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Abstract

Occlusion boundaries contain rich perceptual informa-

tion about the underlying scene structure. They also pro-

vide important cues in many visual perception tasks such as

scene understanding, object recognition, and segmentation.

In this paper, we improve occlusion boundary detection via

enhanced exploration of contextual information (e.g., local

structural boundary patterns, observations from surround-

ing regions, and temporal context), and in doing so develop

a novel approach based on convolutional neural networks

(CNNs) and conditional random fields (CRFs). Experimen-

tal results demonstrate that our detector significantly out-

performs the state-of-the-art (e.g., improving the F-measure

from 0.62 to 0.71 on the commonly used CMU benchmark).

Last but not least, we empirically assess the roles of sev-

eral important components of the proposed detector, so as

to validate the rationale behind this approach.

1. Introduction

Occlusions are ubiquitous in 2D images of natural

scenes (Fig. 1). They are introduced in the 3D-to-2D pro-

jection process during the image formation, due to the over-

lapping of the 2D extents (in the image plane) of 3D com-

ponents/surfaces. In this paper, we focus on the problem

of detecting occlusion boundaries, each of which separates

two 2D regions projected from two parts of scene surfaces

that overlap locally in either of those regions.

Occlusion boundary detection is of interest in com-

puter vision, image analysis, and other related fields (e.g.,

[14, 15, 34, 45]). Indeed, occlusions constitute an obsta-

cle to designing rigorous models and efficient algorithms

in computer vision and image analysis. Besides the lack of

information on invisible scene components, another main

reason is that occlusions invalidate the assumption that two

neighboring pixels in a 2D image correspond to two adja-

cent points lying on a common part of a 3D surface. Nev-

ertheless, this invalid assumption is often made, either ex-

Figure 1. Illustration of ubiquitous occlusions and local occlusion

patterns (source image from [38]).

plicitly or implicitly, in existing methods (e.g., the use of

smoothness priors for aggregating spatial information in

the 2D image). The localization of occlusion boundaries

would, therefore, be very useful for overcoming this limita-

tion and improving the solution in these tasks. Furthermore,

since occlusion boundaries separate visible scene compo-

nents from locally occluded components and usually cor-

respond to an abrupt change in depth (along the line of

view), these boundaries contain rich perceptual information

about the underlying 3D scene structure, the exploitation

of which would be beneficial in various visual perception

applications. For example, occlusion boundaries can serve

as important cues for object discovery and segmentation

(e.g., [3, 14]), since an object is generally delimited from

its environment by the isolation of its 3D surface. Indeed,

psychologists have long studied their importance in human

visual perception (e.g., Gibson, Biederman) [5, 17].

Despite the considerable number of studies on occlusion

boundary detection (e.g., [18, 21, 35, 36, 40, 44]), the state-

of-the-art is still unsatisfactory. We believe that one main

reason for this is that contextual information has not been

sufficiently explored in an efficient way. In fact, numer-

ous previous studies developed their approaches based on

structural modeling tools, e.g., Markov/Conditional Ran-
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dom Fields (MRFs/CRFs) [8, 48], to exploiting contextual

information and demonstrated the importance of this infor-

mation in solving various computer vision and image anal-

ysis problems (e.g., [11, 23, 31, 33, 46, 47, 53, 54]). This has

motivated us to better explore contextual information in de-

tecting occlusion boundaries.

In this work, we are interested in exploring three main

types of contextual information that are useful for occlu-

sion boundary detection: (i) local contextual correlations in

pixel labeling1 (e.g. [16, 18, 21, 35, 36, 40, 44]); (ii) contex-

tual correlations between the labeling of pixels (e.g., patch)

and the observations from the surrounding area of the re-

gion (e.g., [16, 21]); and (iii) temporal contextual informa-

tion contained in video sequences (e.g., [35,40]). Moreover,

we aim to jointly model these three types of information so

as to better explore them and boost occlusion boundary de-

tection performance. To this end, we finally propose a novel

approach for occlusion boundary detection based on convo-

lutional neural networks (CNNs) [4] and CRFs [8, 48], two

of the most powerful and successful modeling tools in com-

puter vision and related fields.

