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Abstract

Attributes possess appealing properties and benefit

many computer vision problems, such as object recog-

nition, learning with humans in the loop, and image re-

trieval. Whereas the existing work mainly pursues utiliz-

ing attributes for various computer vision problems, we

contend that the most basic problem—how to accurately

and robustly detect attributes from images—has been left

under explored. Especially, the existing work rarely ex-

plicitly tackles the need that attribute detectors should

generalize well across different categories, including

those previously unseen. Noting that this is analogous

to the objective of multi-source domain generalization, if

we treat each category as a domain, we provide a novel

perspective to attribute detection and propose to gear

the techniques in multi-source domain generalization for

the purpose of learning cross-category generalizable at-

tribute detectors. We validate our understanding and

approach with extensive experiments on four challeng-

ing datasets and three different problems.

1. Introduction

Visual attributes are middle-level concepts which hu-

mans use to describe objects, human faces, scenes, activ-

ities, and so on (e.g., four-legged, smiley, outdoor, and

crowded). A major appeal of attributes is that they are

not only human-nameable but also machine-detectable,

making it possible to serve as the building blocks to

describe instances [18, 42, 57, 55], teach machines to

recognize previously unseen classes by zero-shot learn-

ing [44, 52], or offer a natural human-computer interac-

tions channel for image/video search [64, 81, 40, 70].

However, we contend that the long-standing pur-

suit after utilizing attributes for various computer vision

problems has left the most basic problem—how to ac-

curately and robustly detect attributes from images

Zebra

Elephant

Seal

Whale

Sheep

A
g
il
it
y

Dolphin

Monkey

Giraffe

Figure 1. The boundaries between middle-level attributes and

high-level object classes cross each other. We thus do not

expect that the features originally learned for separating ele-

phant, sheep, and giraffe could also be optimal for detecting

the attribute “bush”, which is shared by them. We propose to

understand attribute detection as multi-source domain general-

ization and to explicitly break the class boundaries in order to

learn high-quality attribute detectors.

or videos—far from being solved. Especially, the ex-

isting work rarely explicitly tackles the need that at-

tribute detectors should generalize well across dif-

ferent categories, including those previously unseen

ones. For instance, the attribute detector “four-legged”

is expected to correctly tell a giant panda is four-legged

even if it is trained from the images of horses, cows, ze-

bras, and pigs (i.e., no pandas).

Indeed, most of the existing attribute detectors [44,

18, 42, 9, 32, 35, 8, 10, 12, 75, 31] are built using

features engineered or learned for object recognition

together with off-shelf machine learning classifiers—

without tailoring them to reflect the idiosyncrasies of at-

tributes. This is suboptimal; the successful techniques
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on object recognition do not necessarily apply to at-

tributes learning mainly for two reasons. First, attributes

are in a different semantic space as opposed to ob-

jects; they are in the middle of low-level visual cues and

the high-level object labels. Second, attribute detection

can even be considered as an orthogonal task to object

recognition, in that attributes are shared by different ob-

jects (e.g., zebras, lions, and mice are all “furry”) and

distinctive attributes are present in the same object (e.g.,

a car is boxy and has wheels). As shown in Figure 1, the

boundaries between attributes and between object cate-

gories cross each other. Therefore, we do not expect that

the features originally learned for separating elephant,

sheep, and giraffe could also be optimal for detecting

the attribute “bush”, which is shared by them.

In this paper, we propose to re-examine the funda-

mental attribute detection problem and aim to develop

an attribute-oriented feature representation, such that

one can conveniently apply off-shelf classifiers to obtain

high-quality attribute detectors. We expect that the de-

tectors learned from our new representation are capable

of breaking the boundaries of object categories and gen-

eralizing well across both seen and unseen classes. To

this end, we cast attribute detection as a multi-source

domain generalization problem [50, 80, 51] by noting

that the desired properties from attributes are analogous

to the objective of the latter.

Particularly, a domain refers to an underlying data

distribution. Multi-source domain generalization aims

to extract knowledge from several related source do-

mains such that it is applicable to different domains,

especially to those unseen at the training stage. This

is in accordance with our objective for learning cross-

category generalizable attributes detectors, if we con-

sider each category as a distinctive domain.

