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Abstract

We present a multi-view reconstruction method that

combines conventional multi-view stereo (MVS) with

appearance-based normal prediction, to obtain dense and

accurate 3D surface models. Reliable surface normals

reconstructed from multi-view correspondence serve as

training data for a convolutional neural network (CNN),

which predicts continuous normal vectors from raw image

patches. By training from known points in the same im-

age, the prediction is specifically tailored to the materials

and lighting conditions of the particular scene, as well as

to the precise camera viewpoint. It is therefore a lot easier

to learn than generic single-view normal estimation. The

estimated normal maps, together with the known depth val-

ues from MVS, are integrated to dense depth maps, which

in turn are fused into a 3D model. Experiments on the

DTU dataset show that our method delivers 3D reconstruc-

tions with the same accuracy as MVS, but with significantly

higher completeness.

1. Introduction

The reconstruction of 3D surfaces from images is a cen-

tral problem of computer vision. The dominant approach

is multi-view stereo (MVS): densely match image points

in multiple views with known camera poses, then triangu-

late the corresponding rays to 3D points. MVS algorithms

have greatly improved over the past decades and nowadays

deliver high-quality point clouds, respectively surfaces de-

rived from those point clouds [23, 34]. Yet MVS, being

based on point correspondences between different images,

only works in areas with sufficient texture. If no correspon-

dence can be established, the methods fails. Most com-

monly this happens in surface regions with uniform albedo

and on specular highlights, where matching is ambiguous

due to a lack of high-frequency brightness/color variations.

A further recurrent problem are occlusions, where many

Figure 1. Illustration of our reconstruction method. Given an input

image (top left) and an incomplete normal map from multi-view

stereo (top right), we reconstruct the missing normals by CNN re-

gression on the image (bottom left). The normal maps are then in-

tegrated to dense 3D models (not shown). Bottom right: Ground

truth.

viewing rays are blocked and do not reach the surface point.

In such regions the only options are to either not reconstruct

3D points, leaving holes in the surface; or to interpolate,

which can lead to inaccurate or even totally wrong results.

We propose to fill in the missing regions with the help

of shading information. It is well-known that, complemen-

tary to MVS, shape reconstruction from shading requires

only a single view, and works best for uniform albedo. Yet,

recovering 3D surface normals from shading has proved re-

markably difficult in practice, mainly because a number of

important influence factors are hard to model. In real data

the illumination can be quite complex and the illumination

direction(s) are not exactly known. Most importantly, the

reflectance properties (the bi-directional reflectance distri-

bution function, or BRDF) of the surfaces in the scene are
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usually unknown.

The starting point for the present paper is that if one

wants to reconstruct surface shape from shading, it might

not be necessary to model the global illumination and the

complete reflectance distribution. Rather, one only needs to

cover the specific illumination, viewpoint and surface prop-

erties that are present in a given image. We exploit this by

implicitly learning the view-specific shading patterns in a

discriminative manner. Given that in most images there are

pixels for which the surface normals are known (from 3D

points reconstructed via multi-view stereo), we propose to

learn a regression directly from raw RGB patches to sur-

face normal directions, using a convolutional neural net-

work (CNN).

In contrast to other recent work that predicts surface nor-

mals in a purely data-driven fashion [10, 27, 32] we do not

aim for generality across different lighting and viewing con-

ditions, and thus do not need a diverse training set that cov-

ers all possible conditions. Rather, we learn an individual,

view-specific shading model per image, trained on repro-

jected 3D normals that we reconstruct from high-confidence

MVS points. Such a model only needs to cover a subset of

the BRDFs of (usually few) visible materials, under con-

stant lighting, thus it can be expected to predict more ac-

curately. I.e., we argue that the image itself, together with

an incomplete range/disparity image, contains sufficient in-

formation to predict surface orientation, without a globally

valid shading model.

Our method is able to estimate surface normals with an

accuracy similar to (sometimes even slightly better than)

that of the training data. To complete the pipeline we in-

tegrate the dense normal field per image, together with the

known 3D points from MVS, into a dense and hole-free

depth map, and fuse the depthmaps from multiple views to

obtain a more complete 3D model.

