

improve their localization performance. Here we use it in

an iterative manner as part of a detection pipeline that uti-

lizes a recognition model for scoring candidate bounding

boxes provided by the aforementioned localization module,

and show that such an approach significantly boosts AP per-

formance across a broad range of IoU thresholds.

Related work. Most of the recent literature on ob-

ject detection, treats the object localization problem at pre-

recognition level by incorporating category-agnostic object

proposal algorithms [35, 40, 26, 1, 18, 19, 2, 34, 33] that

given an image, try to generate candidate boxes with high

recall of the ground truth objects that they cover. Those pro-

posals are later classified from a category-specific recogni-

tion model in order to create the final list of detections [12].

Instead, in our work we focus on boosting the localization

accuracy at post-recognition time, at which the improve-

ments can be complementary to those obtained by improv-

ing the pre-recognition localization. Till now, the work

on this level has been limited to the bounding box regres-

sion paradigm that was first introduced from Felzenszwalb

et al. [8] and ever-since it has been used with success on

most of the recent detection systems [12, 11, 28, 30, 15,

37, 39, 29, 24]. A regression model, given an initial candi-

date box that is loosely localized around an object, it tries

to predict the coordinates of its ground truth bounding box.

Lately this model is enhanced by high capacity convolu-

tional neural networks to further improve its localization

capability [9, 11, 30, 28].

Contributions. In summary, we make the following

contributions: (1) We cast the problem of localizing an ob-

ject’s bounding box as that of assigning probabilities on

each row and column of a search region. Those probabil-

ities represent either the likelihood of each element (row or

column) to belong on the inside of the bounding box or the

likelihood to be one of the four borders of the object. Both

of those cases is studied and compared with the bounding

box regression model. (2) To implement the above model,

we propose a properly adapted convolutional neural net-

work architecture that has a reduced number of parame-

ters and results in an efficient and accurate object localiza-

tion network (LocNet). (3) We extensively evaluate our ap-

proach on VOC2007 [5] and we show that it achieves a very

significant improvement over the bounding box regression

with respect to the mAP for IoU threshold of 0.7 and the

COCO style of measuring the mAP. It also offers an im-

provement with respect to the traditional way of measuring

the mAP (i.e., for IoU > 0.5), achieving in this case 78.4%
and 74.78% mAP on VOC2007 [5] and VOC2012 [6] test

sets, which are the state-of-the-art at the time of writing this

paper. Given those results we believe that our localization

approach could very well replace the existing bounding box

regression paradigm in future object detection systems. (4)

Finally we demonstrate that the detection accuracy of our

system remains high even when it is given as input a set

of sliding windows, which proves that it is independent of

bounding box proposal methods if the extra computational

cost is ignored.

The remainder of the paper is structured as follows:

We describe our object detection methodology in §2. We

present our localization model in §3. We show experimen-

tal results in §4 and conclude in §5.

2. Object Detection Methodology

Our detection pipeline includes two basic components,

the recognition and the localization models, integrated into

an iterative scheme (see algorithm 1). This scheme starts

from an initial set of candidate boxes B1 (which could

be, e.g., either dense sliding windows [30, 25, 27, 22] or

category-agnostic bounding box proposals [40, 35, 28]) and
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Algorithm 1: Object detection pipeline

Input : Image I, initial set of candidate boxes B1

Output: Final list of detections Y

for t← 1 to T do

St ← Recognition(Bt|I)
if t < T then

Bt+1 ← Localization(Bt|I)
end

end

D← ∪Tt=1{S
t,Bt}

Y← PostProcess(D)

on each iteration t it uses the two basic components in the

following way:

Recognition model: Given the current set of candidate

boxes Bt = {Bt
i}

Nt

i=1
, it assigns a confidence score

to each of them {sti}
Nt

i=1
that represents how likely it is

for those boxes to be localized on an object of interest.

Localization model: Given the current set of candidate

boxes Bt = {Bt
i}

Nt

i=1
, it generates a new set of candi-

date boxes Bt+1 = {Bt+1

i }
Nt+1

i=1
such that those boxes

they will be “closer” (i.e., better localized) on the ob-

jects of interest (so that they are probably scored higher

from the recognition model).