More specifically, in order to better explore type (i) and

(ii) contextual information, our CNN model considers a rel-

atively big image patch “L” as input, performs reasoning on

it, and outputs the state of a relatively small patch “S” with

the same center with “L” (referred to as L2S). It provides not

only a probabilistic labeling map on “S”, but also deep fea-

tures that aggregate the high-level contextual information

on “L”. These are then fed into our CRF model to glob-

ally infer the occlusion boundaries in the whole image. For

exploring type (iii) contextual information, we consider the

scenario in which a video sequence is the input data (similar

to many existing works e.g., [18, 35, 36, 40, 44])2, and two

simple optical-flow-based motion features are exploited to

efficiently capture temporal contextual information.

Experimental results demonstrate that the proposed de-

tector significantly outperforms the state-of-the-art, e.g.,

by improving the F-measure from 0.62 to 0.71 on the

commonly used CMU benchmark [40] (see Fig. 2 for the

precision-recall curves and Tab. 1 for the F-measures). Last

but not least, we empirically demonstrate the importance

of spatial and temporal contextual information in occlusion

boundary detection, and compare several CNN-based al-

ternative methods to illustrate that L2S provides more ro-

bust and discriminative deep occlusion features than those

variants. These validate the underlying rationale of our ap-

proach, which would also be helpful for addressing other

visual perception tasks.

1Like most existing methods, we formulate the problem by endowing

each pixel with a binary variable denoting whether the pixel is on occlusion

boundaries.
2It should be noted that our method can also be applied directly to the

scenario where an individual 2D image is the input (see Tab. 3).

Figure 2. Precision-recall curves. Based on the commonly used

CMU benchmark [40], we compare our results with those of Sund-

berg et al. [44], Sargin et al. [36], Stein et al. [40] and He et al. [18].

Related Work

Occlusion boundary estimation has attracted extensive

attention in computer vision over the past few years. Several

methods have been proposed to detect occlusion boundaries

in a single image. For example, Saxena et al. [37] learn an

MRF to capture 3D scene structure and depth information

from single images. Hoiem et al. [21] demonstrate the im-

portance of 2D perceptual cues and 3D surface and depth

cues for occlusion boundary detection, and compute these

geometric contexts to reason about occlusions within their

CRF model.

Due to the fact that occlusion boundary detection from

a single 2D image is ambiguous, many applications con-

sider videos or image sequences as inputs and extend occlu-

sion boundary detection to the temporal dimension. Apos-

toloff and Fitzgibbon [1] observe that the T-junction is a

particularly strong occlusion indicator, and thus learn a rel-

evance vector machine (RVM) T-junction classifier on spa-

tiotemporal patches and fuse Canny edges and T-junctions

to detect occlusion edges in the spatial domain. Feldman

and Weinshall [14] define the average of the second mo-

ment matrix around a pixel as a gradient structure tensor

by regarding the video sequence as a spatiotemporal in-

tensity function, and demonstrate that the smallest eigen-

value of this tensor is the occlusion indicator. Stein and

Hebert [40] exploit subtle relative motion cues present at oc-

clusion boundaries during a sequence of frames and develop

a global boundary model that combines these motion cues

and standard appearance cues based on an initial edge de-

tector [30]. Black and Fleet [7] represent occlusion bound-

aries via a generative model that explicitly encodes the ori-

entation of the boundary, the velocities on either side, the

motion of the occluding edge over time, and the appear-

242



ance/disappearance of pixels at the boundary. Based on this

model, the motion of occlusion boundaries is predicted and

thus information over time is integrated. Besides, both mo-

tion boundaries and image boundaries are combined within

an MRF framework in [6] to better reason about the occlu-

sion structure in the scene over time.