2. Related works

Normals in MVS. Many multi-view stereo methods only

estimate depth, e.g. [7, 30, 36]. If normal vectors are re-

quired, they are found in post-processing by fitting local

tangent planes to the point cloud [21, 29]. There are how-

ever a number of MVS methods that explicitly reconstruct

the local tangent plane as part of their internal parametriza-

tion, and thus directly deliver surface normals on top of

depth maps (respectively, 3D points). Notable examples

include the well-known PMVS method [16], as well as

the multi-view variant [18] of the PatchMatch stereo algo-

rithm [5]. Methods that directly deliver normals at the re-

constructed surface points naturally lend themselves to our

problem. We use [18], on the one hand for its computational

efficiency, and on the other hand because it provides an ex-

plicit parameter to trade off completeness vs. accuracy and

ensure sufficiently clean training normals.

There are also methods which from the beginning con-

strain MVS reconstruction with strong a-priori assumptions

about the surface normal. E.g., Zeisl et al. [42] focus on in-

door scenarios consisting only of horizontal floor and ceil-

ing planes connected by vertical walls. Furukawa et al. [15]

go even further and assume a Manhattan world [8]. At the

extreme end of the spectrum (though somewhat outside the

scope of our work) come model-based methods, which align

the images with an existing 3D template of the object and

reconstruct by deforming the template to better fit the geo-

metric or photometric evidence, e.g. [26, 37].

Use of shading cues in MVS. The first attempts to com-

bine multi-view geometry and shading for 3D reconstruc-

tion date back at least 30 years [4]. Since then, the topic

has been somewhat overshadowed by the development of

pure stereo, respectively multi-view matching, but has re-

ceived constant attention [9, 14, 33]. The complex inter-

play between surface orientation, light sources, and surface

BRDFs proved difficult to handle outside the lab, and most

works focus on one of these components. Wu et al. [38]

assume a Lambertian surface but consider general illumina-

tion, approximating the incoming illumination with spher-

ical harmonics. Jin et al. [25] propose a joint variational

framework for the estimation of shape, normal and a single

light source, assuming a Lambertian surface with piecewise

constant albedo. Haines and Wilson [19] integrate infor-

mation from shading and stereo via belief propagation to

estimate fine surface details. Beeler et al. [3] detect and

eliminate ambient occlusion to improve surface estimation.

Surface normal estimation. A number of recent works

have posed surface normal prediction as a machine learning

problem. Fouhey et al. [11] mine for distinctive, repeatedly

occurring shape and appearance primitives in indoor RGB-

D data, and match those primitives to new images to obtain

a normal map. Later that method was augmented with shape

priors for rooms and an explicit model of crease edges [12].

Ladicky et al. [27] directly predict normals from image fea-

tures extracted in a pixel’s neighborhood. They turn normal

estimation into a classification problem, by clustering the

normals to a discrete set of directions on the unit sphere

and interpolating between neighboring directions. Instead,

Eigen and Fergus [10] learn a direct regression from image

to normal (alternatively also to depth or semantic label) with

a multi-scale convolutional architecture.

These methods are related to ours in that they pose nor-

mal estimation as a learning problem, and in some cases

also use CNNs as regression engine. Beyond this technical

similarity, there are however two fundamental differences.

On the one hand, our model is more specific w.r.t. illumina-

tion and reflectance: we do not learn a generic model that is

supposed to cover the shading behavior of “the world”, or at
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least of an entire dataset; rather we rely on MVS to generate

sparse training data tailored to the specific image, such that

for that image the prediction is more accurate, while no ex-

ternal training data is needed. On the other hand, our model

is more generic w.r.t. geometry. We rely only on the local

shading and the position in the image, but do not depend on

the presence of a small number of vanishing directions or

recurrent geometric primitives (such as for example those

present in the NYU2 Dataset [35]).

Richter and Roth [32] also relax the requirement for ex-

ternal training data and instead use synthetic training data.

They assume knowledge of the object’s silhouette in the im-

age. The distance from the silhouette is used to guess a

rough initial normal map, which in turn serves to derive a

quadratic approximation of the reflectance map and relight

the synthetic training data appropriately.

