
Robust 3D Hand Pose Estimation in Single Depth Images:

from Single-View CNN to Multi-View CNNs

Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann

Institute for Media Innovation

Nanyang Technological University, Singapore

{ge0001ao, hliang1}@e.ntu.edu.sg, {jsyuan, danielthalmann}@ntu.edu.sg

Abstract

Articulated hand pose estimation plays an important

role in human-computer interaction. Despite the recent

progress, the accuracy of existing methods is still not sat-

isfactory, partially due to the difficulty of embedded high-

dimensional and non-linear regression problem. Different

from the existing discriminative methods that regress for the

hand pose with a single depth image, we propose to first

project the query depth image onto three orthogonal planes

and utilize these multi-view projections to regress for 2D

heat-maps which estimate the joint positions on each plane.

These multi-view heat-maps are then fused to produce fi-

nal 3D hand pose estimation with learned pose priors. Ex-

periments show that the proposed method largely outper-

forms state-of-the-art on a challenging dataset. Moreover,

a cross-dataset experiment also demonstrates the good gen-

eralization ability of the proposed method.

1. Introduction

The problem of 3D hand pose estimation has aroused

a lot of attention in computer vision community for long,

as it plays a significant role in human-computer interaction

such as virtual/augmented reality applications. Despite the

recent progress in this field [14, 18, 21, 23, 29], robust and

accurate hand pose estimation remains a challenging task.

Due to large pose variations and high dimension of hand

motion, it is generally difficult to build an efficient mapping

from image features to articulated hand pose parameters.

Data-driven methods for hand pose estimation train

discriminative models, such as isometric self-organizing

map [4], random forests [7, 21, 24, 25] and convolution-

al neural networks (CNNs) [29], to map image features to

hand pose parameters. With the availability of large anno-

tated hand pose datasets [21, 24, 29], data-driven approach-

es become more advantageous as they do not require com-

plex model calibration and are robust to poor initialization.

Figure 1: Overview of our proposed multi-view regres-

sion framework. We generate heat-maps for three views by

projecting 3D points onto three orthogonal planes. Three

CNNs are trained in parallel to map each view’s projected

image to its corresponding heat-maps, which are then fused

together to estimate 3D hand joint locations.

We focus on CNN-based data-driven methods in this pa-

per. CNNs have been applied in body and hand pose es-

timation [27, 29, 30] and have shown to be effective. The

main difficulty of CNN-based methods for hand pose es-

timation lies in accurate 3D hand pose regression. Direct

mapping from input image to 3D locations is highly non-

linear with high learning complexity and low generaliza-

tion ability of the networks [27]. One alternative way is

to map input image to a set of heat-maps which represent

the probability distributions of joint positions in the image

and recover the 3D joint locations from the depth image

with model fitting [29]. However, in this method, the heat-

map only provides 2D information of the hand joint and the

depth information is not fully utilized.

In this work, we propose a novel 3D regression method

using multi-view CNNs that can better exploit depth cues to

recover fully 3D information of hand joints without model

fitting, as illustrated in Fig. 1. Specifically, the point cloud

of an input depth image is first projected onto three orthogo-
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Figure 2: (a) Illustration of joint estimation in single view.

Blue points are true locations, and red points are estimated

locations. The little finger tip is misestimated on the back-

ground and the middle finger tip is misestimated on the hand

palm. (b) Illustration of ambiguous estimation. Despite the

heat-map of x-y view contains two hotspots which are hard

to choose, from the heat-map of z-x view, it is easy to find

that the x value is small with high confidence. Thus, the left

hotspot in x-y view’s heat-map is true.

nal planes, and each projected image is then fed into a sep-

arate CNN to generate a set of heat-maps for hand joints

following similar pipeline in [29]. As the heat-map in each

view encodes the 2D distribution of a joint on the projec-

tion plane, their combination in three views thus contains

the location distribution of the joint in 3D space. By fusing

heat-maps of three views with pre-learned hand pose priors,

we can finally obtain the 3D joint locations and alleviate

ambiguous estimations at the same time.

Compared to the method of single view CNN in [29],

our proposed method of multi-view CNNs has the following

advantages:

• In the single view CNN, the depth of a hand joint is taken

as the corresponding depth value at the estimated 2D po-

sition, which may result in large depth estimation errors

even if the estimated 2D position is only slightly deviat-

ed from the true joint position, as shown in Fig. 2a. In

contrast, our proposed multi-view CNNs generate heat-

maps for front, side and top views simultaneously, from

which the 3D locations of hand joints can be estimated

more robustly.

