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Abstract

Interactive image segmentation is an important problem

in computer vision with many applications including im-

age editing, object recognition and image retrieval. Most

existing interactive segmentation methods only operate on

color images. Until recently, very few works have been pro-

posed to leverage depth information from low-cost sensors

to improve interactive segmentation. While these methods

achieve better results than color-based methods, they are

still limited in either using depth as an additional color

channel or simply combining depth with color in a lin-

ear way. We propose a novel interactive segmentation al-

gorithm which can incorporate multiple feature cues like

color, depth, and normals in an unified graph cut framework

to leverage these cues more effectively. A key contribution of

our method is that it automatically selects a single cue to be

used at each pixel, based on the intuition that only one cue is

necessary to determine the segmentation label locally. This

is achieved by optimizing over both segmentation labels and

cue labels, using terms designed to decide where both the

segmentation and label cues should change. Our algorithm

thus produces not only the segmentation mask but also a cue

label map that indicates where each cue contributes to the

final result. Extensive experiments on five large scale RGBD

datasets show that our proposed algorithm performs signif-

icantly better than both other color-based and RGBD based

algorithms in reducing the amount of user inputs as well as

increasing segmentation accuracy.

1. Introduction

Binary image segmentation is the process of separating

pixels into foreground and background. It is an important

problem for many computer vision applications, e.g. image

editing, object recognition, image retrieval, etc. Automatic

segmentation is intrinsically ambiguous and thus cannot ob-

tain satisfactory results on an arbitrary image without any

high-level understanding of the content. On the other hand,

interactive image segmentation allows a user to tell the al-

Figure 1: Example foreground/background cases. (a) com-

plex appearance, clean depth separation; (b) touching sur-

face; (c) same surface, different appearance; (d) touching

surface, similar appearance, background clutter.

gorithm what should be selected or not. An ideal interactive

segmentation algorithm should: 1) require minimal amount

of user interaction; 2) achieve good accuracy. However, the

colors in an image are affected by illumination, appearance,

occlusion, etc., making them less reliable for the segmen-

tation task. Due to this fact, significant effort from users

is still necessary to achieve satisfying results on complex

images.

Recent years have witnessed the emergence of low-cost

depth sensors, such as Microsoft Kinect, Intel Realsense

and Google Project Tango. These sensors are able to ac-

quire a depth image which captures the physical distance

of the scene to the camera at each pixel. This information

is very useful for image segmentation but is lost in color

imaging process. Besides depth, other feature cues can also

be extracted from a depth image to describe the scene, e.g.

normal map, 3D point cloud, mesh structure, etc. Together

with paired RGB color image, an RGBD image allows the

possibility of combining multiple complimentary cues for

the interactive segmentation problem to reduce user input

while maintaining or even improving accuracy.

Despite this, few works [5] [6] have been published on

interactive segmentation on RGBD images. These works

either treat depth as an additional color channel or simply

perform a global linear combination of different cue confi-

dences to produce the final result, allowing them to achieve

better performance than if using color alone. However, ob-

jects and scenes in the real world are complicated, as shown

in Fig. 1. Mixing depth and color cues in a fixed way can
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Figure 2: Example result of our algorithm. Foreground

click is colored in green and background click is red.

reduce the original discriminative power of each individ-

ual cue and not allow the algorithm to adapt, e.g. when

an object and background are separated in depth (Fig. 1a),

the depth is more useful in determining the foreground than

when selecting a color region on a single surface (Fig. 1c).

Such methods also provide no way of knowing which cues

where most useful for achieving a given segmentation.

To better handle and integrate multiple cues, we propose

a novel cue-selection-based interactive RGBD segmenta-

tion algorithm within a graph cut framework. We observe

that at least one cue will have highest confidence in distin-

guishing foreground and background locally, which means

only one cue per pixel is necessary to infer the final segmen-

tation result. Thus, we convert the standard binary labeling

problem into a multi-label problem with each label repre-

senting both the segmentation label (foreground or back-

ground) and cue label (color, depth, normal). This allows

different cues to take effect in different areas of the image,

and allows the algorithm to respond to the individual image

and the user input. An example result of our algorithm is

given in Fig. 2 where in the first row the algorithm segments

out the whole dress based on the depth cue given the first

foreground click since the depth cue gives a clear separa-

tion of the dress and background. By adding a background

click on the upper white part, our algorithm can intelligently

obtain only the lower blue part by switching to use the color

cue as shown in the second row.

