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Abstract

In this paper we investigate 3D attributes as a means to

understand the shape of an object in a single image. To this

end, we make a number of contributions: (i) we introduce

and define a set of 3D Shape attributes, including planarity,

symmetry and occupied space; (ii) we show that such prop-

erties can be successfully inferred from a single image us-

ing a Convolutional Neural Network (CNN); (iii) we intro-

duce a 143K image dataset of sculptures with 2197 works

over 242 artists for training and evaluating the CNN; (iv)

we show that the 3D attributes trained on this dataset gen-

eralize to images of other (non-sculpture) object classes;

and furthermore (v) we show that the CNN also provides a

shape embedding that can be used to match previously un-

seen sculptures largely independent of viewpoint.

1. Introduction

Suppose you saw the sculpture in Fig. 1(a) on vacation

and wanted to call your friend and tell her what you saw.

How might you describe it so she would know that you

were referring to the one in Fig. 1(a) and not the one in

(b)? What you would not do is describe the sculpture pixel

by pixel. Instead you would probably give a high level de-

scription in terms of overall shape, holes, curvature, sharp-

ness/smoothness, etc. This is in stark contrast to most con-

temporary 3D understanding algorithms that in the first in-

stance produce a metric map, i.e. a prediction of a local met-

ric property like depth or surface normals at each pixel.

The objective of this paper is to infer such generic 3D

shape properties directly from appearance. We term these

properties 3D shape attributes and introduce a variety of

specific examples, for instance planarity, thinness, point-

contact, to concretely explore this concept. Although such

attributes can be derived from an estimated depthmap in

principle, in practice (as we will show with baselines) view

dependence, insufficient resolution, errors and ambiguities

in the reconstruction render this indirect approach inferior.

As with classical object attributes and relative at-

tributes [12, 13, 35], 3D attributes offer a means of de-

scribing 3D object shape when confronted with something

(a) (b) 

Figure 1. How would you describe the shape of (a) and contrast

it with (b)? Probably not by quantifying the depth at each pixel,

but instead characterizing the overall 3D shape: in (a) the object

has a hole, does not have planar regions and is mostly smooth,

has unequal aspect ratio, and touches the ground once. In contrast

(b) has no hole and multiple parts that touch the ground multiple

times. This paper proposes to infer shape in these terms.

entirely new – the open world problem. This is in con-

trast to a long line of work which is able to say something

about 3D shape, or indeed recover it, from single images

given a specific object class, e.g. faces [7], semantic cat-

egory [23] or cuboidal room structure [18]. While there

has been success in determining how to apply these con-

straints, the problem of which constraints to apply is much

less explored, especially in the case of completely new

objects. Used inappropriately, scene understanding meth-

ods produce either unconstrained results [10, 14] in which

walls that should be flat bend arbitrarily or planar interpre-

tations [15, 33] in which non-planar objects like lamps are

flat. Shape attributes can act as a generic way of represent-

ing top-down properties for 3D understanding, sharing with

classical attributes the advantage of both learning and appli-

cation across multiple object classes.

There are two natural questions to ask: what 3D at-

tributes should be inferred, and how to infer them? In Sec-

tion 3, we introduce our attribute vocabulary, which draws

inspiration from and revisits past work in both the computer

and the human vision literature. We return to these ideas

with modern computer vision tools. In particular, as we de-

scribe in Section 5, we use Convolutional Neural Networks

(CNNs) to model this mapping and learn a model over all
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of the attributes as well as a shape embedding.

The next important question is: what data to use to inves-

tigate these properties? We use photos of modern sculptures

from Flickr, and describe a procedure for gathering a large

and diverse dataset in Section 4. This data has many de-

sirable properties: it has much greater variety in terms of

shape compared to common-place objects; it is real and in

the wild, so has all the challenging artifacts such as severe

lighting and varying texture that may be missing in syn-

thetic data. Additionally, the dataset is automatically or-

ganized into: artists, which lets us define a train/test split

to generalize over artists; works (of art) irrespective of ma-

terial or location, which lets us concentrate on shape, and

viewpoint clusters, which lets us recognize sculptures from

multiple views and aspects.