Normal extrapolation from MVS. Few authors have ex-

plored the idea to use an incomplete cloud of MVS points

as reference for normal prediction. Xu et al. [40] seemingly

also use the appearance around known points/normals, to-

gether with smoothness of the normal field, to fill holes in an

image-based surface reconstruction. Unfortunately, no de-

tails are given in their paper. Ackermann et al. [1] use MVS

to bootstrap photometric stereo. Instead of directly mod-

eling lighting and reflectance, they extract per-pixel mate-

rial coefficients at the MVS points and predict unknown

normals by minimizing the photometric differences to the

known points.

Integrating normals to surfaces. Shading-based meth-

ods in most cases estimate normal vectors, which still need

to be integrated to surfaces. Reconstructing a function from

known gradients is a classic problem in computational ge-

ometry as well as in computer vision. Perhaps the most pop-

ular method, already employed by Horn and Brooks [22],

is to solve the Poisson equation that arises as a neces-

sary condition in variational least-squares reconstruction.

Here we also follow this standard approach. It has also

been attempted to replace the least-squares error function by

more robust norms to improve the robustness to outliers [2].

Some authors prefer to use the computationally more effi-

cient eikonal equation [17, 20]. Further approaches include

integration in the frequency domain [13], which is limited

to dense vector fields; and direct line-by-line integration,

which only works for noise-free data [39].

3. Method

We start with an overview of our complete surface re-

construction pipeline. As input data, we require multiple

images of the same scene, with known camera poses. The

first step is a conventional MVS reconstruction. We use a

Figure 2. CNN architecture for regression from image patches to

surface normals.

multi-view version of PatchMatch Stereo. That method has

been shown to deliver state-of-the-art performance [18], and

it returns point-wise normals in 3D scene space as a byprod-

uct; but other algorithms could be plugged in as well. The

next step is to predict normals for pixels where multi-view

stereo failed to compute a reliable depth. This is done sep-

arately for every viewpoint. From the points reconstructed

successfully by MVS, we train a convolution neural net-

work (CNN) to perform regression from raw image patches

to surface normals. With the network, we densely predict

all missing normals (Sec. 3.2). The dense vector fields are

turned into a 3D surface model by first integrating them to

depth maps with masked Poisson reconstruction (Sec. 3.3)

and then fusing the depth and normal maps from multiple

views.1

3.1. Generation of normals for training

The first stage of our method is a standard MVS re-

construction to obtain an initial (incomplete) cloud of re-

liable 3D object points. Among the many available algo-

rithms we choose the fast multi-view PatchMatch imple-

mentation of [18]. In a nutshell, that method first generates

a depthmap in each camera, by propagating depth values

along slanted tangent planes of the surface so as to maxi-

mize photo-consistency across multiple views. In a second

step it employs a consensus mechanism to robustly fuse the

individual depth maps into a 3D point cloud. We pick this

method for two reasons. On the one hand, it computes and

outputs, by construction, not only 3D points but also explicit

surface normals at those points. Since our further process-

ing needs those normals, PatchMatch is a natural fit. On

the other hand, the depthmap fusion relies on a consensus

mechanism that checks both the consistency of the depth

values and of the normal directions across several views.

As a result, points with unreliable normals are discarded

during fusion, which is important for our purposes, since

1The integration and fusion steps could potentially be solved jointly.

We prefer to keep them separate, which is more efficient and adds a further

checkpoint to explicitly identify inconsistencies between different views.
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Figure 3. Comparison of different strategies for normal prediction.

A model trained for a specific image (top right) works better than

one trained on multiple views of the same scene (bottom left) or

a generic model trained for a whole database (bottom right).

those normals will later serve as training data. It is inter-

esting to note that the method achieves a high completeness

of the MVS reconstructions [18], in spite of the rather strict

consistency check.