Motivated by this observation, we employ the

Unsupervised Domain-Invariant Component Analysis

(UDICA) [50] as the basic building block for our ap-

proach. The key principle of UDICA is that minimiz-

ing the distributional variance of different domains—

categories in our context, can improve the cross-domain

(cross-category) generalization capabilities of the classi-

fiers. A supervised extension to UDICA was introduced

in [50] depending on the inverse of a covariance oper-

ator as well as some mild assumptions. However, the

inverse operation is both computationally expensive and

unstable in practice. We instead propose to use the alter-

native of centered kernel alignment [13] to account for

the attribute labeling information. We show that the cen-

tered kernel alignment can be seamlessly integrated with

UDICA, enabling us to learn both category-invariant and

attribute-discriminative feature representations.

Our approach takes as input the features of the train-

ing images, their class (domain) labels, as well as their

attribute labels. It operates upon kernels derived from

the input data and learns a kernel projection to “dis-

till” category-invariant and attribute-discriminative sig-

nals embedded in the original features. The overall out-

put is a new feature vector for each image, which can

be readily used in traditional machine learning models

like SVMs for training the cross-category generalizable

attribute detectors.

The contributions of the paper are summarized below.

• To the best of our knowledge, this work is the first

attempt to tackle attribute detection from the multi-

source domain generalization point of view. This

enables us to explicitly model the need that the

attribute detectors should transcend different cate-

gories and generalize to previously unseen ones.

• We introduce the centered kernel alignment to

UDICA and arrive at an integrated method to

strengthen the discriminative power of the learned

attributes on one hand, and eliminate the domain

differences between categories on the other hand.

• We test our approach to four datasets: Animal With

Attributes [44], Caltech-UCSD Birds [76], aPascal-

aYahoo [18], and UCF101 [67], and test the learned

representations on three tasks: attribute detection

itself, zero-shot learning, and image retrieval. Our

results are significantly better than those of com-

petitive baselines, verifying the effectiveness of the

new perspective for solving attribute detection as

domain generalization.

The rest of this paper is organized as follows. In Sec-

tion 2, we review related work in attribute detection, do-

main generalization, and domain adaptation. Section 3

and section 4 present the attribute learning framework.

The experimental settings and evaluation results are pre-

sented in Section 5. Section 6 concludes the paper.

2. Related work and background

Our approach is related to two separate re-

search areas, attribute detection and domain adapta-

tion/generalization. We unify them in this work.

Attributes learning. Earlier work on attribute detec-

tion mainly focused on modeling the correlations among

attributes [9, 32, 35, 8, 10, 12, 75, 31], localizing

some special part-related attributes (e.g., tails of mam-

mals) [4, 6, 37, 3, 83, 59, 14], and the relationship be-

tween attributes and categories [79, 48, 32, 54]. Some
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recent work has applied deep models to attribute detec-

tion [11, 83, 47, 16]. None of these methods explic-

itly model the cross-category generalization of the at-

tributes, except the one by Farhadi et al. [18] where the

authors select features within each category to down-

weight category-specific cues. Likely due to the fact

that the attribute and category cues are interplayed, their

feature selection procedure only gives limited gain. We

propose to overcome this challenge by investigating all

categories together and employing nonlinear mapping

functions.

Attributes possess versatile properties and benefit a

wide range of challenging computer vision tasks. They

serve as the basic building blocks for one to compose

categories (e.g., different objects) [44, 52, 82, 17, 38,

78, 1, 34] and describe instances [18, 42, 57, 55, 77],

enabling knowledge transfer between them. Attributes

also reveal the rich structures underlying categories and

are thus often employed to regulate machine learning

models for visual recognition [69, 73, 45, 63, 33, 22,

21, 62]. Moreover, attributes offer a natural human-

computer interaction channel for visual recognition with

humans in the loop [7], relevance feedback in image re-

trieval [42, 64, 55, 60, 81, 40, 58, 25, 72], and active

learning [41, 56, 5, 46, 43]. In this paper, we test the

proposed approach on both attribute detection and its ap-

plications to zero-shot learning and image retrieval.

Domain generalization and adaptation. Domain

generalization is still at its early developing stage. A

feature projection-based algorithm, Domain-Invariant

Component Analysis (DICA), was introduced in [50]

to learn by minimizing the variance of the source do-

mains. Recently, domain generation has been intro-

duce into computer vision community for object recog-

nition [80, 23] and video recognition [51]. We pro-

pose to gear multi-source domain generalization tech-

niques for the purpose of learning cross-category gener-

alizable attribute detectors. Multi-source domain adap-

tation [49, 29, 24, 71, 15] is related to our approach if

we consider a transductive setting (i.e., the learner has

access to the test data). While it assumes a single tar-

get domain, in attribute detection the test data are often

sampled from more than one unseen domain.