Although some aforementioned methods attempt to de-

velop discriminative occlusion features on a spatiotempo-

ral volume, recent works have shown that directly using

flow-based occlusion features as the temporal information

is more convenient and efficient. To name a few, Sargin

et al. [36] introduce a probabilistic cost function to gener-

ate a spatiotemporal lattice across multiple frames to pro-

duce a factor graph. Boundary feature channels are then

learned using this factor graph, by taking some independent

flow-based occlusion feature channels into account. He and

Yuille [18] argue that image depth discontinuities often oc-

cur at occlusion boundaries and estimate the pseudo-depth

using the singular value decomposition (SVD) technique

from motion flow as a cue for their occlusion detector. Sun-

berg et al. [44] recompute occlusion motion flows on each

edge fragment at region boundaries from the initial optical

flow [10], based on the observation that an occlusion bound-

ary can be handled by comparing the difference in optical

flow in regions on either side. Reporting that local patch

features are unable to handle highly variable appearances

or intra-object local motion, Raza et al. [35] estimate tem-

porally consistent occlusion boundaries via an MRF model

whose potentials are learned by random forests using global

occlusion motion features and a high-level geometric layout

on segmentation boundaries.

Regarding contextual information, it has already proved

to play an important role in many computer vision tasks

such as object detection, localization, and recognition [11,

29, 31, 47]. Recently, context modeling has also been in-

troduced to boundary detection. Dollár and Zitnick [12]

adopt random decision forests [25] to capture structural in-

formation of local patch edges. Weinzaepfel et al. [51] ex-

tend [12] to video datasets and exploit temporal information

and static image cues to learn correlations between motion

edges within local patches (edges between motion objects).

Previous studies have suggested that the brain en-

codes contextual information and biologically inspired deep

CNNs have been shown to be powerful for feature extrac-

tion and description [19, 26], which have motivated us to

learn the internal correlation of an occlusion boundary in

local patches using the CNN framework. Patch-level CNNs

have been widely used in a variety of computer vision tasks,

with excellent progress made over recent years. For ex-

ample, Fan et al. [13] combine local image patches and a

holistic view in a CNN framework to learn contextual in-

formation for human pose estimation. Wang et al. [49]

exploit physical constraints in local patches using a CNN-

based model or surface normal estimation. Sun et al. [43]

and Li et al. [28] learn convolutional features from multi-

ple local regions for facial trait recognition. Besides, Sun

et al. [42] formulate an MRF model to remove non-uniform

motion blur using the patch-level probabilistic motion blur

distribution by CNNs. Motivated by nearest neighbor re-

lationships within a local patch, Ganin and Lempitsky [16]

detect edges by learning a 4 × 4 label feature vector for each

patch and matching against a sample CNN output dictio-

nary corresponding to training patches with known annota-

tion. Shen et al. [39] make use of the structural information

of object contours in contour detection, by classifying im-

age patches into different boundary types and accordingly

defining a special loss function for training a CNN.

2. The Proposed Occlusion Boundary Detector

Firstly, in order to better characterize local contextual

correlations in pixel labeling and contextual correlations be-

tween regional pixel labeling and surrounding observations,

we: (i) consider each individual pixel patch as the unit of in-

terest, and (ii) adopt a CNN to learn and predict a patch’s oc-

clusion boundary map based on the observation of a larger

patch of pixels with the same center. Secondly, we effi-

ciently explore and encode temporal contextual information

within the whole framework by adopting effective motion

features in the CNN. Finally, we use a CRF model to in-

tegrate patch-based occlusion boundary maps and soft con-

textual correlations between neighboring pixels to achieve

occlusion boundary estimation for the entire image. Each

part is described below.

2.1. Patch­based Labeling using CNNs

We are interested in modeling and predicting labeling of

a patch of pixels based on the observation of a larger patch

with the same center via a structured learning/prediction

process. Mathematically, given the K-channel observed

data on an N × N patch centered at pixel c, denoted xc ∈

R
K∗N2

, we aim to obtain the weighted occlusion bound-

ary map yc ∈ R
M2

on an M ×M (M < N ) patch that is

also centered at pixel c, which is achieved via our structured

CNN convolutional neural network illustrated in Fig. 3. Be-

low we first briefly describe the architecture of our struc-

tured CNN and then discuss the initial input features/cues

used for occlusion boundary detection.