In the end, the candidate boxes that were generated

on each iteration from the localization model along with

the confidences scores that were assigned to them from

the recognition model are merged together and a post-

processing step of non-max-suppression [8] followed from

bounding box voting [9] is applied to them. The output

of this post-processing step consists the detections set pro-

duced from our pipeline. Both the recognition and the lo-

calization models are implemented as convolutional neural

networks [21] that lately have been empirically proven quite

successful on computers vision tasks and especially those

related to object recognition problems [31, 20, 14, 17, 32].

More details about our detection pipeline are provided in

appendix E of technical report [10].

Iterative object localization has also been explored be-

fore [3, 9, 13, 36]. Notably, Gidaris and Komodakis [9]

combine CNN-based regression with iterative localization

while Caicedo et al. [3] and Yoo et al. [36] attempt to lo-

calize an object by sequentially choosing one among a few

possible actions that either transform the bounding box or

stop the searching procedure.

3. Localization model

In this paper we focus on improving the localization

model of this pipeline. The abstract work-flow that we use

Figure 2: The posterior probabilities that our localization model

yields given a region R. Left Image: the in-out conditional prob-

abilities that are assigned on each row (py) and column (px) of

R. They are drawn with the blues curves on the right and on the

bottom side of the search region. Right Image: the conditional

probabilities pl, pr , pt, and pb of each column or row to be the left

(l), right (r), top (t) and bottom (b) border of an object’s bounding

box. They are drawn with blue and red curves on the bottom and

on the right side of the search region.

for this model is that it gets as input a candidate box B in

the image, it enlarges it by a factor γ1 to create a search re-

gion R and then it returns a new candidate box that ideally

will tightly enclose an object of interest in this region (see

right column of Figure 1).

The crucial question is, of course, what is the most ef-

fective approach for constructing a model that is able to

generate a good box prediction. One choice could be, for

instance, to learn a regression function that directly predicts

the 4 bounding box coordinates. However, we argue that

this is not the most effective solution. Instead, we opt for a

different approach, which is detailed in the next section.

3.1. Model predictions

Given a search region R and object category c, our ob-

ject localization model considers a division of R in M equal

horizontal regions (rows) as well as a division of R in M

equal vertical regions (columns), and outputs for each of

them one or more conditional probabilities. Each of these

conditional probabilities is essentially a vector of the form

pR,c = {p(i|R, c)}Mi=1 (hereafter we drop the R and c con-

ditioned variables so as to reduce notational clutter). Two

types of conditional probabilities are considered here:

In-Out probabilities: These are vectors px={px(i)}
M
i=1

and py = {py(i)}
M
i=1 that represent respectively the con-

ditional probabilities of each column and row of R to be

inside the bounding box of an object of category c (see left

part of Figure 2). A row or column is considered to be inside

a bounding box if at least part of the region corresponding

to this row or column is inside this box. For example, if

Bgt is a ground truth bounding box with top-left coordi-

nates (Bgt
l , B

gt
t ) and bottom-right coordinates (Bgt

r , B
gt
b ),2

1We use γ = 1.8 in all of the experiments.
2We actually assume that the ground truth bounding box is projected on

the output domain of our model where the coordinates take integer values

in the range {1, . . . ,M}. This is a necessary step for the definition of the
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then the In-Out probabilities p = {px, py} from the local-

ization model should ideally equal to the following target

probabilities T = {Tx, Ty}:

∀i ∈ {1, . . . ,M}, Tx(i) =

{

1, if B
gt
l ≤ i ≤ Bgt

r

0, otherwise
,

∀i ∈ {1, . . . ,M}, Ty(i) =

{

1, if B
gt
t ≤ i ≤ B

gt
b

0, otherwise
.

Border probabilities: These are vectors pl={pl(i)}
M
i=1,

pr = {pr(i)}
M
i=1, pt = {pt(i)}

M
i=1 and pb = {pb(i)}

M
i=1

that represent respectively the conditional probability of

each column or row to be the left (l), right (r), top (t) and

bottom (b) border of the bounding box of an object of cat-

egory c (see right part of Figure 2). In this case, the tar-

get probabilities T = {Tl, Tr, Tt, Tb} that should ideally

be predicted by the localization model for a ground truth

bounding box Bgt = (Bgt
l , B

gt
t , Bgt

r , B
gt
b ) are given by

∀i ∈ {1, . . . ,M}, Ts(i) =

{

1, if i = Bgt
s

0, otherwise
,

where s ∈ {l, r, t, b}. Note that we assume that the left and

right border probabilities are independent and similarly for

the top and bottom cases.

