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Abstract

This paper presents a novel unsupervised method to

transfer the style of an example image to a source image.

The complex notion of image style is here considered as a

local texture transfer, eventually coupled with a global color

transfer. For the local texture transfer, we propose a new

method based on an adaptive patch partition that captures

the style of the example image and preserves the structure of

the source image. More precisely, this example-based par-

tition predicts how well a source patch matches an example

patch. Results on various images show that our method out-

performs the most recent techniques.

1. Introduction

Style transfer is the task of transforming an image in

such a way that it mimics the style of a given example.

This class of computational methods are of special inter-

est in film post-production and graphics, where one could

generate different renditions of the same scene under differ-

ent “style parameters” [17] [6]. The difficulty of this task

is bound to the complexity of defining the style as a com-

position of different visual attributes such as color, shading,

texture, lines, strokes and regions.

Example-based methods have been widely employed to

solve problems such as texture synthesis [7], inpainting [5],

and super-resolution [10] with state-of-the-art performance.

These non-local and non-parametric approaches draw on

the principle of self-similarity in natural images: similar

patches (sub-images) are expected to be found at different

locations of a single image.

Despite the practical success of patch-based methods for

inverse problems, the patch dimensionality remains a sen-

sitive parameter to tune in these algorithms. For instance,

to obtain a coherent patch-based texture synthesis, patches

should have approximately the same dimensionality of the

dominant pattern in the example texture. The problem of

patch dimensionality is equally crucial for example-based

style transfer. In this case, we are given as example an im-

age containing a mixture of style and content. Hence, patch

dimensions should be large enough to represent the patterns

that characterize the example style, while small enough to

forbid the synthesis of content structures present in the ex-

ample image. We propose a style transfer method that is

able to meet these requirements by means of an adaptive

patch partition.

Fig. 1 illustrates our method. This paper makes the fol-

lowing contributions:

• We suggest that a correct style transfer can be thought

as a local transfer of texture and a global transfer of

color. A robust method for local texture transfer must

capture the style while preserving the image structure,

and this can be achieved with a spatially adaptive im-

age partition.

• We show that a relevant partition must incorporate a

prediction of how well an image portion of the source

image will be matched to the example style image.

That naturally leads to an example-based partition,

where the partition is bound to the coupling between

the source image and the example image.

2. Related Work

Style transfer can be related to texture [7] and color

transfer [20, 12]. Texture transfer can be seen as a special

case of texture synthesis, where example-based texture gen-

eration is constrained by the geometry of an original image.

Style transfer, for this part, can be seen as a composition of

texture and color transfer, where style is transferred from an

example to an original image, being modeled as a combina-

tion of texture and color. Recent methods modeling style

transfer in a color context include [23], where the style of

head shots is mimicked through local image statistics and

[24] where the daytime of an image is transformed relying

on examples. In this work, we approach style mainly from

the textural rather than the color aspect.

Texture synthesis by non-parametric sampling is inspired

by the Markov model of natural language [22], where text

1553



Original Example Adaptive partition Stylization with our method

Figure 1. Illustration of the proposed unsupervised style transfer. From left to right: the source image, the example image, the adaptive

example-based partition, and the result of the style transfer.

generation is posed as sampling from a statistical model of

letter sequences (n-grams) taken from an example text. In

an analogous manner, non-parametric texture synthesis re-

lies on sampling pixels directly from an example texture. It

became a popular approach for texture synthesis [8] and for

texture transfer [7, 15, 27] due to convincing representation

of either non-structural and structural textures.

In the literature of texture synthesis and transfer, we find

two main approaches to compute non-parametric sampling

from an image based Markov Random Field (MRF), which

we call here respectively as the greedy and the iterative

strategies. The first strategy considers texture synthesis as

the minimization of a greedy heuristic cost function, per-

forming sampling by neighborhood matching to obtain a lo-

cal solution. The non-parametric texture synthesis method

of [8] takes a pixel to be synthesized by random sampling

from a pool of candidate pixels selected from an example

texture. A similar approach was extended to patch-based

texture synthesis and also for texture transfer in [7]. We fol-

low in this work an iterative strategy, inspired by [11] and

[25], which considers an explicit probability density model-

ing of the problem and computes an approximate Maximum

a Posteriori (MAP) solution through an iterative optimiza-

tion based on Loopy Belief Propagation or Graph cuts.