2.1.1 CNN Architecture

We train a CNN using a cross entropy loss function to

predict the probability distribution in a small 7 × 7 patch

from a large 27 × 27 image patch (i.e., M = 7 and

N = 27 in our experiments). The overall CNN archi-

tecture is shown in Fig. 3. The input of our CNN con-

sists of 3 static color channels and 2 temporal channels
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Figure 3. Illustration of the CNN architecture and the output of several layers. For a 27 × 27 patch of the given input sequence, we

first extract 5 (3 static + 2 motion) initial feature maps, which is the input of the CNN. The output of Maxp3 layer corresponds to deep

features that aggregate the high-level contextual information (referred to as deep contextual features). fc3 layer outputs a probabilistic

labeling map on a 7× 7 patch.

of size 27 × 27 (detailed in Sec. 2.1.2). The CNN struc-

ture can be described by the size of the feature map at

each layer as follows: conv1 (32@25*25) → maxp1 →
LRN1 → conv2 (64@11*11) → maxp2 → LRN2 →
conv3 (96@6*6) → maxp3 → fc1 (2048) →
dropout1 → fc2 (2048) → dropout2 → fc3 (49),

which corresponds to a probabilistic labeling map of size

7×7. Here, conv,maxp, LRN, fc, and dropout denote the

convolutional layer, max pooling layer, local response nor-

malization layer, fully-connected layer, and dropout layer,

respectively. The LRN scheme implements a form of lateral

inhibition, encouraging competition for large activations in

the neuronal output [9,32]. The dropout layer is used to pre-

vent units from co-adapting too much when training a large

neural network [20].

In our CNN architecture, the rectified linear units

(ReLUs) non-linear active function, f(x) = max(0, x),
is followed by all conv and fc layers except fc3. A sig-

moid function is applied to fc3 to obtain a probabilistic la-

beling map; and accordingly the cross entropy loss function

is adopted for the training process. Furthermore, the output

of Maxp3 provides learned deep features that aggregate the

high-level contextual information (referred to as deep con-

textual features), which are then used in the CRF model (see

Sec. 2.2) to globally reason about occlusion boundaries.

2.1.2 Initial Features for Occlusion Reasoning

Many previous occlusion boundary detection methods have

attempted to extract various specific features that character-

ize occlusions in raw images such as T-junctions, relative

depths, and other useful 3D scene properties [18, 21, 35].

However, accurate automatic extraction of such features is

also challenging. To avoid these difficulties, we aim to per-

form occlusion reasoning by using simple but effective ini-

tial features/cues. To this end, we first convert an RGB im-

age to Lab space and consider the gradient magnitude of the

Lab maps as three feature maps for the CNN model. In addi-

tion, we include two optical-flow-based motion features to

efficiently encode temporal contextual information in video

sequences and further improve detection performance. Fi-

nally, the input of our CNN model consists of 5 (3 static + 2

motion) feature maps. The two motion features are detailed

below.

• Motion Feature 1 The first occlusion motion fea-

ture OMF1 aims to capture optical flow discontinuity

which suggests occlusion boundaries. We use ft,t+t0

(t0 ∈ N ∗) to denote the optical flow map from frame t

to frame t+ t0 (t0 = 5 in the experiments). To capture

the discontinuity of ft,t+t0 , we compute the unoriented

gradient magnitude GFt,t+t0 :

GFt,t+t0 = |∇ft,t+t0 | (1)

Since both forward flow ft,t+t0 and backward flow

ft,t−t0 provide motion information from frame t, in or-

der to achieve robustness, we compute GFt,t−t0 sim-

ilarly together with GFt,t+t0 and consider their geo-

metric mean as one occlusion motion feature OMF1:

OMF1 =
√

GFt,t+t0 ∗GFt,t−t0 (2)
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Figure 4. Illustration of flow inconsistencies.

• Motion Feature 2 The second occlusion motion

feature OMF2 models the fact that the consistency of

the flow ft,t+t0 and reverse flow ft+t0,t is not satis-

fied when occlusion occurs [22]. We measure these in-

consistencies using both location and angle, illustrated

in Fig. 4. Let fl and f ′
l denote the flow values at loca-

tion l in the forward and reverse flow maps ft,t+t0 and

ft+t0,t, respectively. If a point located at l in frame t

is visible at t and t + t0, its correspondence in frame

t+t0 should be located at l+fl and should return to its

start position l after being transported to frame t by the

reverse flow f ′
l+fl

. And with respect to angle, flow fl
and reverse flow f ′

l+fl
should be π apart if consistent.