2.1. Background on distributional variance

Denote by H and k(·, ·) respectively a Reproducing

Kernel Hilbert Space and its associated kernel function.

For an arbitrary distribution Py(x) indexed by y ∈ Y ,

the following mapping,

µ[Py(x)] =

∫
k(x, ·)dPy(x) , µy (1)

is injective if k is a characteristic kernel [66, 27, 68]. In

other words, the kernel mean map µy in the RKHS H
preserves all the statistical information of Py(x).

The distributional variance follows naturally,

V(Y) =
1

|Y|

∑

y∈Y

‖µy − µ0‖
2

H, V̂(Y) = tr(KQ), (2)

where µ0 is the map of the mean of all the distributions

in Y . In practice, we do not have access to the distri-

butions. Instead, we observe the samples Sy, y ∈ Y
each drawn from a distribution Py(x) and can thus em-

pirically estimate the distributional variance by V̂(Y) =
tr(KQ). Here K is the (centered)1 kernel matrix over

all the samples, and Q collects the coefficients which

depend on only the numbers of samples. We refer the

readers to [50] for more details including the consistency

between the distributional variance V and its estimate V̂.

3. Attribute detection

This section formalizes attribute detection and shows

its in-depth connection to domain generalization.

Problem statement. Suppose that we have access to

an annotated dataset of M images. They are in the form

of (xm,am, ym) where xm ∈ R
D is the feature vec-

tor extracted from the m-th image Im, m ∈ [M] ,

{1, 2, · · · ,M}. Two types of annotations are provided

for each image, the category label ym ∈ [C] and the

attribute annotations am ∈ {0, 1}
A. Though we use bi-

nary attributes (e.g., the presence or absence of stripes)

to in this paper for clarity, it is straightforward to ex-

tend our approach to multi-way and continuous-valued

attributes. Note that a particular attribute a
i
m could ap-

pear in many categories (e.g., zebras, cows, giant pan-

das, lions, and mice are all furry). Moreover, there

may be test images from previously unseen categories

{C + 1,C + 2, · · · } for example in zero-shot learning.

Our objective is to learn accurate and robust attribute de-

tectors C(xm) ∈ {0, 1}A to well generalize across dif-

ferent categories, especially to be able to perform well

on the unseen classes.

Attribute detection as domain generalization

—A new perspective. In this paper, we understand at-

tribute detection as a domain generalization problem. A

1All kernels discussed in this paper have been centered [13].
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Figure 2. Attribute detection as multi-source domain gen-

eralization. Given labeled data sampled from several cate-

gories/domains, i.e., distributions Py(x,a), y ∈ [C] over im-

age representations x and attribute labels a, we extract knowl-

edge useful for attribute detection and applicable to differ-

ent domains/categories, especially to previously unseen ones

PC+1, PC+2, · · · . The domains are assumed related and sam-

pled from a common distribution P .

domain refers to an underlying data distribution. In our

context, it refers to the distribution Py(x,a) of a cate-

gory y ∈ [C] over the input x and attribute labels a. As

shown in Figure 2, the domains/categories are assumed

to be related and are sampled from a common distribu-

tion P . This is reasonable considering that images and

categories can often be organized in a hierarchy. Thanks

to the relationships between different categories, we ex-

pect to learn new image representations for attribute de-

tection, such that the corresponding detectors will per-

form well on both seen and unseen classes.

4. Approach

Our key idea is to find a feature transformation of

the input x to eliminate the mismatches between differ-

ent domains/categories in terms of their marginal distri-

butions over the input, whereas ideally we should con-

sider the joint distributions Py(x,a), y ∈ [C]. In par-

ticular, we use Unsupervised Domain Invariant Compo-

nent Analysis (UDICA) [50] and centered kernel align-

ment [13] for this purpose. Note that modeling the

marginal distributions Py(x) is a common practice in

domain generalization [50, 80, 23] and domain adapta-

tion [30, 53, 26] and performs well in many applications.

We leave investigating the joint distributions Py(x,a)
for future work.