Style transfer can be computed in a supervised or unsu-

pervised fashion. One of the first methods to propose su-

pervised style transfer posed the problem as computing an

“image analogy” given by A : A′ :: B : B′ [15], implying

that an input image B should be related to a stylized image

B′ the same way as image A is related to A′, with A and

A′ known. In this method, inspired by the texture transfer

of [1], a pixel to be synthesized in image B′ is directly se-

lected from an example stylized image A′, by minimizing a

cost function that takes into account the similarity between

B and A and the preservation of local neighborhoods in A′.

The image analogies approach was extended to video in the

work of [3], where the problem of temporal coherence is

investigated, and recently it was accelerated with hash ta-

bles in [2]. We note that the supervised approach needs a

registered pair of example images A and A′ from which it

is possible to learn a style transformation, however this pair

of images is hardly available in practice. In this work we

rather consider an unsupervised approach.

There are few works dealing with unsupervised style

transfer in the literature, the closest to our method being

[21], [4] and [27]. Still borrowing from the image analogies

notation, we can consider that the unsupervised scenario as-

sumes that only an example imageA′ and an original image

B are given. In [21] the authors describe a Bayesian tech-

nique for inferring the most likely output image from the in-

put image and the exemplar image. The prior on the output

image P (B′) is a patch-based MRF obtained from the input

image. The authors in [27] decompose original and exam-

ple images into three additive components: draft, paint and

edge. In our approach, the input image is not decomposed

into additive parts, as we rather consider a spatial decompo-

sition. Moreover, we note that in both [21] and [27], a MRF

is defined for image patches disposed over a regular grid,

which is not the case in our approach, where we consider

an example-based adaptive image partition.

Finally, the recent work of [13] proposed a style trans-

fer technique using Convolutional Neural Networks (CNN)

to separate and recombine the content and the style of two

images. Their method differs considerably from our ap-

proach, assuming a pre-trained neural network architecture

and solving gradient descent for style reconstruction.

3. Split and Match Style Transfer

According to the primal sketch theory of visual percep-

tion [18], an image may be seen as a composition of struc-

tures: an ensemble of noticeable primitives or tokens; and

textures: an ensemble with no distinct primitives in pre-

attentive vision. Inspired by this principle, [9] presented

a generative model for natural images that operates guided

by these two different image components, that they called
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as sketchable and non-sketchable parts.

In this work, we adopt a similar view for example-based

style synthesis. Our main motivation comes from the ob-

servation that the visual elements accounting for distinc-

tive painting styles in fine arts are often anisotropic with

respect to scale. In other words, details corresponding to

the geometry (or the sketchable part) of a scene are often

painted carefully with fine brushwork, while the scene non-

sketchable part is sometimes painted with rougher brushes,

where brushwork style is usually more distinct. Obvi-

ously, this observation holds more importantly for some

particular artistic styles such as impressionism and post-

impressionism than other painting styles such as realism.

We remind that in texture transfer, pixel-based models

have assumed neighborhoods with regular size, and patch-

based methods similarly assume an image decomposition

into patches in a regular grid. As we illustrate in Fig. 2,

a regular grid assumption is problematic for style transfer.

In general, if the patches in a regular grid are small (for in-

stance of size 8 × 8), we achieve a realistic reconstruction

of the original image, but the style of the example image

is hardly noticeable. On the other hand, for larger patch

size, the style from the example can be noticed in the recon-

structed image, however the fine geometry of the original

image is not correctly reconstructed.

In order to overcome this limitation, we propose a

method that takes into account the scale problem in styl-

ization. In the following subsections, we give a formal def-

inition for unsupervised style transfer and our proposed so-

lution to the problem.