The experiments in Section 6 clearly show that we are

indeed able to infer 3D attributes. However, we also ask the

question of whether we are actually learning 3D properties,

or instead a proxy property, such as the identity of the artist,

which in turn enables these properties to be inferred. We

have designed the experiments both to avoid this possibility

and to probe this issue, and discuss this there.

2. Related Work

How do 2D images convey 3D properties of objects?

This is one of the central questions in any discipline involv-

ing perception – from visual psychophysics to computer vi-

sion to art. Our approach draws on each of these fields, for

instance in picking the particular attributes we investigate

or probing our learned model.

One motivation for our investigation of shape attributes

is a long history of work in the human perception commu-

nity that aims to go beyond metric properties and address

holistic shape in a view-independent way. Amongst many

others, Koenderink and van Doorn [26] argued for a set

of shape classes based on the sign of the principal curva-

tures and also that shape perception was not metric [27, 28],

and Biederman [6] advocated shape classes based on non-

accidental qualitative contour properties. We are also in-

spired by work on trying to use mental rotation [42, 44] to

probe how humans represent shape; here, we use it to probe

whether our models have learned something sensible.

A great deal of research in early computer vision sought

to extract local or qualitative cues to shape, for instance

from apparent contours [24], self-shadows and speculari-

ties [25, 47]. Recent computer vision approaches to this

problem, however, have increasingly reduced 3D under-

standing to the task of inferring a viewpoint-dependent 3D

depth or normal at each pixel [5, 10, 14]. These predictions

are useful for many tasks but do not tell the whole story, as

we argued in the introduction. This work aims to help fill

this gap by revisiting these non-metric qualitative questions.

Some exceptions to this trend include the qualitative labels

explored in [16, 20] like porous, but these initial efforts had

Curvature Properties Contact Properties Volumetric Properties 

4: Has Roughness 

8: Multiple Pieces 

12: Cubic Aspect Ratio 

1: Has Planarity 

5: Point/line contact 

9: Has Hole 

2: No Planarity 

6: Multiple Contacts 

10: Thin Structures 

3: Has Cylindrical 

7: Mainly Empty 

11: Mirror Symmetry 

Figure 2. The 3D shape attributes investigated in this paper, and

an illustration of each from our training set. Additional sample

annotations are shown in Fig. 5.

limited scope in terms of data variety, vocabulary size, and

quantity of images.

Our focus is 3D shape understanding, but we pose our

investigation into these properties in the language of at-

tributes [12, 13, 30, 31, 35] to emphasize their key prop-

erties of communicability and open-world generalization.

The vast majority of attributes, however, have been seman-

tic and there has never been, to our knowledge, a systematic

attempt to connect attributes with 3D understanding or to

study them with data specialized for 3D understanding. Our

work is most related to the handful of coarse 3D properties

in [12]. In addition to having a larger number of attributes

and data designed for 3D understanding, our attributes are

largely unaffected by viewpoint change.

3. 3D Attribute Vocabulary

Which 3D shape attributes should we model? We choose

12 attributes based on questions about three properties of

historical interest to the vision community – curvature (how

does the surface curve locally and globally?), ground con-

tact (how does the shape touch the ground?), and volumetric

occupancy (how does the shape take up space?).

Fig. 2 illustrates the 12 attributes, and sample annota-

tions are shown in Fig. 5, with more in the supplementary

material. We now briefly describe the attributes in terms of

curvature, contact, and volumetric occupancy.

Curvature: We take inspiration from a line of work on

shape categorization via curvature led by Koenderink and

van Doorn (e.g., [26]). Most sculptures have a mix of con-

vex and concave regions, so we analyze where curvature

is zero in at least one direction and look for (1) piece-

wise planar sculptures, and (2) sculptures with no planar

regions (many have a mix of planar/non-planar), (3) sculp-

tures where one principal curvature vanishes (e.g., cylin-

drical), and (4) rough sculptures where locally the surface
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changes rapidly.

Contact: Contact reasoning plays a strong role in under-

standing (e.g., [16, 19, 21]); we characterize ground contact

via (5) point/line contact-vs-solid contact, and (6) whether

it contacts the ground in multiple places.