Our primary contribution is this multi-cue-selection-

based interactive selection paradigm as applied to RGBD

image selection. We model the foreground/background

probablities using a geodesic-distance-based adaptive fore-

ground confidence map. The pairwise term is designed to

ensure smoothness of both segmentation label and cue la-

bel. Alpha-beta swap is used to efficiently find the optimal

labels. Our approach is similar to applying a dynamic bi-

nary weighting among multiple cues at each pixel location

where only one cue gets a non-zero cue weight. To evaluate

our algorithm, extensive experiments are conducted on five

large scale RGBD datasets captured from different depth

sensors. Our method is able to achieve similar or better seg-

mentation accuracy with significant fewer user inputs when

comparing with color based algorithms and other RGBD

based algorithms.

2. Related Works

2.1. Interactive segmentation on color images

A large body of work has been proposed for segmen-

tation on color images. Among them, the graph cut based

framework has been very popular since it was introduced by

Boycov et. al [18]. In their work, the image is represented

by a graph and user inputs act as hard constraints. Graph

cut is used to find a globally optimal segmentation based

on an energy function with balanced region and boundary

information. However, [18] is limited in its reliance on

color information only, and so can fail in cases where the

foreground and background color distributions are overlap-

ping or complicated. Various works tried to improve on

this color-based segmentation. GrabCut [14] iteratively up-

dates a Gaussian Mixture Model (GMM) of the foreground

and background to try to improve the segmentation. Bai et

al. [2] uses geodesic paths instead of graph cut to avoid its

boundary-length bias. Price et al. [13] combines geodesics

with graph cut to try to take advantage of their relative

strengths. Gulshan et al. [7] introduces a star-convexity

shape constraint to work with geodesic distances for seg-

mentation. While these enhancements can improve the in-

teractive experience, they are still limited to the fact that

they rely on the color information only and so still struggle

in cases of overlapping or complex foreground/background

color distributions.

2.2. Interactive segmentation on RGBD images

Unlike the flourish of interactive segmentation methods

for color images, there are very few works about interactive

segmentation on RGBD images. Diebold et al. [5] utilizes

a segmentation formulation based on total variation. Depth

is added as an additional color channel and a joint distri-

bution for foreground pixels is computed by incorporating

three Gaussian kernels for distance, color and depth respec-

tively. This method extends the spatially varying color dis-

tributions [11] using 3D geometry and the distance is also

computed using depth information. Experiments on a small

RGBD dataset shows the proposed method achieves better

segmentation quality with less user scribbles required. In
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another recent work, Ge et al. [6] employs a binary graph

cut framework where color and depth cues are used sepa-

rately to compute costs that are linearly combined as the

final unary term. Histogram and geodesic distance are used

for each cue respectively. A hierarchical image pyramid

is also used to speed up graph cut process. Experiments

performed on the RGBD saliency dataset [12] and a stereo

dataset demonstrates better results than [5].

Although the above methods show the obvious advan-

tage of using RGBD image for interactive segmentation,

they either add depth as an additional color channel to com-

pute the foreground confidence or take a simple linear com-

bination with color and depth cues. This additive nature can

be problematic when only one cue is useful in segmentation,

e.g. different colors on the same depth surface or similar

color for foregrounds and backgrounds or differing depth.

Adding the cues directly can reduce the discriminability of

cues overall thus making it harder to produce good results

with limited user inputs. Our approach instead selects only

one cue to determine the segmentation locally, resulting in a

practical and general method for fusing multiple cues while

preserving the original foreground confidence for each cue.

3. Approach

We first introduce the basic graph cut framework for

color image segmentation. Then we describe how this

framework can be adopted for our RGBD segmentation

with cue selection capability.

3.1. Binary MRF for Interactive Segmentation

Let i denote a pixel in image I and Ω denote the set of

all pixels in I . N is the set of adjacent pixel pairs. Interac-

tive image segmentation is the problem of dividing Ω into

two disjoint sets, Ω1 for foreground and Ω0 for background,

given some user inputs. It is usually formulated as a binary

labeling problem via Markov Random Field (MRF) with the

following energy function:

E(S) =
∑

i∈Ω

D(Si) + λ
∑

(i,j)∈N

f(Si, Sj) (1)

where Si is the segmentation label for pixel i and S is the

labeling of all pixels. Si takes the value of 0 or 1 to indicate

the pixel belongs to background or foreground respectively.