3.1. Problem definition

Let u : Ωu → R
3 be an input image and v : Ωv → R

3 an

example style image. Style transfer can be posed as finding

a correspondence map ϕ : Ωu → Ωv which assigns to each

point x ∈ Ωu in the original image domain a corresponding

point ϕ(x) ∈ Ωv in the example image domain. The output

image can then be defined as û = v(ϕ).
In order to capture the style of v while preserving the

structures of u, the correspondence map ϕ should ide-

ally be a piecewise constant translation map on a partition

R = {Ri}
n
i=1 of Ωu. In practice, the partition R should

depend on the geometrical content of u, while ensuring the

existence of good correspondences between u and v over

each region Ri. To achieve a convincing style transfer, reg-

ularity is also required at the boundary between neighboring

correspondent regions.

All these requirements could be expressed in a unique

non convex energy depending on both R and ϕ and requir-

ing an alternating optimization strategy. For the sake of sim-

plicity, our approach rather considers these sub-problems

independently, following the four steps below:

1. Split and match: compute an adaptive partition R of

Ωu (Sec. 3.2);

2. Optimization: Search for the optimal mapϕ (Sec. 3.3);

3. Bilinear blending between neighboring regions and re-

construction of û (Sec. 3.4);

4. Global color and contrast matching (Sec. 3.5).

In the split and match step, we split Ωu into a quadtree

R which takes into account both the geometry of u and the

ability for these regions to have good matches in v. At the

same time, we compute for each region Ri a reduced set of

candidate regions in v. The search of the optimal map ϕ is

then seen as a graph labeling problem, where the nodes of

the graph are the regions Ri. We denote Li = {lik}
K
k=1 the

set of K candidate labels for the region Ri, the label lik ∈
Ωv being a patch coordinate in image v. This probabilistic

labeling problem is solved by belief propagation, followed

by bilinear blending for the final reconstruction. We note

that û is reconstructed by texture transfer only in luminance

(Y channel in YUV color space).

Finally, we suggest applying a global color transfer

method [12] in chrominance channel to capture the color

style, and a contrast transformation to match the global con-

trast of the example image.

3.2. Split and Match adaptive partition

As we claim throughout this paper, decomposing an im-

age into a suitable partition has a considerable impact in the

quality of patch-based style synthesis. We propose a sim-

ple yet effective approach based on a modified version of

the classic Split and Merge decomposition [16]. In the clas-

sic algorithm, the local variance of a quadtree cell decides

whether a cell will be split into four cells. Here we propose

a “Split and Match” example-guided decomposition, where

the stopping criteria for quadtree splitting depends also on

the patch similarity between the input and example images.

In our representation, a region Ri is a square of Ωu, of

size τi × τi. We denote by xi its center and we denote in-

differently by u(Ri) or puxi
the patch of size τ2i centered at

xi.

The decomposition starts with one single region R1 :=
Ωu. Each region Ri of the partition is split into four equal

squares, each one of size ( τi2 )
2, until a patch in the example

image v matches u(Ri) with some degree of accuracy.

Since quadtree patches can have arbitrary size, we use

normalized distances for patch comparison. More precisely,

the distance between two patches puxi
and pvy of the same

size τ2i is defined as

d[puxi
, pvy] =

||puxi
− pvy||

2

τ2i
. (1)
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Now, if yi is the best correspondence of xi in v at this scale

τi:

yi := argmin
y

d[puxi
, pvy], (2)

the region Ri is split in four regions if the following condi-

tion is satisfied

ζ(puxi
, pvyi

) =
(
σi + d[puxi

, pvyi
] > ω and τi > Υ0

)
or τi > Υ1, (3)

where σi =
√
V ar(puxi

) is the standard deviation of puxi
, ω

is a similarity threshold (fixed to ω := 15 in practice), Υ0

is the minimum patch size and Υ1 the maximum patch size

allowed in the quadtree (respectively fixed to 82 and 2562).

Observe that Ri is not encouraged to be split if there is

at least one patch pvy which is similar enough to puxi
, unless

the standard deviation of the patch σi is large.