3.2. Normal prediction

The philosophy of our second, shading-based stage is to

learn the relation between surface normals and the appear-

ance of the corresponding surface patches. That relation can

then be used to predict surface normals at locations where

no MVS points could be reconstructed. As explained, we

prefer to initially do this on a per-image basis and again fuse

the results afterwards. Estimating the normals individually

in each image simplifies the learning problem, because in a

single exposure the lighting conditions are constant; and it

also simplifies the implementation, because one can work

on the pixel grid rather than discretise the 3D scene sur-

faces.

We also experimented with a single model for all views,

effectively trying to learn the shading variation for a given

object, under any viewpoint. This did not work well, see

Fig. 3. We see two possible reasons. On the one hand,

the learning problem obviously gets a lot more complicated

and ambiguous if one has to cover two additional degrees

of freedom (for the viewing direction) in the BRDF. On the

other hand, it may well be that for certain materials the CNN

also learns context and texture cues that are not independent

of the viewpoint.

Training data. As part of the MVS reconstruction, we

have a surface normal map for each individual view, which

holds, at every pixel, either a normal vector in camera-

centric coordinates or a flag that no normal could be re-

constructed. In order to ensure clean training data for CNN

training, we filter those surface normal maps. Our goal at

this point is high precision even at the cost of a bit lower

recall, i.e. we try to ensure that only correct and accurate

Figure 4. Normal prediction for a particularly difficult scene (DTU

object n.◦ 77). Even with few training points of a highly specular

object the regressor is able to recover reasonable normals in many

regions. Top left: input image. Top right: training normals from

MVS. Bottom left: predicted normals. Bottom right: ground

truth.

normals are retained. As a first filter, we remove all nor-

mals that did not survive the multi-view fusion (meaning

that they did not fit the consensus). For those pixels which

did contribute to the reconstruction of a 3D normal vector,

we reproject the 3D vector and replace the original entry.

This can be expected to improve the accuracy of the valid

normals, because the inliers to the consensus voting are av-

eraged during fusion to suppress noise. On very slanted sur-

faces it can, in rare cases, happen that the averaged normal

points away from the camera; such normals are discarded.

The final normal maps have entries only where the origi-

nal matcher found a depth, and thus also a normal, and that

depth and normal were confirmed as correct and visible by

a consensus over multiple viewpoints.

Regression with CNN. Having found a set of reliable

normal vectors to serve as training data, we learn, separately

for each view, a convolutional neural network (CNN) to pre-

dict unknown surface normals. Note that no manually la-

belled training data is required, the regressor is trained only

from automatically reconstructed MVS points. As input,

the network takes 16 × 16 pixel RGB patches, downsam-

pled from 64 × 64 pixel patches of the original image. As

output, it returns the estimated normal vector at the center

pixel of the patch, parameterized by two polar angles θ and

φ (a.k.a. azimuth and elevation, or yaw and tilt). The patch

size has been determined empirically: much smaller patches

do not work as well, it seems that they do not capture suf-
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ficient shading information; larger patches slow down the

computation without improving performance.

As loss function, we directly minimize the minimal pla-

nar angle α = 〈ntrue,npred〉 between the true normal and the

predicted one. Our architecture follows the LeNet frame-

work [28]: a convolution layer with 16 kernels of window

size 5 × 5, followed by max-pooling over 2 × 2 blocks; a

second convolutional layer with 50 kernels of size 5 × 5,

again followed by 2 × 2 max-pooling; a fully connected

layer of 512 neurons, with ReLU rectification and 50%

drop-out; and a final fully connected layer with 2 output

neurons for the angles θ and φ; See Fig. 2. The network is

implemented in the Caffe framework [24], and trained with

stochastic gradient descent, with a fixed momentum of 0.9
and a learning rate of 0.001. Training and prediction take

≈30 min per view, on a single PC.

It is clear that several other regression methods, like for

example regression forests, would be computationally more

efficient. We plan to test alternative regressors in future

work. The following reason motivated us to use a CNN: the

perhaps biggest strength of CNNs and related deep learning

methods, and the main reason for their phenomenal success

in computer vision, has been the capability to learn good

image representations from raw RGB data. We feel that

this end-to-end learning, which relieves us from finding a

suitable feature set, is particularly useful for our problem.