Volumetric: Reasoning about free-space has long been a

goal of 3D understanding [19, 32, 38]. We ask (7) the frac-

tion of occupied space; (8) whether the sculpture has mul-

tiple pieces; (9) whether there are holes; (10) whether it

has thin structures; (11) whether it has mirror symmetry;

and (12) whether it has a cubic aspect ratio. These are, of

course, not a complete set: we do not model, for example,

enclosure properties or differentiate a hole from a mesh.

Note, of the 12 attributes, 10 are relatively unaffected

by a geometric affine transformation of the image (or 3D

space) – only the cubic aspect ratio and mirror symmetry

attributes are measuring a global metric property.

4. Gathering a Dataset of 3D Shapes

In order to investigate these 3D attributes, we need a

dataset of sculptures that has a diversity of shape so that

different subsets of attributes apply. We also require im-

ages spanning many viewpoints of each sculpture in order

to investigate the estimation of attributes against viewpoint.

Since artists often produce work in a similar style

(Calder’s sculptures are mostly piecewise planar, Brancusi’s

egg-shaped) we therefore need a variety of artists and multi-

ple works/images of each. Previous sculpture datasets [2, 3]

are not suitable for this task as they only contain a small

number of artists and viewpoints.

Thus we gather a new dataset from Flickr. We adopt

a five stage process to semi-automatically do this: (i) ob-

tain a vocabulary of artists and works (for which many im-

ages will be available); (ii) cluster the works by viewpoint;

(iii) clean up mistakes; (iv) query expand for more exam-

ples from Google images; and (v) label attributes. Note,

organization by artist is not strictly necessary. However,

artists are used subsequently to split the works into train

and test datasets: as noted above, due to an artists’ style,

shape attributes frequently correlate with an artist; Conse-

quently artists in the train and test splits should be disjoint to

avoid an overly optimistic generalization performance. The

statistics for these stages are given in Tab. 1.

4.1. Generating a vocabulary of artists and works

Our goal is to generate a vocabulary of artists and works

that is as broad as possible. We begin by producing a list of

artists, combining manually generated lists with automatic

ones, and then expand each artist to a list of their works.

The manual list consists of the artists exhibited at six

sculpture parks picked from online top-10 lists, as well as

those appearing in Wikipedia’s article on Modern Sculpture.

An automatic list is generated from metadata from the 20

largest sculpture groups on Flickr: we analyze image titles

Table 1. Data statistics at each stage and the trainval/test splits.

Stage Images Artists Works View. Clusters

Initial 352K 258 3412 –

View Clust. 213K 246 2277 16K

Cleaned 97K 242 2197 9K

Query Exp. 143K 242 2197 9K

Trainval/Test 109K/35K 181/61 1655/532 7.2K/2.1K

for text indicating that a work is being ascribed to an artist,

and take frequent bigrams and trigrams. The two lists are

manually filtered to remove misspellings, painters and ar-

chitects, a handful of mistakes, and artists with fewer than

250 results on Flickr. This yields 258 artists (95 from the

manual list, and 163 from the automatic).

We now find a list of potential works for each artist us-

ing both Wikipedia and text analysis on Flickr. We query

the sculptor’s page on Wikipedia, possibly manually dis-

ambiguating, and propose any italicized text in the main

body of the article as a possible work. We also query

Flickr for the artists’ works (e.g., Tony Smith Sculpture),

and do n-gram analysis in titles and descriptions in front

of phrases indicating attribution to the sculpture (e.g., “by

Tony Smith”). In both cases, as in [37], stop-word lists were

effective in filtering out noise. While Wikipedia has high

precision, its recall is moderate at best and zero for most

artists. Thus querying Flickr is crucial for obtaining high

quality data. Finally, images are downloaded from Flickr

for each work of each artist.

4.2. Building viewpoint clusters

Images from each work are partitioned into viewpoint

clusters. These clusters are image sets that, for example,

capture a different visual aspect of the work (e.g. from the

front or side) or are acquired from a particular distance or

scale (e.g. a close up). Fig. 3 shows example viewpoint

clusters for several works.