3.1.1 Bounding box inference

Given the above output conditional probabilities, we

model the inference of the bounding box location B =
(Bl, Bt, Br, Bb) using one of the following probabilistic

models:

In-Out ML: Maximizes the likelihood of the in-out ele-

ments of B

Lin-out(B) =
∏

i∈{Bl,...,Br}

px(i)
∏

i∈{Bt,...,Bb}

py(i)

∏

i/∈{Bl,...,Br}

p̃x(i)
∏

i/∈{Bt,...,Bb}

p̃y(i), (1)

where p̃x(i) = 1−px(i) and p̃y(i) = 1−py(i). The first two

terms in the right hand of the equation represent the likeli-

hood of the rows and columns of box B (in-elements) to be

inside a ground truth bounding box and the last two terms

the likelihood of the rows and columns that are not part of B

(out-elements) to be outside a ground truth bounding box.

Borders ML: Maximizes the likelihood of the borders of

box B:

Lborders(B) = pl(Bl) · pt(Bt) · pr(Br) · pb(Bb). (2)

Combined ML: It uses both types of probability distri-

butions by maximizing the likelihood for both the borders

and the in-out elements of B:

Lcombined(B) = Lborders(B) · Lin-out(B). (3)

target probabilities.

Figure 3: We show the evolution during training. In the left image

the green squares indicate the two highest modes of the left border

probabilities predicted by a network trained only for a few itera-

tions (5k). Despite the fact that the highest one is erroneous, the

network also maintains information for the correct mode. As train-

ing progresses (50k), this helps the network to correct its mistake

and recover a correct left border(right image).

3.1.2 Discussion

The reason we consider that the proposed formulation of

the problem of localizing an object’s bounding box is su-

perior is because the In-Out or Border probabilities provide

much more detailed and useful information regarding the

location of a bounding box compared to the typical bound-

ing box regression paradigm [8]. In particular, in the later

case the model simply directly predicts real values that cor-

responds to estimated bounding box coordinates but it does

not provide, e.g., any confidence measure for these predic-

tions. On the contrary, our model provides a conditional

probability for placing the four borders or the inside of an

object’s bounding box on each column and row of a search

region R. As a result, it is perfectly capable of handling

also instances that exhibit multi-modal conditional distribu-

tions (both during training and testing). During training, we

argue that this makes the per row and per column probabil-

ities much easier to be learned from a convolutional neural

network that implements the model, than the bounding box

regression task (e.g., see Figure 3), thus helping the model

to converge to a better training solution.

Furthermore, during testing, these conditional distribu-

tions as we saw can be exploited in order to form proba-

bilistic models for the inference of the bounding box co-

ordinates. In addition, they can indicate the presence of a

second instance inside the region R and thus facilitate the

localization of multiple adjacent instances, which is a diffi-

cult problem on object detection. In fact, when visualizing,

e.g., the border probabilities, we observed that this could

have been possible in several cases (e.g., see Figure 5). Al-

though in this work we did not explore the possibility of

utilizing a more advanced probabilistic model that predicts

K > 1 boxes per region R, this can certainly be an interest-

ing future addition to our method.

Alternatively to our approach, we could predict the prob-

ability of each pixel to belong on the foreground of an ob-
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Figure 4: Visualization of the LocNet network architecture. In the input image, with yellow is drawn the candidate box B and with red the

search region R. In its output, the LocNet network yields probabilities for each of the C object categories. The parameter M that controls

the output resolution is set to the value 28 in our experiments. The convolutional layers of the VGG16-Net [31] that are being used in order

to extract the image activations AI are those from conv1 1 till conv5 3.

Figure 5: We depict the probabilities for the left (blue) and right

(red) borders that a trained model yields for a region with two

instances of the same class (cow). The probability modes in this

case can clearly indicate the presence of two instances.

ject, as Pinheiro et al. [26] does. However, in order to

learn such a type of model, pixel-wise instance segmenta-

tion masks are required during training, which in general is

a rather tedious task to collect. In contrast, for our model

to learn those per row and per column probabilities, only

bounding box annotations are required. Even more, this in-

dependence is exploited in the design of the convolutional

neural network that implements our model in order to keep

the number of parameters of the prediction layers small (see

§ 3.2). This is significant for the scalability of our model

with respect to the number of object categories since we

favour category-specific object localization that has been

shown to exhibit better localization accuracy [31].