In Eq. 1, D(Si) represents the cost to assign label Si to pixel

i. It is often referred to as unary term which usually takes

the form of:

D(Si) = −log P (Si) (2)

where P (Si) is the probability of pixel i being assigned to

label Si. For user specified foreground or background pix-

els, the probability is set to 1 for corresponding labels to

make sure the final result obeys user inputs. f(Si, Sj) is the

cost for assigning a pixel pair Si and Sj and is referred to

as the pairwise term. In the color image case, f(Si, Sj) has

the form:

f(Si, Sj) =

{

0 if Si = Sj

g(i, j) if Si 6= Sj

(3)

with the similarity between adjacent pixels given by

g(i, j) = exp(
−|Ii−Ij |

2

2σ2 ) where Ii is the color pixel value

for pixel i, so the cost will be small if we assign different

labels to nearby pixels with low similarity. λ controls the

balance between unary and pairwise terms. By minimiz-

ing Eq. 1, we are able to get the optimal pixel labeling S∗.

Graph cut [3] can be used to efficiently minimize this en-

ergy function.

3.2. RGBD Segmentation as Multi­label MRF

To better handle complex natural scenes, we use three

different cues to infer foreground confidence for each pixel.

Color is useful for identifying foregrounds with different

appearance from their backgrounds. Given a depth map,

we extract two types of cues for each pixel. First, we use

the depth value directly as one cue since it gives important

information about the relative spatial distance between fore-

ground and background. Furthermore, to be able to distin-

guish objects with different geometry but similar distance,

normal vectors are computed from a depth-projected 3D

point cloud.

To tackle segmentation by fusing multiple cues, we pro-

pose a cue selection approach based on the assumption that

given certain user inputs, only one cue is required to explain

the segmentation result for each pixel. More specifically, we

want to know 1) if the pixel is foreground or background; 2)

which cue is most discriminative in determining the label-

ing. This assumption aligns well with our intuition, allows

our algorithm to determine how to apply the cues on a local

basis, and also provides an interpretation of how each cue

contributes to the segmentation. Based on this motivation,

we form a label pair Xi =< Si, Ci > for each pixel i. Si is

the segment label which takes the value of 0 or 1 to indicate

if the pixel is background or foreground respectively. Ci is

the cue label which takes the value from 0 to N-1 if there

are N cues. By linearizing the label pair into a label within

a [0, 2×N) range, we can reformulate the labeling problem

as a multi-label MRF.

E(X) =
∑

i∈Ω

D(Xi) + λ
∑

(i,j)∈N

f(Xi, Xj) (4)

To adapt this model to our problem, we need to provide

appropriate energy terms.
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3.2.1 Foreground/Background Confidence Maps

For the unary term, it is similar to the binary case where

each label will have a corresponding cost:

D(Xi) = 1− PCi
(Si) (5)

The probability PCi
(Si) is based on a confidence map for

cue Ci that indicates how likely a pixel belongs to fore-

ground or background for that individual feature. We found

this form works better than the log form as in Eq. 2. We

compute this confidence map using a geodesic distance

transform.

The geodesic distance transform has been used in inter-

active segmentation methods [2] [13] [7] to achieve very

promising results. Geodesic distance inherently encodes

spatial information between pixels and is good at separat-

ing regions with similar feature values that are not adjacent.

This property fits well with interactive segmentation where

the target is usually a single connected component. Also,

since a depth map shows the physical connectivity of pixels,

using geodesic distance can produce a more useful distance

measure between pixels and user inputs.

We compute foreground and background confidence

map given user inputs U where U1 denotes foreground pix-

els and U0 the background pixels as indicated by the user.

We first construct a weighted graph G = (V,E), where V is

a set of nodes and E the edges between nodes. The weight

is computed using a different distance measure for each fea-

ture cue. For color, we convert RGB value into LAB space

and use L2 norm as distance. For depth, the absolute differ-

ence between depth values is used. As for normal, cosine

similarity is used to compute the similarity score between

two unit normal vectors and then converted to a distance

measure. The geodesic distance between any two pixels i

and j is essentially the length of the shortest path d(i, j)
on G. It can be computed exactly with Dijkstra’s algo-

rithm. For each pixel i, we calculate a geodesic distance to

the closest foreground pixel as d(i, U1) = minj∈U1
d(i, j).