Compared to well-researched vision tasks like pedestrian

detection or semantic segmentation, little is known about

the right choice of features for discriminative normal esti-

mation, hence finding good features might end up being a

lengthy trial-and-error process. We also point out that in

the recent work of [43] CNNs were shown to perform well

(and superior to regression forests) for a related regression

task from visual appearance to a spatial direction, namely

image-based gaze estimation.

After training the regressor, we apply it to the same im-

age, and estimate normal vectors densely for all pixels ex-

cept for the training data, which already possess normals

from MVS. To avoid excessive extrapolation, we only pre-

dict inside the convex hull of the training pixels.

3.3. Surface normal integration

The previous step yields a dense map of normals for ev-

ery viewpoint. Since our goal is 3D surface reconstruction,

we need to convert that normal map into a dense depth map,

which however is constrained to pass through the known

depth values from MVS. We do this with a masked version

of the 2D Poisson equation. Formally, we face an interpo-

lation problem: interpolate depth values at all points not re-

constructed by MVS, such that they best agree with the pre-

dicted surface normals. To distinguish points with known

MVS depth from those without one, we define two separate

depth functions: fmvs for MVS points is known, whereas

f is the unknown to be recovered. The domain of fmvs is

only the discrete set A of MVS points, and f is defined ev-

erywhere in the image plane Ω excepts at the points A. The

vector field g consists of the gradients of both functions,

∀x ∈ Ω : g(x) =

{

∇fmvs, if x ∈ A

∇f, else
(1)

Our task is to find an interpolant f over Ω\A that mini-

mizes the squared error

min
f

∫∫

Ω\A

‖∇f − g‖2 . (2)

This leads to the Poisson equation

∆f = div g , (3)

with div(·) the divergence operator and ∆(·) the Laplacian.

The MVS points in A each contribute a Dirichlet boundary

condition, ensuring that the depth map will pass through

fmvs. Together with standard von Neumann boundary con-

ditions at the image border the equation has a unique solu-

tion. Since the domain is irregular, one must fall back to

an iterative solver for (3), we use the Gauss-Seidel scheme

with successive overrelaxation [31, 41].

3.4. Depth map fusion

Our setting is that we have multiple overlapping views

of a scene — otherwise we could not perform MVS recon-

struction. Having recovered depth maps in all these views,

the last step is to fuse them into a consistent 3D model. We

apply a robust consensus mechanism across different views,

similar to the one in the MVS step, to filter out incorrect

depth values and at the same time denoise correct ones.

To minimize the number of outliers we prefer to do the

filtering conservatively, i.e. examine every depth map indi-

vidually and remove all points whose 3D scene space co-

ordinates are not consistent with other depth maps. Let

Π−1

i ,Πi be the forward, respectively backward projection

operators between a camera Ci and the 3D scene space. For

every image C∗ in turn, we forward-project the points p∗ of

the disparity map d∗ into 3D points, and back-project those

points to other cameras {Ci} whose viewfields overlap with

the one of C∗. Which viewfields overlap can easily be deter-

mined from the known camera poses and is already known

from the initial MVS step. In each Ci we test two condi-

tions: the disparity Πi(Π
−1
∗ (d∗)) should coincide with the

observed value di, up to a threshold ε. Our default value is

ε = 0.3 pixel. And the angle between the projected nor-

mal vector Πi(Π
−1
∗ (n∗)) and the observed ni should also

lie below a threshold β. We set β = 10◦.

If both conditions are fulfilled in K ≥ 3 other cameras,

then we warp the corresponding points from all consistent

views into scene space and average the 3D points Π−1

i (pi)
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Figure 5. Top: Normal prediction: input image, training points, reconstruction, ground truth. Bottom: Reconstruction closeup of the

peppers after normal integration and depth fusion. From left to right: Input. Our result. Difference. Ground truth. Our reconstruction

with normal prediction is able to complete parts missed both by MVS and by the structured light scanner used for the ground truth.

and the normals Π−1

i (ni) to suppress noise. Otherwise, if

fewer than K other views confirm the estimate (d∗, n∗), the

point is discarded.