• In case of ambiguous estimations, the single view CNN

cannot well differentiate among multiple hotspots in the

heat-map, in which only one could correspond to the true

joint, as shown in Fig. 2b (x-y view). With the pro-

posed multi-view CNNs, the heat-maps from other two

views can help to eliminate the ambiguity, such as that in

Fig. 2b.

• Different from [29] that still relies on a pre-defined hand

model to obtain the final estimation, our proposed ap-

proach embeds hand pose constraints learned from train-

ing samples in an implicit way, which allows to enforce

hand motion constraints without manually defining hand

size parameters.

Comprehensive experiments validate the superior perfor-

mance of the proposed method compared to state-of-the-

art methods on public datasets [21], with runtime speed of

over 70fps. In addition, our proposed multi-view regres-

sion method can achieve relatively high accuracy in cross-

dataset experiments [17, 21].

2. Literature Review

Vision-based hand pose estimation has been extensive-

ly studied in literature over many years. The most com-

mon hand pose estimation techniques can be classified into

model-driven approaches and data-driven approaches [22].

Model-driven methods usually find the optimal hand pose

parameters via fitting a deformable 3D hand model to in-

put image observations. Such methods have demonstrat-

ed to be quite effective, especially with the depth cam-

eras [15, 17, 19, 23]. However, there are some shortcom-

ings for the model-driven methods. For instance, they usu-

ally need to explicitly define the anatomical size and hand

motion constraints of the hand to match to the input image.

Also, due to the high dimensional of hand pose parameters,

they can be sensitive to initialization for the iterative model-

fitting procedure to converge to the optimal pose.

In contrast, the data-driven methods do not need the ex-

plicit specification of the hand size and motion constraints.

Rather, such information is automatically encoded in the

training data. Therefore, many recent methods are built up-

on such a scheme [10, 11, 13, 21, 25, 32]. Among them, the

random forest and its variants have proved to be reasonably

accurate and fast. In [32], the authors propose to use the ran-

dom forest to directly regress for the hand joint angles from

depth images, in which a set of spatial-voting pixels cast

their votes for hand pose independently and their votes are

clustered into a set of candidates. The optimal one is deter-

mined by a verification stage with a hand model. A similar

method is presented in [25], which further adopts transfer

learning to make up for the inconsistence between synthesis

and real-world data. As the estimations from random forest

can be ambiguous for complex hand postures, pre-learned

hand pose priors are sometimes utilized to better fuse inde-

pendently predicted hand joint distributions [8, 12]. In [21],

the cascaded pose regression algorithm [3] is adapted to the

problem of hand pose estimation. Particularly, the authors

propose to first predict the root joints of the hand skeleton,

based on which the rest joints are updated. In this way the

hand pose constraints can be well preserved during pose re-

gression.

Very recently, convolutional neural networks have shown

to be effective in articulated pose estimation. In [30], they

are tuned to regress for the 2D human poses by directly min-

imizing the pose estimation error on the training data. The

results have shown to outperform the traditional methods

largely. However, it takes more than twenty days to train
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the network and the dataset only contains several thousand

images. Considering the relatively small size of the dataset

used in [30], it can be difficult to use it on larger datasets

such as [21, 24], which consist of more than 70K images.

Also, it is reported in [5, 27] that such direct mapping with

CNNs from image features to continuous 2D/3D locations

is of high nonlinearity and complexity as well as low gener-

alization ability, which renders it difficult to train CNNs in

such a manner. To this end, in their work on body pose esti-

mation [27, 28], the CNNs are used to predict the heat-maps

of joint positions instead of the original articulated pose pa-

rameters, and on each heat-map the intensity of a pixel in-

dicates the likelihood for a joint occurring there. During

training, the regression error is instead defined as the L2-

norm of the difference between the estimated heat-map and

the ground truth heat-map. In this way, the network can

be trained efficiently and they achieve state-of-the-art per-

formances. Similarly, such a framework has also been ap-

plied in 3D hand pose estimation [29]. However, the heat-

map only provides 2D information of the hand joint and the

depth information is not fully utilized. To address this issue,

a model-based verification stage is adopted to estimate the

3D hand pose based on the estimated heat-maps and the in-

put depth image [29]. Such heat-map based approaches are

interesting as heat-maps can reflect the probability distribu-

tion of 3D hand joints in the projection plane. Inspired by

such methods, we generate heat-maps of multiple views and

fuse them together to estimate the probability distribution of

hand joints in 3D space.