Similarly for background, we get d(i, U0). Then we convert

the two values into a probability measure:

PCi
(Si) =

d(i, US̄i
)

d(i, USi
) + d(i, US̄i

)
(6)

where S̄i is the opposite label of Si (e.g. if Si = 0 then

S̄i = 1). This is done for each feature cue independently.

3.2.2 Multi-cue Pairwise Term

The pairwise term is similar to the single-cue case in Eq. 3

except modified to handle multiple cues:

f(Xi, Xj) =

{

0 if Ci = Cj and Si = Sj

g′(i, j) otherwise
(7)

where

g′(i, j) = min

(

exp

(

−D2
Ci
(i, j)

2σ2
Ci

)

, exp

(

−D2
Cj
(i, j)

2σ2
Cj

))

(8)

and DCi
is the raw feature distance between adjacent nodes

for cue Ci as computed in geodesic distance transform.

In the case that Ci = Cj , this is the same as Eq. 3 being

applied to the feature Ci. No cost is assigned if the seg-

ment label does not change, and a cost inverse to the edge

strength is assigned if different segment labels are given. In

the case that Ci 6= Cj , we want the algorithm to always

choose the most discriminative cue to decide where to place

the boundary versus where to enforce smoothness in the la-

bels. Thus the cost is based on the inverse edge strength of

the best cue possible.

3.2.3 Optimization

Given the unary and pairwise terms, we combine them into

the MRF formulation in Eq. 4. Directly minimizing the en-

ergy function is an NP-complete problem in general. There

exist methods to search for a local minimum such as alpha

expansion [4] and alpha-beta swap [4]. Since our pairwise

term is not a sub-modular function, it can not be optimized

by alpha expansion. Thus alpha-beta swap is adopted. This

algorithm randomly selects two labels from the label set and

tries to reduce the energy by swapping these labels. It usu-

ally only takes a few iterations (3-4) to converge.

To ensure good responsiveness for interactive segmenta-

tion, we use superpixels instead of pixels as nodes in our

graph to reduce the node numbers. We use SLIC [1] to

compute our superpixels due to its regular shaped results

and good efficiency. The feature vector of each cue on a su-

perpixel is the mean value of all pixel features. Superpixels

are extracted from color image given that depth map is well

aligned. The mean feature vector for a superpixel is robust

to light misalignment between color and depth. The pixel

level confidence map can be created by setting all pixels

within the same superpixel to the superpixel score.

Superpixels may not exactly follow the object bound-

ary at the pixel level. To produce an accurate and smooth

boundary, a pixel-level boundary refinement is performed

after obtaining the segmentation mask. Only superpixels

along the foreground and background boundary are allowed

to change. We set pixels within these superpixels to have

unknown labels. All other pixels are set to either hard fore-

ground or background based on their corresponding super-

pixels. GrabCut [14] is used to infer the labels for boundary

pixels.

3.2.4 User Interaction

In an interactive segmentation problem, user inputs typ-

ically can take one of the following forms: 1) fore-
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ground/background clicks: this gives the least amount of

user inputs; 2) foreground/background strokes: this is es-

sentially a series of clicks; 3) bounding box around target

object: strong indication of background outside the box and

weak indication of object inside the box. These three forms

of user inputs can all be converted to a pixel-level input to

be used in our problem setting. In this work, we look at the

first input type, fg/bg clicks, as it brings the best user ex-

perience by imposing the least amount of effort at user side

and at the same time is the most challenging one with the

least supervision for a segmentation algorithm.

When starting, a user may provide a foreground click

before any background clicks. When this happens, the fore-

ground probability will be computed as d(i, U1) normal-

ized by maxi d(i, U1). Because of the cumulative nature

of geodesic distance, even the pixels within the same ob-

ject may receive a big distance value if they are far away

from the foreground pixels. To deal with this issue, we

adopt a background prior similar with that used in salient

object detection [17]. We treat superpixels touching the im-

age boundary as potential background. To deal with cases

where the object is touching the image boundary, we com-

pute a likelihood score for each superpixel. Unlike the 1D

saliency measure used in [17], the additional depth map pro-

vides much stronger evidence of how a boundary superpixel

is connected to a foreground superpixel. We use a prede-

fined threshold (0.5) on depth geodesic distance between

boundary superpixels and the closest foreground superpixel.

Those having a larger distance are classified as background.