3.2. LocNet network architecture

Our localization model is implemented through the con-

volutional neural network that is visualized in Figure 4 and

which is called LocNet. The processing starts by forward-

ing the entire image I (of size wI×hI ), through a sequence

of convolutional layers (conv. layers of VGG16 [31]) that

outputs the AI activation maps (of size wI

16
× hI

16
× 512).

Then, the region R is projected on AI and the activations

that lay inside it are cropped and pooled with a spatially

adaptive max-pooling layer [15]. The resulting fixed size

activation maps (14× 14× 512) are forwarded through two

convolutional layers (of kernel size 3× 3× 512), each fol-

lowed by ReLU non-linearities, that yield the localization-

aware activation maps AR of region R (with dimensions

size 14× 14× 512).

At this point, given the activations AR the network yields

the probabilities that were described in section §3.1. Specif-

ically, the network is split into two branches, the X and Y,

with each being dedicated for the predictions that corre-

spond to the dimension (x or y respectively) that is assigned

to it. Both start with a max-pool layer that aggregates the

AR activation maps across the dimension perpendicular to

the one dedicated to them, i.e.,

Ax
R(i, f) = max

j
AR(i, j, f), (4)

A
y
R(j, f) = max

i
AR(i, j, f), (5)

where i,j,and f are the indices that span over the width,

height, and feature channels of AR respectively. The re-

sulted activations Ax
R and A

y
R (both of size 14 × 512) effi-

ciently encode the object location only across the dimension

that their branch handles. This aggregation process could

also be described as marginalizing-out localization cues ir-

relevant for the dimension of interest. Finally, each of those

aggregated features is fed into the final fully connected layer

that is followed from sigmoid units in order to output the

conditional probabilities of its assigned dimension. Specif-

ically, the X branch outputs the px and/or the (pl, pr) prob-

ability vectors whereas the Y branch outputs the py and/or

the (pt, pb) probability vectors. Despite the fact that the last

fully connected layers output category-specific predictions,

their number of parameters remains relatively small due to

the facts that: 1) they are applied on features of which the

dimensionality has been previously drastically reduced due

to the max-pooling layers of equations 4 and 5, and 2) that

each branch yields predictions only for a single dimension.

3.3. Training

During training, the network learns to map a search re-

gions R to the target probabilities T that are conditioned on

the object category c. Given a set of N training samples

{(Rk, Tk, ck)}
N
k=1

the loss function that is minimised is

L(θ) =
1

N

N
∑

k=1

l(θ|Rk, Tk, ck), (6)
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where θ are the network parameters that are learned and

l(θ|R, T, c) is the loss for one training sample.

Both for the In-Out and the Borders probabilities we use

the sum of binary logistic regression losses per row and col-

umn. Specifically, the per sample loss of the In-Out case

is:

∑

a∈{x,y}

M
∑

i=1

Ta(i) log(pa(i)) + T̃a(i) log(p̃a(i)) , (7)

and for the Borders case is:

∑

s∈{l,r,u,b}

M
∑

i=1

λ+Ts(i) log(ps(i))+λ−T̃s(i) log(p̃s(i)) , (8)

where p̃ = 1 − p. In objective function (8), λ+ and λ−

represent the weightings of the losses for misclassifying a

border and a non-border element respectively. These are set

as

λ− = 0.5 ·
M

M − 1
, λ+ = (M − 1) · λ− ,

so as to balance the contribution on the loss of those two

cases (note that T̃s(i) will be non-zero M − 1 times more

than Ts(i)). We observed that this leads to a model that

yields more “confident” probabilities for the borders ele-

ments. Implementation details about the training procedure

are provided in section 4 of technical report [10].

4. Experimental results

We empirically evaluate our localization models on PAS-

CAL VOC detection challenge [7]. Specifically, we train all

the recognition and localization models on VOC2007+2012

trainval sets and we test them on the VOC2007 test set.