3. Methodology

The task of the hand pose estimation can be regarded as

the extraction of the 3D hand joint locations from the depth

image. Specifically, the input of this task is a cropped depth

image only containing a human hand with some gesture and

the outputs are K 3D hand joint locations which represent

the hand pose. Let the K objective hand joint locations be

Φ = {φk}
K

k=1
∈ Λ, here Λ is the 3×K dimensional hand

joint space, and in this work K = 21. The 21 objective hand

joint locations are the wrist center, the five metacarpopha-

langeal joints, the five proximal interphalangeal joints, the

five distal interphalangeal joints and the five finger tips.

Following the discussion in Section 1, we propose to in-

fer 3D hand joint locations Φ based on the projected images

on three orthogonal planes. Let the three projected images

be Ixy , Iyz and Izx, which are obtained by projecting 3D

points from the depth image onto x-y, y-z and z-x planes

in the projection coordinate system, respectively. Thus, the

query depth image ID is transformed to the three projections

Ixy , Iyz and Izx, which will be used as the inputs to infer 3D

hand joint locations in our following derivations.

We estimate the hand joint locations Φ by applying the

MAP (maximum a posterior) estimator on the basis of pro-

Figure 3: Illustration of 3D points projection. 3D points ob-

tained from the input depth image are projected onto x-y, y-z

and z-x planes of the OBB coordinate system, respectively.

jections Ixy , Iyz and Izx, which can be viewed as the ob-

servations of the 3D hand pose. Given (ID,Φ), we assume

that the three projections Ixy, Iyz and Izx are independent,

conditioned on the joint locations Φ [1, 33]. Under this

assumption and the assumption of equal a priori probabil-

ity P (Φ), the posterior probability of joint locations can

be formulated as the product of the individual estimations

from all the three views. The problem to find the optimal

hand joint locations Φ∗ is thus formulated as follows:

Φ
∗ =argmax

Φ

P (Φ| Ixy, Iyz, Izx)

= argmax
Φ

P (Ixy, Iyz, Izx|Φ)

= argmax
Φ

P (Ixy|Φ)P (Iyz|Φ)P (Izx|Φ)

= argmax
Φ

P (Φ| Ixy)P (Φ| Iyz)P (Φ| Izx)

s.t. Φ ∈ Ω

(1)

where Φ is constrained to a low dimensional subspace

Ω ⊆ Λ in order to resolve ambiguous joint estimations.

The posterior probabilities P (φk| Ixy), P (φk| Iyz) and

P (φk| Izx) can be estimated from heat-maps generated by

CNNs. Now we present the details of multi-view 3D joint

location regression. We first describe the methods of multi-

view projection and learning in Section 3.1 and then de-

scribe the method of multi-view fusion in Section 3.2.

3.1. Multi­view Projection and Learning

The objective for multi-view projection and learning is

to generate projected images on each view and learn the

relations between the projected images and the heat-maps of

each view. First, we describe the details of 3D projections.

Then, we introduce the architecture of the CNNs.

3D Points Projection: As illustrated in Fig. 1, the in-

put depth image is first converted to a set of 3D points in

the world coordinate system by using the depth camera’s
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Figure 4: Convolutional Network architecture for each

view. The network contains convolutional layers and fully-

connected layers. In convolutional layers, there are three

banks for multi-resolution inputs. The network generates

21 heat-maps with the size of 18x18 pixels. All of the three

views have the same network architecture and the same ar-

chitectural parameters.

intrinsic parameters, e.g. the position of principal point and

the focal length. To generate multi-view’s projections, we

project these 3D points onto three orthogonal planes. As

shown in Fig. 3, an oriented bounding box (OBB) is gen-

erated by performing principal component analysis (PCA)

on the set of 3D points, which is a tight fit around these 3D

points in local space [31]. The origin of OBB coordinate

system is set on the center of the bounding box, and its x,

y, z axes are respectively aligned with the 1st, 2nd and 3rd

principal components. This coordinate system is set as the

projection coordinate system.