There are two principal reasons for obtaining viewpoint

clusters: (i) it enables recognition of a work from different

viewpoints to be evaluated; and (ii) it makes label annota-

tion more efficient as attributes are in general valid for all

images of a cluster. Note, it might be thought that attributes

could be labelled at the work level, but this is not always

the case. For example, the hole in a Henry Moore sculpture

or the ground contact of an Alexander Calder sculpture may

not be visible in some viewpoint clusters, so those clusters

will be labelled differently from the rest (i.e. no hole for the

former, and unknown for the latter).

Clustering proceeds in a standard manner by defining a

similarity matrix between image pairs, and using spectral

clustering over the matrix. The pairwise similarity mea-

sure takes into account: (i) the number of correspondences

(that there are a threshold number); (ii) the stability of these

correspondences (using cyclic consistency as in [46]); and
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(1)

(3) (4) (5)

Henry Moore Large Two Forms

Alexander Calder Eagle

(1)

(2)

…

…

…

…

…

…

(1)

(2)

(3) (4) (5) (6) (7) (8)

(3) (4) (5) (6) (7)

Figure 3. The dataset consists of 143K images of sculptures that were gathered from Flickr and Google images. A representative sample

is shown on the left. Note the great variety in shape, material, and style. More samples appear in the supplementary material. Our data

has structure in terms of artist, work, and viewpoint cluster (shown numbered on the right). Each is important for investigating 3D shape

attributes.

(iii) the viewpoint change (the rotation and aspect ratio

change obtained from an affine transformation between the

images). Computing correspondences requires some care

though since sculptures often do not have texture (and thus

SIFT like detections cannot be used). We follow [1] and

first obtain a local boundary descriptor for the sculpture (by

foreground-background segmentation and MCG [4] edges

for the boundaries), and then obtain geometically consis-

tent correspondences using an affine fundamental matrix.

Finally, a loose affine transformation is computed from the

correspondences (loose because the sculpture may be non-

planar, hence the earlier use of a fundamental matrix).

In general, this procedure produces clusters with high

purity. The main failure is when an artist has several visu-

ally similar works (e.g. busts) that are confused in the meta-

data used to download them. We also experimented with

using GPS, but found the tags to be too coarse and noisy to

define satisfactory viewpoint clusters.

4.3. Data Cleanup

The above processes are mainly automatic and conse-

quently make some mistakes. A number of manual and

semi-automatic post-processing steps are therefore applied

to address the main failings. Note, we can quickly manip-

ulate the dataset via viewpoint clusters as opposed to han-

dling each and every image individually.

Cluster filtering: Each cluster is checked manually using

three sample images to reject clearly impure clusters.

Regrouping: Some of the automatically generated works are

ambiguous due to noisy meta-data: for instance “Reclining

Figure” describes a number of Henry Moore sculptures. Af-

ter clustering, these are reassigned to the correct works.

Outlier image removal: A 1-vs-rest SVM is trained for each

work, using fc7 activations of a CNN [29] pretrained on

ImageNet [39]. Each work’s images are sorted according to

the SVM score, and the bottom images (≈ 10K across all

works) flagged for verification.

4.4. Expansion Via Search Engines

Finally, we augment the dataset by querying Google. We

perform queries with the artist and work name. Using the

same CNN activation + SVM technique from the outlier re-

moval stage, we re-sort the query results and add the top

images after verification. This yields ≈ 45K more images.

4.5. Attribute Labeling

The final step is to label the images with attributes. Here,

the viewpoint clusters are crucial, as they enable the label-

ing of multiple images at once. Each viewpoint cluster is

labeled with each attribute, or can be labeled as N/A in

case the attribute cannot be determined from the image (e.g.,
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(a) Positive Frequency (b) Correlation 

Key: (1) Planar (2) No Planar (3) Cylindrical (4) Rough (5) Point Contact (6) Multiple 

Contact (7) Empty (8) Multiple Pieces (9) Holes (10) Thin (11) Symmetric (12) Cubic 

Figure 4. (a) Frequency of each attribute (i.e., # positives /# la-

beled); (b) Correlation between attributes.
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Figure 5. Sample positive and negative annotations from the

dataset for the planar, has-holes, and empty attributes. More ex-

amples are included in the supplementary material.

contact properties for a hanging sculpture). One difficulty

is determining a threshold: few sculptures are only planar

and no sculpture is fully empty. We assume an attribute is

satisfied if it is true for a substantial fraction of the sculp-

ture, typically 80%. To give a sense of attribute frequency,

we show the fraction of positives in Fig. 4(a).