As baseline we use a CNN-based bounding box regres-

sion model [9] (see appendices A, B, and C of technical

report [10]). The remaining components of the detection

pipeline include

Initial set of candidate boxes: We examine three alterna-

tives for generating the initial set of candidate boxes: the

Edge Box algorithm [40] (EB), the Selective Search algo-

rithm (SS), and a sliding windows scheme. In Table 1 we

provide the recall statistics of those box proposal methods.

Recognition model: For the recognition part of the detec-

tion system we use either the Fast-RCNN [11] or the MR-

CNN [9] recognition models. During implementing the

latter one, we performed several simplifications on its ar-

chitecture and thus we call the resulting model Reduced-

MR-CNN (those modifications are detailed in appendix D

of technical report [10]). The Fast-RCNN and Reduced-

MR-CNN models are trained using both selective search

and edge box proposals and as top layer they have class-

specific linear SVMs [12].

Apart from on PASCAL, we also provide preliminary re-

sults of our approach on COCO detection challenge [23].

Initial set of

candidate boxes
Number

Recall

IoU≥0.5 IoU≥0.7 mAR

Sliding Windows around 10k 0.920 0.389 0.350

Edge Box around 2k 0.928 0.755 0.517

Sel. Search around 2k 0.936 0.687 0.528

Table 1: Recall statistics on VOC2007 test set of the bounding

box proposals methods that are being used in our works.

Detection Pipeline mAP

Localization Initial Boxes IoU ≥ 0.5 IoU ≥ 0.7 COCO style

R
ed

u
ce

d
-M

R
-C

N
N

– 2k Edge Box 0.747 0.434 0.362

InOut ML 2k Edge Box 0.783 0.654 0.522

Borders ML 2k Edge Box 0.780 0.644 0.525

Combined ML 2k Edge Box 0.784 0.650 0.530

Bbox reg. 2k Edge Box 0.777 0.570 0.452

– 2k Sel. Search 0.719 0.456 0.368

InOut ML 2k Sel. Search 0.782 0.654 0.529

Borders ML 2k Sel. Search 0.777 0.648 0.530

Combined ML 2k Sel. Search 0.781 0.653 0.535

Bbox reg. 2k Sel. Search 0.774 0.584 0.460

F
as

t-
R

C
N

N

– 2k Edge Box 0.729 0.427 0.356

InOut ML 2k Edge Box 0.779 0.651 0.522

Borders ML 2k Edge Box 0.774 0.641 0.522

Combined ML 2k Edge Box 0.780 0.648 0.530

Bbox reg. 2k Edge Box 0.773 0.570 0.453

– 2k Sel. Search 0.710 0.446 0.362

InOut ML 2k Sel. Search 0.777 0.645 0.526

Borders ML 2k Sel. Search 0.772 0.640 0.526

Combined ML 2k Sel. Search 0.775 0.645 0.532

Bbox reg. 2k Sel. Search 0.769 0.579 0.458

Table 2: mAP results on VOC2007 test set. The hyphen symbol

(–) indicates that the localization model was not used at all and

that the pipeline ran only for T = 1 iteration. The rest entries are

obtained after running the detection pipeline for T = 4 iterations.

4.1. Localization performance

We first evaluate merely the localization performance of

our models, thus ignoring in this case the recognition as-

pect of the detection problem. For that purpose we report

the recall that the examined models achieve. Specifically,

in Figure 6a we provide the recall as a function of the IoU

threshold for the candidate boxes generated on the first iter-

ation and the last iteration of our detection pipeline. Also,

in the legends of these figures we report the average recall

(AR) [16] that each model achieves. Note that, given the

set of initial candidate boxes and the recognition model, the

input to the iterative localization mechanism is exactly the

same and thus any difference on the recall is solely due to

the localization capabilities of the models. We observe that

for IoU thresholds above 0.65, the proposed models achieve

higher recall than bounding box regression and that this im-

provement is actually increased with more iterations of the

localization module. Also, the AR of our proposed models

is on average 6 points higher than bounding box regression.

4.2. Detection performance

Here we evaluate the detection performance of the ex-

amined localization models when plugged into the detec-
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(a) Recall as a function of IoU. (b) mAP as a function of IoU.