For 3D points projection onto a plane, the distances from

3D points to the projection plane are normalized between 0

and 1 (with nearest points set to 0, farthest points set to

1). Then, 3D points are orthographically projected onto the

OBB coordinate system’s x-y, y-z and z-x planes respective-

ly, as shown in Fig. 3. The corresponding normalized dis-

tances are stored as pixel values of the projected images.

If multiple 3D points are projected onto the same pixel,

the smallest normalized distance will be stored as the pixel

value. Notice that the projections on the three orthogonal

planes maybe coarse because of the resolution of the depth

map [9], which can be solved by performing median filter

and opening operation on the projected images.

Architecture of CNNs: Since we project 3D points on-

to three views, for each view, we construct a convolutional

network having the same network architecture and the same

architectural parameters. Inspired by the work of Tompson

et al. in [29], we employ the multi-resolution convolution-

al networks architecture for each view as shown in Fig. 4.

The input projected images are resized to 96x96 pixels and

then filtered by local contrast normalization (LCN) [6] to

normalize the contrast in the image. After LCN, the 96x96

image is down-sampled to 48x48 and 24x24 pixels. All of

these three images with different resolutions are propagat-

ed through three banks which consist of two convolutional

stages. The output feature maps of these three banks are

concatenated and fed into a fully-connected network con-

taining two linear stages. The final outputs of this network

are 21 heat-maps with 18x18 pixels, of which the intensity

indicates the confidence of a joint locating in the 2D posi-

tion on a specific view.

3.2. Multi­view Fusion

The objective for multi-view fusion is to estimate the 3D

hand joint locations from three views’ heat-maps. Let φkx,

φky and φkz denote the x, y and z coordinates of the 3D

hand joint location φk in the OBB coordinate system.

The CNNs generate a set of heat-maps for each joint,

each view. Since the intensity on a heat-map indicates

the confidence of a joint locating in the 2D position of

the x-y, y-z or z-x view, we can get the correspond-

ing probabilities P (φkx, φky| Ixy), P (φky, φkz| Iyz), and

P (φkz, φkx| Izx) from three views’ heat-maps.

Assuming that, conditioned on the x-y view, the distribu-

tion of z variable is uniform, we have:

P (φk| Ixy) = P (φkx, φky, φkz| Ixy)

= P (φkx, φky| Ixy)P (φkz| Ixy)

∝ P (φkx, φky| Ixy)

(2)

With similar assumptions, for the other two views, it

can be derived that P (φk| Iyz) ∝ P (φky, φkz| Iyz) and

P (φk| Izx) ∝ P (φkz, φkx| Izx).
We assume that the hand joint locations are independent

conditioned on each view’s projected image. Thus, the op-

timization problem in Eq. 1 can be transformed into:

Φ
∗ = argmax

Φ

P (Φ| Ixy)P (Φ| Iyz)P (Φ| Izx)

= argmax
Φ

∏

k

P (φk| Ixy)P (φk| Iyz)P (φk| Izx)

= argmax
Φ

∏

k

Q (φkx, φky, φkz)

(3)

where Q (φkx, φky, φkz) denotes the product of prob-

abilities P (φkx, φky| Ixy), P (φky, φkz| Iyz), and

P (φkz, φkx| Izx) for each joint.

Eq. 3 indicates that we can get the optimal hand joint

locations by maximizing the product of Q (φkx, φky, φkz)
for all the joints which can be calculated from the intensities

of three views’ heat-maps. In this work, a set of 3D points in

the bounding box is uniformly sampled and projected onto

three views to get its corresponding heat-map intensities.
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Then the value of Q (φkx, φky, φkz) for a 3D point can be

computed.

For simplicity of this problem, the product of probabil-

ities Q (φkx, φky, φkz) is approximated as a 3D Gaussian

distribution N (µk,Σk), where µk is the mean vector, Σk

is the covariance matrix. These parameters of the Gaussian

distribution can be estimated from the sampled data.