Eventually, for every “leaf node” of the quadtree (nodes

for which the splitting condition in Eq. (3) is not satisfied), a

set of K candidate labels Li = {lik}
K
k=1 is selected for Ri

by computing a spatially constrained K-nearest neighbors

(k-NN) {pvlik
}Kk=1 of puxi

in v. A spatial constraint |lik −

lik+1
| > χ (with χ := τi

2 in practice), requires that two

candidate patch labels lik and lik+1
are sufficiently distant

from each other and encourages label variety. The whole

split and match step is summarized in Algorithm 1.

Algorithm 1 “Split and Match” patch decomposition

Input: Images: u, v; parameters: Υ0, Υ1, ω

Output: Set of regions R = {Ri}
n
i=1, set of candidate la-

bels L = {Li}
n
i=1

1: Initialization: R1 ← {Ωu}
2: for every region Ri ∈ R do

3: xi ← center of Ri

4: σi ←
√
V ar(puxi

)
5: Compute yi = argmin

y

d[puxi
, pvy]

6: if ζ(puxi
, pvyi

) is true then

7: Split Ri into four:

8: m← ♯R− 1
9: R← {R \Ri} ∪ {Rm+1, ..., Rm+4}

10: else

11: Compute spatially constrained k-NN:

12: Li ← {lik}
K
k=1 with |lik − lik+1

| > χ

13: end if

14: end for

In Fig. 2, we show the interest of adopting an example-

based adaptive image partition. Note that for 82 patch di-

mensionality, the pointillist texture feature is not captured,

while for 322 patch dimensionality the style is better cap-

tured at the cost of having poor reconstruction of structures

present in the original image. When a classic adaptive par-

tition is used (based on the variance of the original image),

Original Example

Regular grid, patch size: 82 Regular grid, patch size: 322

Variance-based quadtree Our method

Figure 2. Comparison of partitioning strategies for style transfer.

Top row: original and example. Middle row: style transfer using

regular patches. Small patches do not manage to capture the style,

while large patches do not preserve the image structures. Bottom

row: style transfer using adaptive patches. The left adaptive par-

tition based on image variance exhibits an artifact due to a large

image portion that cannot be correctly matched. On the contrary,

the example-based partition finds good matches for all parts.

style transfer is reasonably achieved, but entire structures

are also copied from the example image (the woman’s face

in the painting). On the other hand, when the “Split and

Match” adaptive partition is used, it leads to a convincing

synthesis of the example style, while structures in the orig-

inal image are well preserved.

3.3. Markov Random Fields modeling

Markov Random Fields (MRF) are a well known in-

ference model for computer vision problems [14], widely
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a) Regular grid b) Adaptive quadtree

Figure 3. a) MRF for low-level vision problems over a regular grid.

Nodes in the bottom layer represent image units from the observed

scene, while nodes in the top layer represent hidden image units

that we search to estimate through inference. The vertical edges

represent data fidelity terms, while the horizontal edges represent

pairwise compatibility terms. b) MRF over an adaptive image par-

tition.

used to model texture synthesis [28] and texture transfer [7].

Within this framework, the problem of example-based style

transfer can be solved by computing the Maximum a Poste-

riori from a well chosen joint probability distribution on all

image units (quadtree patch labels in our model).

Usually, patch-based MRF models such as in [11] are

computed over a graph in a regular grid, as illustrated in

Fig. 3a. In this work, we rather propose a MRF model over

an adaptive partition, as shown in Fig. 3b. Nevertheless, the

neighborhood definition in the proposed quadtree MRF is

analogous to a 4-neighborhood in a regular grid.