Figure 6 (a) Recall of ground truth bounding boxes as a function of the IoU threshold on VOC2007 test set. Note that, because we

perform class-specific localization the recall that those plots report is obtained after averaging the per class recalls. Top-Left: Recalls for

the Reduced MR-CNN model after one iteration of the detection pipeline. Top-Middle: Recalls for the Reduced MR-CNN model after four

iterations of the detection pipeline.Bottom-Left: Recalls for the Fast-RCNN model after one iteration of the detection pipeline. Bottom-

Middle: Recalls for the Fast-RCNN model after four iterations of the detection pipeline. (b) mAP as a function of the IoU threshold on

VOC2007 test set. Top-Right: mAP plots for the configurations with the Reduced-MR-CNN recognition model. Bottom-Right: mAP plots

for the configurations with the Fast-RCNN recognition model.

tion pipeline that was described in section §2. In Table 2 we

report the mAP on VOC2007 test set for IoU thresholds of

0.5 and 0.7 as well as the COCO style of mAP that averages

the traditional mAP over various IoU thresholds between

0.5 and 1.0. The results that are reported are obtained after

running the detection pipeline for T = 4 iterations. We ob-

serve that the proposed InOut ML, Borders ML, and Com-

bined ML localization models offer a significant boost on

the mAP for IoU ≥ 0.7 and the COCO style mAP, relative

to the bounding box regression model (Bbox reg.) under all

the tested cases. The improvement on both of them is on

average 7 points. Our models also improve for the mAP

with IoU≥ 0.5 case but with a smaller amount (around 0.7
points). In Figure 6b we plot the mAP as a function of the

IoU threshold. We can observe that the improvement on the

detection performance thanks to the proposed localization

models starts to clearly appear on the 0.65 IoU threshold

and then grows wider till the 0.9. In Table 3 we provide

the per class AP results on VOC2007 for the best approach

on each metric. In the same table we also report the AP re-

sults on VOC2012 test set but only for the IoU ≥ 0.5 case

since this is the only metric that the evaluation server pro-

vides. In this dataset we achieve mAP of 74.8% which is the

state-of-the-art at the time of writing this paper (6/11/2015).

Figure 7: Plot of the mAP as a function of the iterations number

of our detection pipeline on VOC2007 test set. To generate this

plot we used the Reduced-MR-CNN recognition model with the

In-Out ML localization model and Edge Box proposals.

Finally, in Figure 7 we examine the detection performance

behaviour with respect to the number of iterations used by

our pipeline. We observe that as we increase the number

of iterations, the mAP for high IoU thresholds (e.g. IoU

≥ 0.8) continues to improve while for lower thresholds the

improvements stop on the first two iterations.
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Year Metric Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

2007 IoU ≥ 0.5 Reduced-MR-CNN & Combined ML & EB 0.804 0.855 0.776 0.729 0.622 0.868 0.875 0.886 0.613 0.860 0.739 0.861 0.870 0.826 0.791 0.517 0.794 0.752 0.866 0.777 0.784

2007 IoU ≥ 0.7 Reduced-MR-CNN & In Out ML & EB 0.707 0.742 0.622 0.481 0.452 0.840 0.747 0.786 0.429 0.730 0.670 0.754 0.779 0.669 0.581 0.309 0.655 0.693 0.736 0.690 0.654

2007 COCO style Reduced-MR-CNN & Combined ML & SS 0.580 0.603 0.500 0.413 0.367 0.703 0.631 0.661 0.357 0.581 0.500 0.620 0.625 0.545 0.494 0.269 0.522 0.579 0.602 0.555 0.535

2012 IoU ≥ 0.5 Reduced-MR-CNN & In Out ML & EB 0.863 0.830 0.761 0.608 0.546 0.799 0.790 0.906 0.543 0.816 0.620 0.890 0.857 0.855 0.828 0.497 0.766 0.675 0.832 0.674 0.748

2012 IoU ≥ 0.5 Reduced-MR-CNN & Borders ML & EB 0.865 0.827 0.755 0.602 0.535 0.791 0.785 0.902 0.533 0.800 0.607 0.886 0.857 0.848 0.826 0.496 0.765 0.673 0.831 0.676 0.743

2012 IoU ≥ 0.5 Reduced-MR-CNN & Combined ML & EB 0.866 0.834 0.765 0.604 0.544 0.798 0.786 0.902 0.546 0.810 0.618 0.889 0.857 0.847 0.828 0.498 0.763 0.678 0.830 0.679 0.747

Table 3: Per class AP results on VOC2007 and VO2012 test sets.