Based on above assumptions and derivations, the opti-

mization problem in Eq. 3 can be approximated as follow:

Φ
∗ = argmax

Φ

∑

k

logQ (φkx, φky, φkz)

= argmax
Φ

∑

k

logN (µk,Σk)

= argmin
Φ

∑

k

(φk − µk)
T
Σ

−1

k (φk − µk)

s.t. Φ =
∑M

m=1

αmem + u

(4)

where Φ is constrained to take the linear from. In order to

learn the low dimensional subspace Ω of hand configura-

tion constrains, PCA is performed on joint locations in the

training dataset [12]. E = [e1, e2, · · · , eM ] are the prin-

cipal components, α = [α1, α2, · · · , αM ]
T

are the coeffi-

cients of the principal components, u is the empirical mean

vector, and M ≪ 3×K.

As proved in the supplementary material, given the

linear constrains of Φ, the optimal coefficient vector

α∗ = [α∗

1
, α∗

2
, · · · , α∗

M ]
T

is:

α∗ = A
−1b (5)

where A is a M ×M symmetric matrix, b is an M -

dimensional column vector:

Aij =
∑

k

eTj,kΣ
−1

k ei,k, bi =
∑

k

(µk − uk)
T
Σ

−1

k ei,k

ei =
[

eTi,1, e
T
i,2, · · · , e

T
i,K

]T
; u =

[

uT
1
,uT

2
, · · · ,uT

K

]T
;

i, j = 1, 2, · · · , M .

The optimal joint locations Φ
∗ are reconstructed by

back-projecting the optimal coefficients α∗ in the subspace

Ω to the original joint space Λ:

Φ
∗ =

∑M

m=1

α∗

mem + u (6)

To sum up, the proposed multi-view fusing method con-

sists of two main steps. The first step is to estimate the

parameters of Gaussian distribution for each joint using the

three views’ heat-maps. The second step is to calculate the

optimal coefficients α∗ and reconstruct the optimal joint lo-

cations Φ
∗. The principal components and the empirical

mean vector of hand joint configuration are obtained by ap-

plying PCA on training data during the training stage.

4. Experiments

4.1. CNNs Training

The CNNs of multiple views described in Section 3.1

were implemented within the Torch7 [2] framework. The

optimization algorithm applied in CNNs training process

is stochastic gradient descent (SGD) with a mean squared

error (MSE) loss function, since the task of hand pose

estimation is a typical regression problem. For training

parameters, we choose the batch size as 64, the learning

rate as 0.2, the momentum as 0.9 and the weight decay as

0.0005. Training is stopped after 50 epochs to prevent over-

fitting. We use a workstation with two Intel Xeon proces-

sors, 64GB of RAM and two Nvidia Tesla K20 GPUs for

CNNs training. The CNNs of three views can be trained at

the same time since they are in parallel. Training the CNNs

takes approximately 12 hours.

4.2. Dataset and Evaluation Metric

We conduct a self-comparison and a comparison with

state-of-the-art methods on the dataset released in [21],

which is the most challenging hand pose dataset in the liter-

ature. This dataset contains 9 subjects and each subject con-

tains 17 gestures. In the experiment, we use 8 subjects as

the training set for CNNs training and the remaining subject

as the testing set. This is repeated 9 times for all subjects.

In addition, we conduct a cross-dataset evaluation by us-

ing the training data from the dataset in [21] and the testing

data from another dataset in [17].

We employ two metrics to evaluate the regression perfor-

mance. The first metric is the mean error distance for each

joint across all the test samples, which is a standard evalu-

ation metric. The second metric is the proportion of good

test samples in the entire test samples. A test sample is re-

garded as good only when all the estimated joint locations

are within a maximum allowed distance from the ground

truth, namely the error tolerance. This worst case accuracy

proposed in [26] is very strict.

4.3. Self­comparisons

For self-comparison, we implement two baselines: the

single view regression approach and the multi-view regres-

sion approach using a coarse fusion method. In the sin-

gle view regression approach, only the projected images on

OBB coordinate system’s x-y plane are fed into the CNNs.

From the output heat-maps, we can only estimate the x and

y coordinates of joint locations by using the Gaussian fitting

method proposed in [29]. The z coordinate can be estimat-

ed from the intensity of the projected image. If the 2D point

with the estimated x, y coordinates is on the background

of the projected image, the z coordinate will be specified

as zero in OBB coordinate system instead of the maximum

depth value, which can reduce the estimation errors on z di-
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Figure 6: An experimental example for self-comparison.

Top-left: 3D point cloud with ground truth and estimated

3D locations. Top-right: Projection images in three views.