Next, we present how to integrate UDICA and cen-

tered kernel alignment. Jointly they give rise to new

feature representations which account for both attribute

discriminativeness and cross-category generalizability.

4.1. UDICA

The projection from one RKHS to another results

in the following transformation of the kernel matrices,

R
M×M ∋ K 7→ K̃ = KBBTK ∈ R

M×M [61]. As a

result, one can take (KB) as the empirical kernel map,

i.e., consider the m-th row of (KB) as the new feature

representations of image Im and plug them into any lin-

ear classifiers. UDICA learns the transformation B by

imposing the following properties.

Minimizing distributional variance. The empirical

distributional variance (cf. Section 2.1) between differ-

ent domains/categories becomes the following in our

context,

VB([C]) = tr(K̃Q) = tr(BTKQKB). (3)

Intuitively, the domains would be perfectly matched

when the variance is 0. Since there are many seen cat-

egories, each as a domain, we expect the learned pro-

jection to be generalizable and work well for the unseen

classes as well.

Maximizing data variance. Starting from the empir-

ical kernel map (KB), it is not difficult to see that the

data covariance is (KB)T (KB)/M and the variance is

VB([M]) = tr(BTK2B)/M. (4)

Regularizing the transformation. UDICA regular-

izes the transformation by minimizing

R(B) = tr(BTKB). (5)

Alternatively, one can use the Frobenius norm ‖B‖F , as

did in [53], to constrain the complexity of B.

Combining the above criteria, we arrive at the follow-

ing problem,

max
B

tr(BTK2B)/M

tr(BTKQKB +BTKB)
, (6)

where the nominator corresponds to the data variance

and the denominator sums up the distributional variance

and the regularization over B.

By solving the above problem, we are essentially

blurring the boundaries between different categories and

match the classes with each other, due to the distribu-

tional variance term in the denominator. This thus elim-

inates the barrier for attribute detectors to generalize in

various classes. Our experiments verify the effective-

ness the learned new representations (KB). Nonethe-

less, we can further improve the performance by model-

ing the attribute labels using centered kernel alignment.
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4.2. Centered kernel alignment

Note that our training data are in the form of

(xm,am, ym),m ∈ [M]. For each image there are mul-

tiple attribute labels which may be highly correlated.

Besides, we would like to stick to kernel methods to be

consistent with our choice of UDICA—indeed, the dis-

tributional variance is best implemented by kernel meth-

ods (cf. Section 2.1). These considerations lead to our

decision on using kernel alignment [13] to model the

multi-attribute supervised information.

Let Lm,m′ = 〈am,am′〉 be the kernel matrix over

the attributes. Since L is computed directly from the at-

tribute labels, it preserves the correlations among them

and serves as the “perfect” target kernel for the trans-

formed kernel K̃ = KBBTK to align to. The centered

kernel alignment is then computed by,

ρ(K̃, L) =
tr(K̃L)√

tr(K̃K̃)
√

tr(LL)
(7)

where we abuse the notation L slightly to denote that it

is centered [13].

We would like to integrate the kernel alignment with

UDICA in a unified optimization problem. To this end,

firstly it is safe to drop tr(LL) in eq. (7) since it has noth-

ing to do with the projection B we are learning. More-

over, note that the role of tr(K̃K̃) duplicates with the

regularization in eq. (6) to some extent, as it is mainly to

avoid trivial solutions for the kernel alignment. We thus

only add tr(K̃L) to the nominator of UDICA,

max
B

tr(γBTK2B/M+ (1− γ)BTKLKB)

tr(BTKQKB +BTKB)
, (8)

where γ ∈ [0, 1] balances the data variance and the ker-

nel alignment with the supervised attribute labeling in-

formation. We cross-validate γ in our experiments. We

name this formulation KDICA, which couples the cen-

tered kernel alignment and UDICA. The former closely

tracks the attribute discriminative information and the

latter facilitates the cross-category generalization of the

attribute detectors to be trained upon KDICA.

Optimization. By writing out the Lagrangian of the

formalized problem (eq. (8)) and then setting the deriva-

tive with respect to B to 0, we arrive at a generalized

eigen-decomposition problem,

(
γK2/M+ (1− γ)KLK

)
B

= (KQK +K)BΓ, (9)

Algorithm 1 Kernel-alignment Domain-Invariant Com-

ponent Analysis (KDICA).