4. Experiments

4.1. Datasets

We evaluate our RGBD interactive segmentation algo-

rithm on five datasets captured by two popular depth sen-

sors, Microsoft Kinect v1 and Kinect v2. Kinect v1 uses

structured light for measuring depth while Kinect v2 uses

Time-of-Flight (ToF) to get higher fidelity depth values.

For Kinect v1 datasets, we used 3 public datasets: RGBD

Salient Object dataset (Saliency) [12], Berkeley 3D dataset

(B3D) [8] and NYU Depth2 dataset (NYU2) [15]. The

RGBD salient object dataset contains 1000 images with cor-

responding depth images. Both indoor and outdoor scenes

are covered. Each image contains only one annotated ob-

ject. The Berkeley dataset contains 849 RGBD images from

indoor scenes, each image usually containing more than

one object. It was originally collected for object detection,

and we use a subset of 554 images with the object masks

from [16]. The NYU2 dataset contains 1449 RGBD images

mostly of cluttered scenes that have many small objects.

Since the dataset provides category labels for each pixel, we

extract object masks from these annotations. For Kinect v2

datasets, we use those provided by the SUN RGBD bench-

mark suite [16]. The benchmark includes two Kinect v2

datasets, one with 300 images (alignedkv2) and the other

with 3486 images (kv2data).

We use all annotated objects in each dataset as a target

to segment. To the best of our knowledge, this is by far the

largest evaluation task for interactive segmentation both on

color and RGBD images. These datasets exhibit diverse real

world scenes with various object categories, making seg-

mentation very challenging.

4.2. Evaluation Protocol

For interactive segmentation, the most important perfor-

mance metrics are segmentation accuracy and the amount

of user inputs required. We use the following two protocols

to cover both cases.

4.2.1 Accuracy given fixed inputs

To compute accuracy of an output segment given a ground

truth segment, we use Jaccard coefficients as in prior

works [9] [6]. It computes the ratio of areas from segment

intersection and segment union, aka IoU (Intersection over

Union). We give the same inputs to all methods for fair

comparison. The inputs are computed as skeleton pixels of

both foreground and background regions for each ground

truth mask. An example input is shown in Fig. 3.

Figure 3: Example skeleton input. From left to right: color

image, ground truth mask, foreground skeleton, background

skeleton.

4.2.2 Accuracy vs. Clicks (AvC)

To show the effort required by a user for the interactive seg-

mentation task, we calculate the average IoU value given

a certain number of clicks. In order to conduct large scale

evaluation in an automatic way, we designed a method to

predict the next best click adaptively given the output seg-

ment mask and ground truth mask. First, we compute the

intersection of the ground truth and current segmentation

mask. We subtract it from the ground truth to obtain re-

gions that need to be added, and subtract it from the current

selection to obtain regions that need to be removed. Con-

sidering disjoint regions may exist in the mask, we extract

the largest connected component from it and compute its

centroid. The valid pixel closest to the centroid is selected

as the next click with corresponding fg/bg label. This al-

gorithm is guaranteed to eventually converge to the ground
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truth. Given an input image, we iteratively predict the next

best pixel to click and get an output segment mask. IoU is

then computed. The process terminates when the maximum

click number is reached and we keep tracking of the aver-

age IoU given the number of clicks on all images from each

dataset. This metric is referred to as AvC.

4.3. Comparison Methods

We compare with segmentation algorithms on both color

and RGBD. For color, we compare with 3 algorithms: 1)

GrabCut [14]; 2) Lazy Snapping [10]; 3) Geodesic Graph

Cut [13]. For RGBD based segmentation, we look at two in-

teractive segmentation methods which were published very

recently, RGBD Linear Comb [6] and RGBD TVSeg [5].

We use the GrabCut implementation from OpenCV by

changing the bounding box input to a pixel mask input.

Three iterations are applied for each cut. The Geodesic

graph cut code is kindly provided by the authors. RGBD

TVSeg has an open source implementation. For all other

methods, we implemented them ourselves.

For our method, we show results using only color and

depth cues, and using color, depth, and normal cues. This

allows more fair comparison to the RGBD methods that do

not use normals.

4.4. Implementation Details

Normals are computed using the average cross-product

of vertex vectors within a neighborhood. It gives similar

accuracy to plane fitting but runs more efficiently. For each

image, we generate approximately 800 superpixels to have

accurate separation along the object boundary. The multi-

label MRF optimization is carried out using the gco library

from [3]. The pairwise weight is set to 0.1 which we find

produces the best results for our algorithm.