Bottom-right: Heat-maps of three views. The ground truth

and estimated 3D locations are back-projected onto three

views and their heat-maps for comparison. Lines indicate

the offsets between ground truth and estimations.

rection. The multi-view regression approach using a coarse

fusion method can be considered as a degenerated variant of

our fine fusion method. This method estimates the 3D hand

joint locations by simply averaging the estimated x, y and z

coordinates from three views’ heat-maps.

We compare the accuracy performance of these two ap-

proaches with the multi-view fine fusion method described

in Section 3. The mean error for each joint and the worst

case accuracy of these three methods are shown in Fig. 5

(left and middle) respectively. As can be seen, the multi-

view regression is effective since our two multi-view regres-

sion approaches significantly outperform the single view

regression method. In addition, the fine fusion method

is better than the coarse fusion method when considering

the mean error performance, which is about 13 mm on the

dataset in [21]. When considering the worst case accura-

cy, the fine fusion method performs worse than the coarse

fusion method only when the error tolerance is large. How-

ever, the high accuracy corresponding to small values of er-

ror tolerance should be more favorable, because the large

values of error tolerance indicate that imprecise estimations

will be considered as good test samples. Thus, the fine fu-

sion method is overall better than the coarse fusion method

and we apply this fusion method in the following experi-

ments.

Fig. 6 shows an example of the ambiguous situation

where the index fingertip is very likely to be confused with

the little fingertip. As can be seen, the single view regres-

sion method only utilizes the x-y view’s heat-map which

contains two hotspots and gives an estimation with large er-

ror distance to the ground truth. However, the multi-view

fine fusion method fuses the heat-maps of three views and

estimates the 3D location with high accuracy. The multi-
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Figure 7: Comparison with the approach proposed in [29].

In this method, 14 hand joints are estimated. For fair com-

parison, in our method, 14 corresponding joints of 21 esti-

mated joints are used to calculate the worst case accuracy.

view coarse fusion method gives an estimation in between

the results of the above two methods due to its underuti-

lization of heat-maps’ information. Fig. 9 shows qualitative

results of these three methods on several challenging ex-

amples to further illustrate the superiority of the multi-view

fine fusion method over the other two methods.

In addition, we study the impact of different number of

principal components used in joint constraints on the worst

case accuracy under different error tolerances, as shown in

Fig. 5 (right). It is reasonable to use 35 principal compo-

nents in joint constraints considering the worst case accura-

cy. We use this setting in all the other experiments.

4.4. Comparison with State­of­the­art

We compare our multi-view fine fusion method with two

state-of-the-art methods on the dataset in [21]. The first

method is the CNNs based hand pose estimation proposed

in [29]. The second method is the random forest based hi-

erarchical hand pose regression proposed in [21].

The method in [29] requires a model fitting process to

correct large estimation errors. Since the dataset in [21]

does not release the hand parameters for each subject, we

conduct model fitting with an uncalibrated hand model and

set the hand size and finger lengths as the variables in opti-

mization. In our implementation, this method estimates 14

hand joint locations which are a subset of the 21 hand joints

used in our method. For fair comparison, we calculate the

worst case accuracy of the 14 corresponding joints from the

21 joints estimated by our method. As shown in Fig. 7, our

multi-view regression with fine fusion method significantly

outperforms the method in [29] for the worst case accuracy.

Essentially, the method in [29] is a single view regression

method which only uses the depth image as the input of the

networks. This result further indicates the benefit of using

multi-view’s information for CNN-based 3D hand pose es-

timation. Even though an accurately calibrated hand model
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Figure 5: Self-comparison of different methods on the dataset in [21]. Left: the mean error distance for each joint across

all the test samples (R:root, T:tip). Middle: the proportion of good test samples in the entire test samples over different

error tolerances. Right: The impact of different number of principal components used in joint constraints on accuracy

performance.
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Figure 8: Comparison with the approach proposed in [21]. Left: the proportion of good test samples in the entire test samples

over different error tolerances. Middle & right: the mean error distance over different yaw and pitch angles of the viewpoint.

Our method holds smaller average errors in all of the yaw and pitch angles. The curves of the hierarchical regression method

are cropped from the results reported in [21].

may improve the accuracy of the method in [29] in a limit-

ed degree, it is cumbersome to calibrate the hand model for

every subject and the model fitting process will increase the

computational complexity.