Input: Parameters γ and b ≪ M. Training data S =
{(xm, ym,am)}Mm=1

Output: Projection BM×b

1: Calculate gram matrix [Kij ] = k(xi,xj) and

[Lij ] = l(ai,aj)
2: Solve:

(γK2/M+ (1− γ)KLK)B = (KQK +K)BΓ.

3: Output B and K̃ ← KBBTK
4: Use (KB) as if they are the features to learn linear

classifiers and K̃ for kernelized classifiers

where Γ is a diagonal matrix containing all the eigenval-

ues (Lagrangian multipliers). We find the solution B as

the Leading eigen-vectors. The number of eigen-vectors

is cross-validated in our experiments. Again, we remind

that (KB) serves as the new feature representations of

the images for training attribute detectors. The details of

our proposed framework has been shown in algorithm 1.

5. Experiment

This section presents our experimental results on four

benchmark datasets. We test our approach for both

the immediate task of attribute detection and two other

problems, zero-shot learning and image retrieval, which

could benefit from high-quality attribute detectors.

5.1. Experiment setup

Dataset. We use four datasets to validate the pro-

posed approach; three of them contain images for object

and scene recognition and the last one contains videos

for action recognition. (a) The Animal with attribute

(AWA) [44] dataset comprises of 30,475 images belong-

ing to 50 animal classes. Each class is annotated with 85

attributes. Following the standard split by the dataset,

we divide the dataset into 40 classes (24,295 images) to

be used for training and 10 classes (6,180 images) for

testing. (b) Caltech-UCSD Birds 2011 (CUB) [76] is a

dataset with fine-grained objects. There are 11,788 im-

ages of 200 different bird classes in CUB. Each class

is annotated with 312 binary attributes. We split the

dataset as suggested in [1] to facilitate direct compar-

ison (150 classes for training and 50 classes for test-

ing). (c) aPascal-aYahoo [18] consists of two attribute

datases: the a-PASCAL dataset, which contains 12,695

images (6,340 for training and 6,355 for testing) col-

lected for the Pascal VOC 2008 challenge, and a-Yahoo

including 2,644 test images. Each images is annotated

with 64 attributes. There are 20 object classes in a-
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Approcahes AWA CUB a-Yahoo UCF101

IAP [44] 74.0/79.2∗ 74.9∗ – –

ALE [1] 65.7 60.3 – –

HAP [12] 74.0/79.1∗ 68.5/74.1∗ 58.2∗ 72.1 ± 1.1

CSHAPG [12] 74.3/79.4∗ 62.7/74.6∗ 58.2∗ 72.3 ± 1.0

CSHAPH [12] 74.0/79.0∗ 68.5/73.4∗ 65.2∗ 72.4 ± 1.1

DAP [44] 72.8/78.9∗ 61.8/72.1∗ 77.4∗ 71.8 ± 1.2

UDICA (Ours) 83.9 76.0 82.3 74.3 ± 1.3

KDICA (Ours) 84.4 76.4 84.7 75.5 ± 1.1

Table 1. Average Attribute Prediction Accuracy (%, in AUC.)

Pascal and 12 in a-Yahoo and they are disjoint. Fol-

lowing the settings of [64, 81], we use the pre-defined

training images in a-Pascal as the training set and test

on a-Yahoo. (d) UCF101 dataset [67] is a large dateset

for video action recognition. It contains 13,320 videos

of 101 action classes. Each action class comes with

115 attributes. The videos are collected from YouTube

with large variations in camera motion, object appear-

ance, viewpoint, cluttered background, and illumination

conditions. We run 10 rounds of experiments each with

a random split of 81/20 classes for the training/testing

sets, and then report the averaged results.

Features. For the first three image datasets, we use the

Convolutional Neural Network (CNN) implementation

provided by Caffe [36], particularly with the 19-layer

network architecture and parameters from Oxford [65],

to extract 4,096-dimensional CNN feature representa-

tions from images (i.e., the activations of the first fully-

connected layer fc6). For the UCF101 dataset, we use

the 3D CNN (C3D) [74] pre-trained on the Sport 1M

dataset [39] to construct video-clip features from both

spatial and temporal dimensions. We then use average

pooling to obtain the video-level representations. We

ℓ2 normalize the feature representations in the following

experiments.