The dataset is also diverse in terms of combinations of

attributes and inter-attribute correlation. There are 212 =
4096 possible combinations, of which 393 occur in our data.

Most attributes are uncorrelated according to the correla-

tion coefficient φ, as seen in Fig. 4(b): mean correlation is

φ = 0.20 and 72% of pairs have φ < 0.2. The two strong

correlations (φ > 0.5) are, unsuprisingly, (1) planarity and

no planarity; and (2) emptiness and thinness.

5. Approach

We now describe the CNN architecture and loss func-

tions that we use to learn the attribute predictors and shape

embedding. We cast this as multi-task training and optimize

directly for both. Specifically, the network is trained using

a loss function over all attributes as well as an embedding

loss that encourages instances of the same shape to have the

same representation. The former lets us model the attributes

that are currently labeled. The latter forces the network to

learn a representation that can distinguish sculptures, im-

12D Shape  

Attributes 

1024D Shape 

Embedding 

5 Conv. Layers 2 FC Layers Input  

Figure 6. The multi-task network architecture, based on VGG-M.

After shared layers, the network branches into layers specialized

for attribute classification and shape embedding.

plicitly modeling aspects of shape not currently labeled.

Network Architecture: We adapt the VGG-M architecture

proposed in [9]. We depict the overall architecture in Fig. 6:

all layers are shared through the last fully connected layer,

fc7. After fc7, the model splits into two branches, one for

attributes, the other for embedding. The first is an affine

map to 12D followed by independent sigmoids, produc-

ing 12 separate probabilities, one per attribute. The second

projects fc7 to a 1024D embedding which is then normal-

ized to unit norm.

We directly optimize the network for both outputs, which

allows us to obtain strong performance on both tasks. The

first loss models all the attributes with a cross-entropy loss

summed over the valid attributes. Suppose there are N sam-

ples and L attributes, each of which can be 1 or 0 as well as

∅ to indicate that the attribute is not labeled; the loss is

L(Y, P ) =

NX

i=1

LX

l=1

Yi,l 6=;

Yi,l log(Pi,l)+(1−Yi,l) log(1−Pi,l), (1)

for image i and label l, where we denote the label matrix

as Yi,l ∈ {0, 1, ∅}N,L and the predicted probabilities as

Pi,l ∈ [0, 1]N,L. The second loss is an embedding loss over

triplets as in [40, 41, 45]. Each triplet i consists of an an-

chor view of one object xa
i , another view of the same object

xp
i , as well as a view of a different object xn

i . The loss aims

to ensure that two images of the same object are closer in

feature space compared to another object by a margin:

X

i=1

max (D(xa
i , x

p
i )−D(xa

i , x
n
i ) + α, 0) (2)

where D(·, ·) is squared Euclidean distance. We generate

triplets in a mini-batch and use soft-margin violaters [40].

We see a number of advantages to multi-task learning.

It yields a network that can both name attributes it knows

about and model the 3D shape space implicitly. Addition-

ally, we found it to improve learning stability, especially

compared to individually modeling each attribute.

Configurations: We explore two configurations to validate

that we are really learning about 3D shape. Unless other-

wise specified, we use the system described above, Full.

However, to probe what is being learned in one experiment,

we also learn a network that only optimizes the attribute

Loss (1), which we refer to as Attribute-Only.

1520



Planar

Non-Planar

Cylindrical

Rough Surf

Pnt/L Contact

Mult. Contact

Empty

Mult. Pieces

Holes

Thin

Mirror Sym.

Cubic Aspect

Planar
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Non-Planar

Cylindrical

Rough Surf

Pnt/L Contact

Mult. Contact

Empty

Mult. Pieces

Holes

Thin

Mirror Sym.