We compare with the hierarchical regression method

proposed in [21]. Note that this method has been presented

superior than the methods in [20, 24, 32]. Thus, we indirect-

ly compare our method with the methods in [20, 24, 32].

As can be seen in Fig. 8, our method is superior than the

method in [21]. The worst case accuracy of our method is

better than the method in [21] over most error tolerances,

as shown in Fig. 8 (left). Especially, when the error toler-

ances are 20mm and 30 mm, the good sample proportions

of our method are about 10% and 15% higher than those of

the method in [21]. When the error tolerance is smaller than

15mm, the good sample proportion of our method is slightly

lower than that of the method in [21]. This may be caused

by the relatively low resolution of the heat-maps used in

our method. We also compare the average estimation errors

over different viewpoint angles of these two methods. As

shown in Fig. 8 (middle and right), the average errors of our

method are smaller than those of the method in [21] over all

yaw and pitch viewpoint angles. In addition, our method is

more robust to the pitch angle variation with a smaller stan-

dard deviation (0.64mm) than the method in [21] (0.79mm).

The runtime of the entire pipeline is 14.1ms, includ-

ing 2.6ms for multi-view projection, 6.8ms for CNNs for-

ward propagation and 4.7ms for multi-view fusion. Thus,

our method runs in real-time at over 70fps. Note that the

process of multi-view projection and multi-view fusion is

performed on CPU without parallelism, and the process of

CNNs forward propagation is performed on GPU with par-

allelism for three views.
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Figure 9: Qualitative results for dataset in [21] of three approaches: single view regression (in the first line), our multi-view

regression with coarse fusion (in the second line) and our multi-view regression with fine fusion (in the third line). We show

the estimated hand joint locations on the depth image. Different hand joints and bones are visualized using different colors.

This image is best viewed in color.

Subject 1 2 3 4 5 6 Avg

FORTH 35.4 19.8 27.3 26.3 16.6 46.2 28.6

PSO 29.3 14.8 40.2 17.3 16.2 24.3 23.6

ICP 29.9 20.7 30.8 23.9 18.5 32.8 26.1

ICP-PSO 10.1 24.1 13.0 12.8 11.9 20.0 15.3

ICP-PSO∗ 8.6 7.4 9.8 10.4 7.8 11.7 9.2

Ours 30.1 19.7 24.3 19.9 21.8 20.7 22.8

Table 1: Average estimation errors (in mm) of 6 subjects for

6 methods tested on the dataset in [17].

4.5. Cross­dataset Experiment

In order to verify the generalization ability of our CNN

based multi-view regression method, we perform a cross-

dataset experiment. We attempt to adapt the existing CNN

based regressors learned from the source dataset in [21] to

a new target dataset in [17].

In this experiment, we train the CNNs on all the 9 sub-

jects of the dataset in [21]. The CNNs are directly used

for hand pose estimation on all the 6 subjects of the dataset

in [17] by using our proposed method. According to the

evaluation metric in [17], we calculate the average errors

for the wrist and the five fingertips. We compare our method

with model based tracking methods reported in [17], which

are FORTH [15], PSO [17], ICP [16], ICP-PSO [17] and

ICP-PSO∗ (ICP-PSO with finger based initialization) [17].

According to [17], these model-based tracking methods

need an accurate hand model that is calibrated to the size of

each subject, and they rely on temporal information. Partic-

ularly, to start tracking, these methods use ground truth in-

formation to initialize the first frame. However, our method

does not use such information and thus is more flexible in

real scenarios and robust to tracking failure. Under such

situation, our method still outperforms FORTH, PSO and

ICP methods, as shown in Table 1, which indicates that our

method has good ability of generalization. It is not surpris-

ing that our method is worse than ICP-PSO and ICP-PSO∗,

because we do not use calibrated hand model or any ground

truth information or temporal information and we perform

this experiment on cross-dataset which is more challenging.

5. Conclusion

In this paper, we presented a novel 3D hand pose re-

gression method using multi-view CNNs. We generated

a set of heat-maps of multiple views from the multi-view

CNNs and fused them together to estimate 3D hand joint

locations. Our multi-view approach can better leverage the

3D information in one depth image to generate accurate

estimations of 3D locations. Experimental results showed

that our method achieved superior performance for 3D hand

pose estimation in real-time.
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