Hence, we measure these inconsistencies as follow:

Γl = |fl + f ′
l+fl

| (3)

Λl =







0 P |Q

arccos{
−fl·f

′
l+fl

|fl||f ′
l+fl

|} others
(4)

where P and Q represent |fl| < δ and |f ′
l+fl

| < δ,

respectively, and are used to filter out the likely static

pixels and prevent the denominator of the formulation

above from being 0 (δ = 0.01 ∗ maxl(|fl|) for each

frame in the experiments). Since both Γ and Λ de-

scribe inconsistent properties when occlusions occur,

we combine them to obtain our inconsistency descrip-

tor ICt,t+t0 , via a Gaussian smoothness process:

ICt,t+t0(l) =
∑

l∗

σ(d− |l∗ − l|)e−
|l∗−l|2

2

√

Γl∗Λl∗

(5)

where σ(x) = 1 when x ≥ 0 and 0 otherwise, and

d = 2 in the experiments. Similar to OMF1, OMF2

also takes the backward flow into consideration and is

defined as:

OMF2 =
√

ICt,t+t0 ∗ ICt,t−t0 (6)

2.2. Image­level Reasoning via CRFs

We then adopt CRFs to efficiently integrate patch-based

occlusion boundary maps and soft contextual correlations

between neighboring pixels, so as to achieve global oc-

clusion boundary estimation for the entire image. Here,

we consider the most common pairwise CRF with 4-

neighborhood system used in computer vision and image

analysis3. In the CRF model, the nodes correspond to the

pixel lattice and the edges to pairs of neighboring nodes. Let

V and E denote the node set and the edge set, respectively.

The CRF energy is defined as:

E(x) =
∑

i∈V

θi(xi) +
∑

{i,j}∈E

θij(xij) (7)

Unary potentials (θi(·))i∈V are used to encode the data

likelihood on individual pixels based on the patch-based

probabilistic labeling maps provided by the CNN presented

in Sec. 2.1, by defining θi(·) as the negative logarithm of the

average probability p̄i(·) over all output patches that cover

the pixel i:

θi(xi) = − log p̄i(xi) (8)

Let Ri denote the deep contextual features of the local

patch centered at pixel i provided by maxp3 layer of our

CNN, and the l2 norm between Ri and Rj is measured to

capture the dissimilarity between neighboring pixels i and

j. To penalize different labels between neighboring pix-

els, the Pairwise potentials (θij(·)){i,j}∈E between pairs of

nodes are defined as:

θij(xi, xj) =

{

0 if xi = xj

w · exp{− ‖ Ri −Rj ‖} otherwise

(9)

where w is a weight coefficient balancing the importance of

the unary and pairwise terms (w = 2.1 in the experiments).

2.3. Implementation Details

We adopt the region detector provided in [2], which pro-

duces a large number of small regions, so as to preserve

nearly all types of boundaries, including occlusion bound-

aries. The occlusion boundary detection boils down to a

binary classification problem which determines whether the

boundary between regions is or is not an occlusion bound-

ary, which is the same setting as many previous work (e.g.,

3The whole method is modular with respect to the choice of CRFs. A

main reason to adopt the pairwise CRF with 4-neighborhood system in the

experiments, instead of more sophisticated CRFs, is to demonstrate more

clearly the effectiveness of the whole method.
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[21, 35, 40, 44]). In order to address the ground truth label-

ing bias (e.g., the original set of boundaries created by [2]

are often 1 or 2 pixels away from the corresponding ground

truth boundaries drawn by hand [40]), we consider all pixels

within 2 pixels of the boundaries obtained by [2] to produce

image patches4. To balance the number of positive patches

(patches containing an occlusion boundary curve) and neg-

ative patches during training, we randomly sample 100,000

training patches in a 1:1 ratio.

The 3 image and 2 motion cue channels are the CNN in-

put to learn internal correlations around occlusion bound-

aries and predict probabilistic labeling maps and extract

deep contextual features. See Sec. 2.1 for the motion cues

computation and structured CNN framework. Our struc-

tured CNN model is built based on Caffe [24], developed

by the Berkeley Vision And Learning Center (BVLC) and

community contributors. The CRF model is then con-

structed to globally estimate occlusion boundaries for each

image using the probabilistic labeling maps and the deep

contextual features provided by the learned CNN model.