Obviously the strict consistency check means that quite

many of the points reconstructed by the normal prediction

will be rejected. Still, a significant portion survives. This

shows that in many locations the appearance-based normal

prediction (and subsequent integration) yields comparable

accuracy to multi-view stereo, which uses similar fusion

criteria. Obviously, the fusion parameters ε, β,K provide

a simple interface to tune accuracy vs. completeness of the

reconstruction. With strict values, fewer but more reliable

points survive (e.g., for applications in industrial metrol-

ogy). With more generous settings the completeness of the

reconstruction increases, at the cost of lower accuracy (e.g.,

for graphics and visualization purposes).

Figure 6. Quantitative comparison with our initialization and other

pure MVS methods [6, 16, 36]. Lower values are better.

4. Results

To validate our method, we use a subset of 14 objects

from the extensive DTU multi-view stereo dataset [23]. The

dataset is, to our knowledge, the only large MVS testbed

that is publicly available. It features a variety of objects

and materials, and provides complete coverage with 49 im-

ages per scene. Ground truth of adequate density has been

recorded with a structured light scanner. The large selec-

tion of shapes and materials, ranging from simple diffuse

surfaces to specular plastic and metal objects, is well-suited

to test our normal prediction under realistic conditions. Im-

portantly, the dataset is difficult enough to challenge multi-

view stereo: even state-of-the-art methods, including the

one that we use for MVS [18], do not manage to reconstruct

large parts of some scenes. And it is also complex enough

to defy shading methods based on simple Lambertian re-

flectance, with materials of different color, texture and spec-

ularity. We use the variant of the data recorded under stan-

dard (relatively diffuse) lighting conditions, because this is

the only one for which multiple recent works have reported

results. In principle it would be possible (and potentially

beneficial) for our method to include images with various

lighting conditions, in the hope that a certain illumination is

better suited for certain parts of the scene than others.

We first evaluate the surface normal prediction sepa-

rately, and then present an end-to-end comparison with the

final 3D reconstructions.

4.1. Normal prediction

To quantify the accuracy of the normals predicted by the

CNN, we measure the angular error w.r.t. to ground truth

normal derived from the reference point cloud. As a first

step, we compare the error on the “test” normals predicted
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by the regression to the one for the “training” normals es-

timated by MVS. Ideally, these errors should be similar,

meaning that the appearance-based predictions would be as

good as the multi-view estimates. We observe, not surpris-

ingly, that the relation depends a lot on the difficulty of the

scene. For simple, piecewise planar objects with little re-

flection, the predicted normals are even slightly more ac-

curate than the training normals. Presumably, this is so be-

cause the learning problem is easy, and the “averaging” over

training samples from the same surface reduces noise. E.g.,

although the MVS result is rather sparse in Fig. 1, it is suf-

ficient to obtain sensible predictions for most of the object.

The corresponding mean and median errors are 13◦ and 9◦,

respectively, for the MVS points; and 12◦, respectively 6◦

for the CNN prediction.

On the contrary, specular materials and complicated sur-

face geometry, e.g. sharp creases, make the prediction more

difficult. The most difficult object in the DTU database

is the coffee-maker in Fig. 4. Even in that case, the

appearance-based regression surprisingly gives reasonable

predictions in many parts. However, the mean and median

errors rise from 13◦ and 10◦ at the MVS points to 17◦ and

12◦ for the predicted ones.

In Fig. 5 the shiny surface of the peppers poses a serious

problem for both MVS and for the structured light scanner

that acquired the ground truth. Our method is able to pre-

dict normals in these areas. While the mean and median

errors are significantly higher than at the MVS points (17◦

and 10◦, compared to 8◦ and 6◦), they are still good enough

to reconstruct an important part of the missing surfaces to

a depth accuracy of 0.3 pixels in disparity. Note that es-

pecially on the yellow pepper our reconstruction is also a

lot more complete than the ground truth from the structured

light scanner, which fails on very specular surfaces, too.

Over all 14 objects, the mean angular error is 11◦ for

the training normals from MVS, and 18◦ for the predicted

normals. The mean-of-median over all objects is 9◦ for the

MVS normals and 16◦ for the predicted ones. The mean is

consistently only a bit above the median, which indicates a

relatively even error distribution not contaminated by many

large outliers.