Cubic Aspect

Figure 7. Predictions for all attributes on test images. The system

has never seen these sculptures or ones by the artists who made

them, but generalizes successfully.

Implementation Details: Optimization: We use a standard

stochastic gradient descent plus momentum approach with

a batch size of 128. Initialization: We initialize the net-

work using the model from [9] which was pre-trained on

image classification [39]. Parameters: We use a learning

rate of 10−4 for the pre-trained layers, and 10−4 and 10−3

for classification and embedding layers respectively. Aug-

mentation: At training time, we use random crops, flips, and

color jitter. At test time, we sum-pool over multiple scales,

crops and flips as in [9].

6. Experiments

We describe a set of experiments to investigate both the

performance of the learnt 3D shape attribute classifiers, and

what has been learnt. We aim to answer two basic ques-

tions: (1) how well can we predict 3D shape attributes from

a single image? and (2) are we actually predicting 3D prop-

erties or a proxy property that correlates with attributes in an

image? To address (1) we evaluate the performance on the

Sculpture Images Test set, and also compare to alternative

approaches that first predict a metric 3D representation and

then derive 3D attributes from that (Sec. 6.1). We probe (2)

in two ways. First, by evaluating the learnt representation

for a different task – determining if two images from dif-

ferent viewpoints are of the same object or not (Sec. 6.2);

and, second, by evaluating how well the 3D shape attributes

trained on the Sculpture images generalize to non-sculpture

data, in particular to predicting shape attributes on PASCAL

VOC categories (Sec. 6.3).

6.1. Attribute Prediction

We first evaluate how well 3D shape attributes can be es-

timated from images. Here, we report results for our full

network. Since our dataset is large enough, the attribute-

only network does similarly. We compare the approach pro-

Rough Surface

Point/Line Contact

Thin Structures

Most Least

…

…

…

Figure 8. Test images sampled at the top, 95th, 5th percentiles and

lowest percentile with respect to three attributes.

posed in this paper (which directly infers holistic attributes)

to a number of baselines that are depth orientated, and start

by computing a metric depth at every pixel.

Baselines: The baselines start by estimating a metric 3D

map, and then attributes are extracted from this map. We

use two recent methods for estimating depth from single

images with code available: a CNN-based depth estima-

tion technique [10] and an intrinsic images technique [5].

Since [5] expects a mask, we use the segmentation used for

collecting the dataset (in Sec. 4.2). One question is: how

do we convert these depthmaps into our attributes? Hand-

designing a method is likely to produce poor results. We

take a data-driven approach and treat it as a classification

problem. We use two approaches that have produced strong

performance in the past. The first is a linear SVM on top

of kernel depth descriptors [8], which convert the depthmap

into a high-dimensional vector incorporating depth configu-

rations and image location. The second is the HHA scheme

[17], which converts the depthmap into a representation

amenable for fine-tuning a CNN; in this case, we learn the

attribute network described in section 5.

Evaluation Criteria: Each method produces a prediction

scoring how much the image has the attribute. We charac-

terize the predictive ability of these scores with a receiver

operator characteristic (ROC) over the Sculpture images

test set. This enables comparison across attributes since

the ROC is unaffected by class frequency. We summarize

scores with the area under the curve.

Results: Fig. 7 shows predictions of all of the attributes on

a few sculptures. To help visualize what has been learned,

we show automatically sampled results in Fig. 8, sorted by

the predicted presence of attributes. Additional results are

given in the supplementary material.

We report quantitative results in Table 2. On an absolute

basis, certain attributes, such as planarity and emptiness, are
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Table 2. Area under the ROC curve. Higher is better. Our approach outperforms the baselines by a large margin and achieves strong

performance on an absolute basis.