Regarding the CRF inference, many powerful off-the-shelf

algorithms can be directly applied to solve the CRF model

[48]. We simply used sum-product loopy belief propaga-

tion [52] to estimate approximate-marginal probabilities of

all nodes/pixels via message passing over the graph, so as to

get a probabilistic boundary labeling map on the entire im-

age and directly compare with previous methods using the

same quality metric, i.e., F-measure.

In the final step, we apply the method in Arbelaez et

al. [2] to remove isolated pixels and connect disconnected

short lines that might belong to a long boundary in our prob-

abilistic occlusion boundary map η. This produces contour

boundary map Ω. We then combine η and Ω by learning a

weight factor α using SVM to get obtain our final occlusion

boundary detector ξ:

ξ = α ∗ η + (1− α) ∗ Ω (10)

In this paper, the final α is 0.65.

3. Experimental Results

Following most previous work on occlusion boundary

detection, such as [18, 27, 36, 40, 44], we evaluate the per-

formance of the proposed detector on the CMU benchmark

[40], and perform quantitative comparison with previous

work using the precision (Pre) vs. recall (Rec) curve and

F-measure (F-measure = 2∗Pre∗Rec
Pre+Rec

) as quality measures.

In addition, we also perform quantitative evaluation on the

datasets provided by [44] and [35] and compare with their

methods. In the following, we will first exhibit the obtained

qualitative and quantitative results, and then empirically an-

alyze the importance of several major components via the

4This operation also prevents CNN from paying too much attention to

the center of the label patch and assigning a high probability to it.

comparison between the corresponding variants of the pro-

posed detector.

Algorithm F-measure

Stein et al. [40] 0.48

Sargin et al. [36] 0.57

He et al. [18] 0.47

Sundberg et al. [44] 0.62

Leordeanu et al. [27] 0.62

Our detector (probability) 0.71

Our detector (hard) 0.63

Table 1. F-measure values (the average of maximal F-measure val-

ues over the whole benchmark) obtained by the considered meth-

ods on the CMU benchmark.

Algorithm
F-measure

Dataset [44] Dataset [35]

Sundberg et al. [44] 0.56 N/A

Raza et al. [35] N/A 0.60

Our detector 0.59 0.63

Table 2. Comparison with [44] and [35] on their datasets.

Qualitative and Quantitative Results A representative

set of qualitative results on the CMU benchmark are ex-

hibited in Fig. 5. The quantitative comparison with several

important previous methods [18, 27, 36, 40, 44] is shown

in Tab. 1 and Fig. 2, where the quantitative results of the

previous methods are taken from their papers. Specifically,

the Precision vs. Recall curves of different methods are

shown in Fig. 2, which indicates that our detector signif-

icantly outperforms previous methods, especially withn a

recall interval of [0.6, 0.9].
The evaluation based on F-measure is shown in Tab. 1,

which also demonstrates a significant improvement over

previous methods. Following previous work, we range the

threshold on the probabilistic occlusion boundary map ob-

tained for each image and compute the average of the max-

imal F-measure (AMF) across the whole dataset, and re-

port the obtained results in Tab. 1. Moreover, considering

that: (i) the optimal threshold that leads to the maximal F-

measure of the occlusion boundary map generally varies be-

tween input test images, (ii) hard boundary labeling results

(i.e., each pixel is labeled either 0 or 1) is often desirable for

certain research problems and applications, we also report

in Tab. 1 the average F-measure on the hard occlusion label-

ing maps5 obtained by our method with the same parameter

setting for all testing data.