Initial Boxes: 10k Sliding Windows

Localization Model
mAP

IoU ≥ 0.5 IoU ≥ 0.7 COCO style

– 0.617 0.174 0.227

InOut ML 0.770 0.633 0.513

Borders ML 0.764 0.626 0.513

Combined ML 0.773 0.639 0.521

Bbox reg. 0.761 0.550 0.436

Table 4: mAP results on VOC2007 test set when using 10k sliding

windows as initial set of candidate boxes. In order to generate the

sliding windows we use the publicly available code that accompa-

nies the work of Hosang et al. [16] and includes a sliding window

implementation inspired by BING [4, 38]. All the entries in this

table use the Reduced-MR-CNN recognition model.

4.3. Sliding windows as initial set of candidate boxes

In Table 4 we provide the detection accuracy of our

pipeline when, for generating the initial set of candidate

boxes, we use a simple sliding windows scheme (of 10k
windows per image). We observe that:

• Even in this case, our pipeline achieves very high mAP

results that are close to the ones obtained with selec-

tive search or edge box proposals. We emphasize that

this is true even for the IoU≥ 0.7 or the COCO style

of mAP that favour better localized detections, despite

the fact that in the case of sliding windows the initial

set of candidate boxes is considerably less accurately

localized than in the edge box or in the selective search

cases (see Table 1).

• Just scoring the sliding window proposals with the

recognition model (hyphen (–) case) yields much

worse mAP results than in the selective search or edge

box cases. However, when we use the full detec-

tion pipeline that includes localization models and re-

scoring of the new better localized candidate boxes,

then this gap is significantly reduced.

• The difference in mAP between the proposed localiza-

tion models (In-Out ML, Borders ML, and Combined

ML) and the bounding box regression model (Bbox

reg.) is even greater in the case of sliding windows.

To the best of our knowledge, the above mAP results

are considerably higher than those of any other detection

method when only sliding windows are used for the initial

bounding box proposals (similar experiments are reported

in [11, 16]). We also note that we had not experimented with

increasing the number of sliding windows. Furthermore, the

tested recognition model and localization models were not

re-trained with sliding windows in the training set. As a

Detection Pipeline mAP

Localization Recognition Proposals Dataset IoU ≥ 0.5 IoU ≥ 0.75 COCO style

Combined ML Fast R-CNN Sel. Search 5K mini-val set 0.424 0.282 0.264

Bbox reg. Fast R-CNN Sel. Search 5K mini-val set 0.407 0.202 0.214

Combined ML Fast R-CNN Sel. Search test-dev set 0.429 0.279 0.263

Table 5 – Preliminary results on COCO. In those experiments

the Fast R-CNN recognition model uses a softmax classifier [11]

instead of class-specific linear SVMs [12] that are being used for

the PASCAL experiments.

result, we foresee that by exploring those two factors one

might be able to further boost the detection performance for

the sliding windows case.

4.4. Preliminary results on COCO

To obtain some preliminary results on COCO, we ap-

plied our training procedure on COCO train set. The only

modification was to use 320k iterations (no other parameter

was tuned). Therefore, LocNet results can still be signifi-

cantly improved but the main goal was to show the relative

difference in performance between the Combined ML lo-

calization model and the box regression model. Results are

shown in Table 5, where it is observed that the proposed

model boosts the mAP by 5 points in the COCO-style eval-

uation, 8 points in the IoU ≥ 0.75 case and 1.4 points in the

IoU ≥ 0.5 case.

5. Conclusion

We proposed a novel object localization methodology

that is based on assigning probabilities related to the local-

ization task on each row and column of the region in which

it searches the object. Those probabilities provide useful

information regarding the location of the object inside the

search region and they can be exploited in order to infer its

boundaries with high accuracy.

We implemented our model via using a convolutional

neural network architecture properly adapted for this task,

called LocNet, and we extensively evaluated it on PAS-

CAL VOC2007 test set. We demonstrate that it outper-

forms CNN-based bounding box regression on all the eval-

uation metrics and it leads to a significant improvement on

those metrics that reward good localization. Importantly,

LocNet can be easily plugged into existing state-of-the-art

object detection methods, in which case we show that it con-

tributes to significantly boosting their performance. Finally,

we demonstrate that our object detection methodology can

achieve very high mAP results even when the initial set of

bounding boxes is generated by a simple sliding windows

scheme.
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