Curvature Contact Occupancy

Method Plan ¬ Plan Cyl Rough P/L Mult Emp Mult Hole Thin Sym Cubic Mean

[5] + [8] 64.1 63.4 51.2 61.3 61.1 61.6 66.5 52.8 56.0 63.5 56.2 55.7 59.4

[10] + [8] 64.6 61.0 50.6 60.6 57.5 60.9 65.2 55.7 52.4 65.7 57.2 51.2 58.5

[5] + [17] 70.0 64.4 53.1 63.9 63.6 64.8 73.7 56.4 54.1 69.7 60.2 56.2 62.5

[10] + [17] 67.5 61.8 51.9 64.8 58.5 64.8 71.5 57.8 52.4 67.7 59.4 56.1 61.2

Proposed 82.8 77.2 56.9 76.0 74.4 76.4 87.0 60.4 69.3 85.8 60.8 60.3 72.3

(b) (a) (c) 

Figure 9. In mental rotation, the goal is to verify that (a) and (b)

correspond and (a) and (c) do not. Roughness is a useful cue here.

easier than others to predict, as seen by their average per-

formance; the harder ones include ones based on symmetry

and aspect ratio, which may require a global comparison

across the image, as opposed to aggregation of local judg-

ments.

In relative terms, our approach out-performs the base-

lines, with especially large gains on planarity, emptiness,

and thinness. Note that reconstructing thin structures is

challenging even with stereo pairs; an approach based on

depth-prediction is likely to fail at reconstruction, and thus

on attribute prediction. Instead, our system directly recog-

nizes that the object is thin (e.g., Fig. 7 bottom). Fig. 8

shows that frequently, the instances that least have an at-

tribute are the negation of the attribute: for example, even

though many other sculptures are not rough, the least rough

objects are especially smooth.

The system’s mistakes primarily occur on images where

it is uncertain: sorting the images by attribute prediction

and re-evaluting on the top and bottom 25% of the images

yields a substantial increase to 77.9% mean AUC; using the

top and bottom 10% yields an increase to 82.6%.

Throughout, we fix our base representation to VGG-M

[9]. Switching to VGG-16 [43] gives an additional boost:

the mean increases from 72.3 to 74.4 and 1/3 of the at-

tributes are predicted with AUCS of 80% or more.

6.2. Mental Rotation

If we have learned about 3D shape, our learnt represen-

tation ought to encode or embed 3D shape. But how do

we characterize this embedding systematically? To answer

this, we turn to the task of mental rotation [42, 44] which is

the following: given two images, can we tell if they are dif-

ferent views of the same object or instead views of different

objects? This is a classification task on the two presented

images: for instance, in Fig. 9, the task is to tell that (a) and

(b) correspond, and that (a) and (c) do not.

Note, the design of the dataset has tried to ensure that

sculpture shape is not correlated with location by ensuring

that images of a particular work come from different loca-

tions (since multiple instances of a work are produced) and

different materials (e.g., bronze and stone in Fig. 9).

We report four representations: (i) the 1024D embedding

produced by our full network; (ii) the 4096D fc7 layer of the

full network; (iii) the 4096D fc7 layer of the attribute-only

network; (iv) the attribute probabilities themselves from the

full network. If our attribute network is using actual 3D

properties, then the attribute network’s activations ought to

work well for the mental rotation task even though it was

never trained for it explicitly. Additionally, the attributes

themselves ought to perform well.

Baselines: We compare our approach to (i) the pretrained

FC7 from the initialization of the network and to (ii) IFV

[36] over the BOB descriptor [2] that was used to create the

dataset and dense SIFT [34]. The pre-trained FC7 charac-

terizes what has been learned; the IFV representations help

characterize the effectiveness of the attribute predictions on

their own. We use the cosine distance throughout.

Evaluation Criteria: We adopt the evaluation protocol of

[22] which has gained wide acceptance in face verification:

given two images, we use their distance as a prediction of

whether they are images of the same object or not. Perfor-

mance is measured by AUROC, evaluated over 100 million

of the pairs, of which 0.9% are positives. Unlike [22], pos-

itives in the same viewpoint cluster are ignored: these are

too easy decisions.

We further hone in on difficult examples by auto-

matically finding and removing easy positives which can

be identified with a bare minimum image representation.