4.2. Improved multi­view reconstruction

Our overall goal is a better reconstruction of 3D point

clouds, respectively surfaces. We thus go on to quantify the

accuracy and completeness of the resulting 3D models. As

baselines, we use the initial MVS reconstruction without

normal prediction, as well as three further MVS methods

for which results on DTU are available.

To ensure a fair comparison to pure MVS, we set the

same fusion parameters (Sec. 3.4) both for fusing MVS

depthmaps and for fusing depthmaps after normal integra-

tion. I.e., points found with shading are added to the MVS

reconstruction only if they fulfill the same strict reliability

criteria.

Fig. 6 shows quantitative results averaged over all recon-

structed objects. The proposed prediction and integration of

the normals improves the mean completeness of the MVS

initialization by 14 %, at the cost of a negligible increase

in accuracy (accuracy is measured only at the reconstructed

points, hence an improvement is virtually impossible when

adding additional points to an existing, sparse reconstruc-

tion). Moreover, our results compare favorably w.r.t. other

methods. In terms of accuracy, we are on par with the best

result by [36], but with much higher completeness (≈ 83%

better). In terms of completeness, we are second best, nar-

rowly behind [6], which however has a lot lower accuracy

(61% higher error).

Any multi-view reconstruction method can trade off ac-

curacy against completeness. Tuning for high accuracy

means strict consistency checks that reject many points and

drive down completeness. Conversely, tuning for complete-

ness means accepting more points, even if they have higher

error. We thus also compute the overall quality of a recon-

struction, defined as the geometric mean of accuracy and

completeness Q =
√

acc2 + prec2, similar in spirit to the

F1-score. On that measure our method clearly performs

best, leading by 11% over the MVS initialization, and 30%

over the next best method.

We end with some qualitative examples to illustrate

where the proposed normal prediction can help. Overall,

the experiments confirm the intuition that the prediction will

fill in holes in homogeneous areas, where MVS struggles.

A prime example is the bunny in Fig. 7. MVS does alright

on the fur, but can only reconstruct the textured part of the

earmuffs. Still, there are enough points on the earmuffs to

learn the normal prediction, hence a good part of the untex-

tured orange plastic gets filled in. The white stripes on the

vases in Fig. 7, also challenge MVS. This is an example for

a material with a non-lambertian shading component, nev-

ertheless the prediction fills in a large part of the missing

surface. The plastic packaging in Fig. 7 is even more chal-

lenging, with multiple colors as well as specularity. Note

how the regression predicts adequate normals for different

parts including the blue area at the bottom, the yellow/white

area in the center, and even the shadow area on the red ob-

ject behind the bag.

5. Conclusion

We have described a method to densify multi-view stereo

reconstructions with the help of shading cues. Like some

other recent methods, we sidestep analytic shading models.

Instead, we view surface normal estimation as a discrimina-

tive regression problem and train a CNN to predict normal

vectors from raw image patches. The basic insight is that

the regression problem can be greatly simplified if one sac-
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MVS reconstruction Our method Difference Ground Truth

Figure 7. Reconstruction improvements of our method. Top: Challenging object with multiple colors and with specularities. Middle:

Object with homogeneous colour. Bottom: Vase with over-exposed and homogeneous white areas.

rifices generality and learns an individual predictor for the

fixed illumination, viewpoint and scene properties of each

specific image. The prediction is embedded in a conven-

tional multi-view reconstruction pipeline: point success-

fully reconstructed via multi-view correspondence form the

training set for normal estimation, and the resulting dense

normal maps are integrated to depth maps to improve the

3D model.

A main message of our paper is that even a rather small

number of training examples are enough to learn normal es-

timation from raw intensities, if the problem is tightly con-

strained. For a particular view of a particular scene, it is

indeed possible to infer shape by just looking at the image,

with an accuracy similar to the one of MVS.

So far our method only fills in missing depth measure-

ments. The original MVS points are not modified, and

depth map fusion is done in a separate step. In future work

we plan to investigate an early fusion, which directly re-

constructs the 3D surface from multiple normal maps and

sparse depth measurements.
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