Implementation details. We choose the Gaussian RBF

kernel and fix the bandwidth parameter as 1 for our

approach to learning new image representations. Af-

ter that, to train the attribute detectors, we input the

learned representations into standard linear Support Vec-

tor Machines (see the empirical kernel map in Set-

cion 4.1). There are two free hyper-parameters when

we train the detectors using the representations learned

through UDICA, the hyper-parameter C in SVM and

the number b of leading eigen-vectors in UDICA. We

use five-fold cross-validation to choose the best values

for C and b respectively from {0.01, 0.1, 1, 10, 100} and

{30, 50, 70, 90, 110, 130, 150}. We use the same C and

b for KDICA and only cross-validate γ in equation (9)

from {0.2, 0.5, 0.8} to learn the SVM based attribute de-

tectors with KDICA.

Evaluation. We first test our approach to attribute de-

tection on all the four datasets (AWA, CUB, aPascal-

aYahoo, and UCF101). To see how much the other tasks,

which involve attributes, can gain from higher-quality

attribute detectors, we further conduct zero-shot learn-

ing [52, 44] experiments on AWA, CUB, and UCF101,

and multi-attribute based image retrieval on AWA. We

evaluate the results of attribute detection and image re-

trieval by the averaged Area Under ROC Curve (AUC),

the higher the better, and the results of zero-shot learning

by classification accuracy.

5.2. Attribute prediction

Table 1 presents the attribute prediction performance

of our approaches and several competitive baselines.

In particular, we compare with four state-of-the-art at-

tribute detection methods: Directly Attribute Prediction

(DAP) [44], Indirectly Attribute Prediction (IAP) [44],

Attribute Label Embedding (ALE) [1], and Hypergraph-

regularized Attribute Predictors (HAP) [12]. Note that

we can directly contrast our methods with DAP to see

the effectiveness of the learned new representations, be-

cause they share the same input and classifiers and only

differ in that we learn the new attribute-discriminative

and category-invariant feature representations. The IAP

model first maps any input to the seen classes and then

predicts the attributes on top of those. The ALE method

unifies attribute prediction with object class prediction

instead of directly optimizing with respect to attributes.

We thus do not expect it to perform quite well on the

attribute prediction task. HAP explores the correlations

among attributes explicitly by hyper-graphs, while we

achieve this implicitly in the kernel alignment. Ad-

ditionally, we also show the results of CSHAPG and

CSHAPH , two variations of HAP to model class labels.

We include in Table 1 both the results of these meth-

ods reported in the original papers, when they are avail-

able, and those we obtained (marked by ‘*’) by run-

ning the source code provided by the authors. We use
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Figure 3. Some attributes on which the proposed KDICA significantly improves the performance of DAP.

Approcahes AWA CUB UCF101

ALE [1] 37.4 18.0 –

HLE [1] 39.0 12.1 –

AHLE [1] 43.5 17.0 –

DA [35] 30.6 – –

MLA [19] 41.3 – –

ZSRF [34] 48.7 – –

SM [20] 66.0 – –

Embedding [2] 60.1 29.9 -

IAP [44] 42.2/49.4∗ 4.6/34.9∗ –

HAP [12] 45.0/55.6∗ 17.5/40.7∗ –

CSHAPG [12] 45.0/54.5∗ 17.5/38.7∗ –

CSHAPH [12] 45.6/53.3∗ 17.5/36.9∗ –

DAP [44] 41.2/58.9∗ 10.5/39.8∗ 26.8 ± 1.1

UDCIA (Ours) 63.6 42.4 29.6 ± 1.2

KDCIA (Ours) 73.8 43.7 31.1 ± 0.8

Table 2. Zero-shot recognition performances. (%, in accuracy)

the same CNN features (for AWA, CUB, and aPascal-

aYahoo) and C3D features (for UCF101) we extracted

for the baselines and our approach.

Overall results. From Table 1, we can find that UDCIA

and KDICA outperform all the baselines on all the four

datasets. More specifically, the relative accuracy gains

of UDCIA over DAP are 6.3% on the AWA dataset and

5.4% on the CUB dateset, respectively, under the same

feature and experimental settings. These clearly validate

our assumption that blurring the category boundaries

improves the generalizabilities of attribute detectors to

previously unseen categories. The KDICA with cen-

tered kernel alignment is slightly better than the UDICA

approach by incorporating attribute discriminative sig-

nals into the new feature representations. Delving into

the per-unseen-class attribute detection result, we find

that our KDICA-based approach improves the results of

DAP for 71 out of 85 attributes on AWA and 272 out of

312 on CUB.