Specifically, we remove positive pairs with below-median

distance in a 512-vocabulary bag-of-words over SIFT repre-

sentation. This yields a more challenging dataset with 0.3%
positives. As mentioned in Sec. 4 artists often produce work

of a similar style, and the most challenging examples are of-

ten pairs of images from the same artist (which may or may

not be of the same work). We call the standard setting Easy
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Table 3. AUC for the mental-rotation task. Both variants of our

approach substantially out-perform the baselines.

Full Network Attr. Only Pretrained IFV

Emb. FC7 Attr FC7 FC7 [34] [2]

All 92.3 90.7 81.9 89.8 88.9 78.0 74.4

Hard 86.9 84.1 76.4 82.5 80.0 57.3 61.9
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Attributes − (76.40/30.54)

IFV SIFT − (57.34/44.65)

IFV BOB − (61.92/41.29)

(a) Easy Setting (b) Hard Setting

Figure 10. Mental rotation ROCs for easy and hard settings. In the

legend, we report the AUC and EER for each method.

and the filtered setting with only hard positives Hard.

Results: Table 3 and Fig. 10 show results for both set-

tings. By themselves, the 12D attributes produce strong

performance, 3-4% better than IFV representations. The

attribute-only network improves over pretraining (by 0.9%

in easy, 2.5% in hard), suggesting that it has learned the

shape properties needed for the task. The full system does

best and substantially better than any baseline (by 3.4% in

easy, 6.9% in hard). Relative performance compared to the

initialization consistently improves for both the full system

and the attribute-only system when going from Easy to Hard

settings, providing further evidence that the system is in-

deed modeling 3D properties.

6.3. Object Characterization

Our evaluation has so far focused on sculptures, and one

concern is that what we learn may not generalize to more

everyday objects like trains or cats. We thus investigate our

model’s beliefs about these objects by analyzing its activa-

tions on the PASCAL VOC dataset [11]. We feed the win-

dows of the trainval set of VOC-2010 to our shape attribute

model, and obtain a prediction of the probability of each at-

tribute. We probe the representation by sorting class mem-

bers by their activations (i.e., “which trains are planar?”)

and sorting the classes by their mean activations.

Per-image results: The system forms sensible beliefs about

the PASCAL objects, as we show in Fig. 11. Looking

at intra-class activations, cats lying down are predicted to

have single, non-point contact as compared to ones standing

up; trains are generally planar, except for older cylindrical

steam engines. Similarly, the non-planar dining tables are

the result of occlusion by non-planar objects.

Per-category results: The system performs well at a

Point/Line Contact

Planarity

Most Least

Most Least

Figure 11. The top activations on PASCAL objects for Planarity

and Point/Line Contact.

category-level as well. Note that averaging over windows

characterizes how objects appear in PASCAL VOC, not

how they are prototypically imagined: e.g., as seen in

Fig. 11, the cats and dogs of PASCAL are frequently ly-

ing down or truncated. The top 3 categories by planarity are

bus, TV Monitor, train; and the bottom 3 are cow, horse,

sheep. For point/line contact: bus, aeroplane, car are at the

top and cat, bottle, sofa are at the bottom. Finally, sheep,

bird, and potted plant are the roughest categories in PAS-

CAL and car, bus, and aeroplane the smoothest.

Discriminating between classes: It ought to be possible to

distinguish between the VOC categories based on their 3D

properties, and thus we verify that the predicted 3D shape

attributes carry class-discriminative information. We rep-

resent each window with its 12 attribute probabilities and

train a random forest classifier for two outcomes in a 10-

fold cross-validation setting: a 20-way multiclass model

and a one-vs-rest. The multiclass model achieves an ac-

curacy of 65%, substantially above chance. The one-vs-rest

model achieves an average AUROC of 89%, with vehicles

performing best.

7. Summary and extensions

We have shown that 3D attributes can be inferred directly

from images at quite high quality. These attributes open a

number of possibilities of applications and extensions. One

immediate application is to use this system to complement

metric reconstruction: shape attributes can serve as a top-

down cue for driving reconstruction that works even on

unknown objects. Another area of investigation is explic-

itly formulating our problem in terms of relative attributes:

many of our attributes (e.g., planarity) are better modeled

in relative terms. Finally, we plan to investigate which cues

(e.g., texture, edges) are being used to infer these attributes.
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