As discussed in Sec. 3.2, for a quadtree patch puxi
, we

first compute a set of K candidate labels Li = {lik}
K
k=1 as

a strategy to reduce the dimensionality of the labeling prob-

lem. We consider now an inference model to compute the

most likely set of label assignments for all the patches in

R, where labels represent patch correspondences between

u and v. More precisely, we search for the set of label as-

signments L̂ = {l̂i}
n
i=1 maximizing the probability density

P (L) =
1

Z

∏

i

φ(li)
∏

(i,j)∈N

ψ(li, lj), (4)

where Z is a normalization constant, φ is the data fidelity

term

φ(li) = exp(−d[puxi
, pvli ]λd) (5)

and ψ(li, lj) is a pairwise compatibility term between

neighboring nodes i and j ((i, j) ∈ N means that Ri and

Rj are neighbors in Ωu)

ψ(li, lj) = exp(−d[p̃vli , p̃
v
lj
]λs + |li − lj |

2λr), (6)

with λd, λs and λr three positive weights (respectively fixed

to 2, 2 and 1 in all experiments). This function ψ is com-

posed of a smoothness term and a term penalizing label rep-

etitions.

In patch-based MRFs, the compatibility term ensures

that neighbor candidate patches are similar in their over-

lapping region. To define this properly, we first extend each

region Ri of the partition R by τiθ in each direction (θ is an

overlapping ratio set to 0.5 in practice). This permits to de-

fine an overlap between two neighboring extended regions

R̃i and R̃j . The term d[p̃vli , p̃
v
lj
] in ψ(li, lj) is the distance

between the corresponding extended patches in v over this

intersection R̃i ∩ R̃j . While we search for smooth inten-

sity transitions in the overlapping part of neighbor candi-

date patches, we also aim to penalize two neighbor nodes to

have exactly the same label, thus we encourage |li − lj |
2 to

be large as a strategy to boost local synthesis variety.

Note that computing an exact MAP inference to solve di-

rectly Eq. (4) is an intractable combinatorial problem due

to the high dimensionality of image based graphical mod-

els, but approximate solutions can be found by iterative al-

gorithms. We adopt in this work the Loopy Belief Propaga-

tion method [26] [19]. Basically, neighboring variables up-

date their likelihoods by message passing and usually after a

small number of iterations, the approximate marginal prob-

abilities (beliefs) of all the variables in a MRF are computed

[11]. In practice, we do not maximize the density (4) but

rather minimize its negative logarithm for computational

convenience.

Finally, a patch in the reconstructed image û with esti-

mated label l̂i is given by pûxi
= pv

l̂i
.

3.4. Bilinear blending

Although we compute label correspondences that are

likely to be coherent across overlapping regions, seams

can still be noted in the reconstructed image û across the

quadtree patch boundaries. In order to remove visible seams

we apply an effective method inspired on linear alpha blend-

ing. Note that in an overlapping quadtree, a variable number

of patches may overlap. Then, a pixel x in the final recon-

structed image ũ(x) is defined as a linear combination of

the S overlapping patch intensities at x:

ũ(x) =

S∑

s=1

αs(x) p̃
û
xs
(x) , where αs(x) =

δ(x, ∂p̃ûxs
)

∑S

s=1 δ(x, ∂p̃
û
xs
)

(7)

is the weighting factor and δ(x, ∂p̃ûxs
) is the normalized

closest distance between pixel x and the patch border ∂p̃ûxs
:

δ(x, ∂p̃ûxs
) =
|x− ∂p̃ûxs

|2

τ2s
. (8)

This blending strategy ensures smooth transitions between

neighbor patches at a very low computational cost.

3.5. Global color and contrast transfer

We have described in the previous subsections our strat-

egy for texture transfer through an adaptive patch-based ap-
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proach. Now, we consider that color and contrast are two

features in style that may be consistently modeled as global

transformations.

That said, we apply the color transfer method proposed

in our previous work [12] to match consistently the color

palettes of the original and example images. This color

transformation is combined with a global contrast transfor-

mation achieved by a parametric histogram specification.

In particular, classical histogram specification between im-

ages may lead to visual artifacts, thus we approximate the

histogram specification curve to a power law model through

least squares fitting. That ensures that the contrast is trans-

ferred globally without creating artifacts.