When domain generalization helps. We give some

qualitative analyses using Figure 3 and 4 here. For
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Figure 4. Example attributes that KDICA could not improve

the detection accuracy over the traditional DAP approach.

the attributes in Figure 3, the proposed KDICA signif-

icantly improves the performance of the DAP approach.

Those attributes (“muscle”, “domestic”, etc.) appear in

visually quite different object categories. It seems like

breaking the category boundaries is necessary in this

case in order to make the attribute detectors generalize

to the unseen classes. On the other hand, Figure 4 shows

the attributes for which our approach can hardly improve

DAP’s performance. The attribute “yellow” is too triv-

ial to detect with nearly 100% accuracy already by DAP.

The attribute “swim” is actually shared by visually sim-

ilar categories, leaving not much room for KDICA to

play any role.

5.3. Zero­shot learning

As the intermediate representations of images and

videos, attributes are often used in high-level computer

vision applications. In this section, we conduct experi-

ments on zero-shot learning to examine whether the im-

proved attribute detectors could also benefit this task.

Given our UDICA and KDICA based attribute detec-

tion results, we simply input them to the second layer of

the DAP model [44] to solve the zero-shot learning prob-

lem. We then compare with several well-known zero-

shot recognition systems as shown in Table 2. We run

our own experiments for some of them whose source

code are provided by the authors. The corresponding

results are again marked by ‘*’.
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query VGG UDICA KDICA

single 78.9 83.9 84.4

double 77.2 79.5 81.0

triple 76.1 78.6 79.4

Table 3. Multi-attribute based image retrieval results on AWA

by the late fusion of individual attribute detection scores. (%,

in AUC)

We see that in Table 2 the proposed simple solution to

zero-shot learning outperforms the other state-of-the-art

methods on the AWA, CUB, and UCF101 datasets, es-

pecially its immediate rival DAP. In addition, we notice

that our kernel alignment technique (KDICA) improves

the zero-shot recognition results over UDICA signifi-

cantly on AWA. The improvements over UDICA on the

other two datasets are also more significant than the im-

provements for the attribute prediction task (see Sec-

tion 5.2 and Table 1). This observation is interesting; it

seems like implying that increasing the quality of the at-

tribute detectors is rewarding, because the increase will

be magnified to even larger improvement for the zero-

shot learning. Similar observation applies if we com-

pare the differences between DAP and UDICA/KDICA

respectively in Table 2 and Table 1. Finally, we note

that our main purpose is indeed to investigate how better

attribute detectors can benefit zero-shot learning. We do

not expect to have a thorough comparison of the existing

zero-shot learning methods.

5.4. Multi­attribute based image retrieval

In this section, we do some experiments on the AWA

dataset for the multi-attribute based image retrieval,

whose performance depends on the reliabilities of the

attribute predictions. We input our learned feature repre-

sentations to two popular frameworks for multi-attribute

based image retrieval: TagProp [28] and the fusion of

individual prediction scores [42]. In TagProp, we use its

σML variant to compute the ranking scores of the multi-

attributes queries. For the fusion of individual classi-

fiers, we directly sum up the confidence scores corre-

sponding to the multiple attributes in a query. The re-

sults of the fusion and TagProp are respectively shown

in Table 3 and Table 4. We can observe that our attribute-

oriented representations improve the fusion technique

for image retrieval on a variety of queries (single at-

tribute, attribute pairs, and triplets). Under the TagProp

framework, the improvement is marginal on querying

by attribute pairs and triples and significant for single-

attribute queries.

query VGG UDICA KDICA

single 76.3 78.5 79.2

double 75.9 76.1 76.1

triple 75.5 75.6 75.8

Table 4. Multi-attribute based image retrieval results on AWA

by TagProp. (%, in AUC)

6. Conclusion

In this paper, we propose to re-examine the funda-

mental attribute detection problem and develop a novel

attribute-oriented feature representation by casting the

problem as multi-source domain generalization, such

that one can conveniently apply off-shelf classifiers to

obtain high-quality attribute detectors. The attribute de-

tectors learned from our new representation are capa-

ble of breaking the boundaries of object categories and

generalizing well to unseen classes. Extensive experi-

ment on four datasets, and three tasks, validate that our

attribute representation not only improves the quality

of attributes, but also benefits succeeding applications,

such as zero-shot recognition and image retrieval.
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