Finally, quantitative comparison with [44] and [35] on

their datasets is shown in Tab. 2 and also demonstrates the

5In the experiments, the hard occlusion labeling maps is computed from

the obtained probabilistic occlusion boundary map with a threshold of 0.4.
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Figure 5. Representative occlusion boundary detection results. Each row corresponds to one testing sequence in the CMU benchmark

[40] and consists of (from left to right): a reference frame, the occlusion boundary ground truth, the occlusion boundary map obtained by

Stein et al. [40] (F-measure = 0.48), global probability boundary (gPb) map obtained by Arbelaez et al. [2] (F-measure = 0.53), and the

occlusion boundary map obtained by our method (F-measure = 0.71).
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Features F-measure

Image 0.60

Image + OMF1 0.65

Image + OMF2 0.64

Image + OMF1 + OMF2 0.71

Table 3. Temporal contextual exploration. The contribution of

the motion cues in the whole boundary detector is demonstrated.

superiority of our detector.

Contribution of Temporal Cues Based on Classic-

NL [41], we performed experiments to estimate the

contribution of each type of occlusion motion context to

our algorithm. We can see from Tab. 3 that: (i) motion

contexts are important cues that have a large impact on

the performance of the occlusion boundary detection,

and (ii) the two motion features used in our method both

significantly contribute to the performance of the method,

and jointly using them achieves the highest accuracy.

Furthermore, in order to evaluate how the method’s

performance depends on the accuracy of optical flow

computation, in Tab. 4, we report the F-measures using

three typical optical flow algorithms proposed by: Broxs et

al. [10], Sun et al. [41] and Weinzaepfel et al. [50]. These

similar F-measures demonstrate that our method is quite

robust with respect to the choice of optical flow algorithm.

Optical Flow F-measure

LDOF [10] 0.68

Classic-NL [41] 0.71

Deepflow [50] 0.69

Table 4. F-measures using different optical flow algorithms.

Different CNN Frameworks The way contextual infor-

mation is explored via local patches is a key factor of the

method, since the edge and node potentials in the final CRF

framework are related to the contextual information aggre-

gated by CNNs. In order to validate our choice (i.e., L2S:

we learn the mapping from a large patch “L” to a small patch

“S” with the same center with “L” ), we compare it with four

variants, which are: (i) L2P: we learn the mapping from “L”

to the pixel at the center of “L”; (ii) L2SP: we learn the map-

ping from “L” to “S” by independently learning the map-

ping to each individual pixel located within “S”; (iii) L2L:

we learn the mapping from “L” to “L”; and (iv) S2S: we

learn the mapping from “S” to “S”. The results are shown

in Tab. 5, from which we observe that: (i) the F-measure by

S2S is obviously lower than that of other methods since the

small input image patches contain much less contextual in-

formation and the contextual information of the surrounding

area is ignored; (ii) compared to L2S, the CNN is slightly

less effective at extracting discriminative spatial contextual

information when learning the mapping from “L” to its cen-

ter pixel, each individual pixel located within “S”, and “L”

itself (L2P, L2SP, and L2L). We explain these differences

as follows: (i) L2P and L2SP: the CNN concentrates more

on learning the differences between input samples to binary

classify large patches and ignores correlations around oc-

clusion edges within local image patches; (ii) L2L: on the

one hand, the fixed training set becomes over sparse when

the size of labeling map is too large, in which case the CNN

can only learn superficial structural features; on the other

hand, contextual correlation between the labeling of pix-

els and the observations from the surrounding area is not

considered; and (iii) L2S: it properly handles the aforemen-

tioned issues exhibited in the variants so as to achieve better

discriminative structured features.

Mapping methods F-measure

L2P 0.66

L2SP 0.65

L2L 0.66

S2S 0.63

L2S 0.71

Table 5. F-measures using different mapping methods.

4. Conclusion

In this paper, we aim to exploit contextual informa-

tion, including local structural boundary patterns, observa-

tions from surrounding regions, temporal context, and soft

contextual correlations between neighboring pixels to im-

prove performance of occlusion boundary detection. Com-

puted occlusion motion cues and color cues are fed into a

CNN framework to obtain a probabilistic occlusion bound-

ary map on a small patch from a large patch with the same

center and also to aggregate deep contextual features. Based

on these, a CRF model is then adopted to achieve global

occlusion boundary estimation. Our detector significantly

outperforms the current state-of-the-art (e.g., F-measure in-

creases from 0.62 [27,44] to 0.71 on the CMU benchmark).

Last but not least, we empirically demonstrate the impor-

tance of the temporal contextual cues and the advantage of

our approach to exploring contextual information.
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