4. Experiments

We present here a number of experiments performed

with our method. In Fig. 4, we present a comparison of

our algorithm and two state-of-the-art style transfer meth-

ods. The first method, called PatchTable [2], is originally

applied for supervised style transfer, but since we do not

have a pair of example unfiltered and filtered images (as

used in [15]), we apply their method1 in an unsupervised

setting by assuming that the unfiltered and filtered images

are the same. In their result, Van Gogh’s typical brushwork

is transferred at some point, but the complete painting style

is poorly recreated. Also the overall structures of the origi-

nal image are lost. The second method is the Neural Artistic

Style [13], based on CNN. While the color palette of the ex-

ample image is well preserved, the texture is not well recre-

ated in their results. For example, the texture in the sky

differs considerably from the snail shapes in Van Gogh’s

painting. Our result outperforms state-of-the-art methods,

capturing the local image texture, color and contrast.

In Fig. 5, we present an illustration of style transfer from

two different styles of sketches. Both results show the good

performance of our algorithm in transferring the drawing

style.

Finally, in Fig. 6, we show style transfer with our method

for two different painting styles. With our adaptive quadtree

partition each original image has a different partition partic-

ularly adapted to the given example. Thanks to this strategy,

our algorithm accomplishes to transfer the appearance inde-

pendently of the scale texture of the example or the geome-

try of the original image. We believe that a good style trans-

fer implies to reproduce the texture and the color palette of

the example image, as we have already mentioned. How-

ever, other artistic choices are possible depending on the

desired results. For example, some application may request

to only transfer texture and keep the colors of the original

image. Fig. 7 shows our results when transferring or not the

global color.

1We use the code provided in the author’s page

Source image Example image

Only texture transfer Texture + color transfer

Figure 7. Illustration of only texture versus texture and color trans-

fer. Both results are interesting depending on the artistic choice.

5. Conclusion

In this work, we have proposed a new style trans-

fer method that, differently to previous patch-based ap-

proaches, is able to synthesize textures independently of

their scale. Our results suggest that the decomposition of

content and style in artistic images can be achieved with a

simple yet efficient adaptive image partition.

Moreover, we have shown that a local texture modeling

and a global color transfer strategy leads to a convincing and

structure-preserving stylization. On the other hand, state-

of-the-art style transfer methods are likely to destroy struc-

tures at the cost of synthesizing style.

We note that our method is naturally not guaranteed to

transfer textures that belong to the same semantic category

in the input and example images. The incorporation of ad-

ditional semantic constraints or user scribbles could be ben-

eficial to enforce, for instance, that the style in the sky of an

example image is mimicked in the sky of the stylized image.

Transferring edge styles is also not guaranteed by our

method, since the euclidean norm between image patches

is not well adapted to match edges of different thickness

and styles. On the other hand, a norm computed in a trans-

formed feature space (for example, the filter responses from

the convolutional layers of a CNN) could be more adapted

to match edges of different styles.

At the moment, our implementation takes approximately

3 min. for a 512×512 image. Future work will concentrate

on the acceleration of the patch search, and the adaptation

of our method for videos.
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Original and Example Our method

Unsupervised Patch table [2] Neural Artistic Style [13]

Figure 4. Comparison with state-of-the-art. It can be observed that our method captures the prominent texture and color features from Van

Gogh’s painting, with an overall accurate reconstruction of buildings. The method of [2] captures partially the brushwork texture from

the painting, but the buildings are not well reconstructed. The method of [13] captures accurately the painting colors, however it does not

reconstruct all main structures in the original image (buildings in bottom left), and the brushwork textures are not noticeable in the result

image, which has a rather blurry effect in the sky.

Figure 5. Illustration of example-based style transfer for sketches. From left to right: original image from Magritte and the result of our

algorithm using as example the smaller sketches at the right. In this example texture as well as color are very important to reproduce the

style.
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Figure 6. Illustration of our example-based style transfer for different painting styles. Example images from van Gogh’s and Seurat’s are

on the top and original images are on the left. Our algorithm transfers successfully the style for different texture scales and it preserves the

image geometry of the original images.
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