4.5. Results

We first show segmentation accuracy given fixed input

on three Kinect v1 datasets in Table 1. Our method achieves

consistently higher accuracy compared to both color and

RGBD methods. Close to 10% improvement can be seen

by effectively incorporating depth compared to color only

methods. Our method achieves an average 3 − 5% higher

accuracy compared to other RGBD based algorithms.

The first row in Fig. 4 shows the AvC curves on Kinect

v1 datasets. Our algorithm is able to get best performance

across all datasets with a clear margin. On RGBD saliency

dataset, due to its relative simplicity, all methods perform

much better than on B3D and NYU2. To achieve an IoU ac-

curacy of 90%, our method only needs 5 clicks compared to

15 clicks required by the best color model Geodesic Graph

Cut. With the same amount of clicks, the proposed method

gets about 8-10% higher for absolute accuracy than compet-

ing RGBD segmentation methods. The other two datasets

are much more challenging due to small objects, clutter and

noisy depth input, so the performance of all methods de-

crease noticeably. Yet, our method is able to improve its

accuracy more stably while clicks are added. Our method

gets much better accuracy when only a few clicks (5-10)

are present. By adding normal cue, the performance of our

algorithm can be further improved on almost all datasets.

Up to 5% gain can be seen on B3D dataset. This shows

the power of cue selection which fuses multiple cues for

segmentation while preserving the discriminability of each

cue. We use RGBD Saliency dataset as a testbed to further

conduct comparisons with two additional methods. First

is a recent color based method [11]. It performs much

better than other color based methods but still fall behind

our method with color and depth cues by a margin. The

other method is binary graph cut using geodesic distance

on the joint feature vector of each cue. It manages to beat

other two RGBD approaches but is clearly worse than our

method both using color and depth or all three cues. This

indicates the proposed multi-label formulation for cue se-

lection is more advanced than binary energy which is also

limited to produce only segmentation label.

Method Saliency B3D NYU2

GrabCut [14] 0.78 0.65 0.58
Lazy Snapping [10] 0.75 0.60 0.50

Geodesic Graph Cut [13] 0.80 0.71 0.64
RGBD TVSeg [5] 0.84 0.76 0.73

RGBD Linear Comb [6] 0.85 0.77 0.74
Ours: Color+Depth 0.87 0.82 0.77

Ours: Color+Depth+Normal 0.87 0.81 0.78

Table 1: IoU values with fixed inputs on Kinect v1 datasets.

Method Aligned KV2 KV2data

GrabCut [14] 0.56 0.58
Lazy Snapping [10] 0.52 0.51

Geodesic Graph Cut [13] 0.55 0.53
RGBD TVSeg [5] 0.65 0.60

RGBD Linear Comb [6] 0.66 0.59
Ours: Color+Depth 0.72 0.66

Ours: Color+Depth+Normal 0.73 0.68

Table 2: IoU values with fixed inputs on Kinect v2 datasets.

Besides the three Kinect v1 datasets, we also evaluated

all methods on two Kinect v2 datasets. The fixed input

accuracy is shown in Table 2. Again, our algorithm has

much higher performance comparing to other color based

and RGBD based algorithms.

The second row in Fig. 4 plots AvC curves on Kinect

4326161



0 5 10 15 20 25 30

Clicks

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 I
o
U

(a) RGBD salient object

0 5 10 15 20 25 30
Clicks

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 I
o
U

(b) Berkeley 3D dataset
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(c) NYU depth2 dataset

0 5 10 15 20 25 30
Clicks

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 I
o
U

(d) alignedkv2
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(e) kv2data

GrabCut [14]

Lazy Snapping [10]

Geodesic Graph Cut [13]

RGBD TVSeg [5]

RGBD Linear Comb [6]

Nieuwenhuis et al. [11]

High-dim Geodesic + Binary Cut

Ours: Color+Depth

Ours: Color+Depth+Normal

Figure 4: AvC on 5 RGBD datasets (best viewed in color).

v2 datasets. On both datasets, our method performs sig-

nificantly better than all other methods. For alignedkv2, at

least 12% improvement can be seen when only 5 clicks are

given. With the inclusion of the normal cue, our accuracy

under same number of clicks improves about 5%. This is

due to the existance of many objects touching the ground

like chairs and tables. Noticeably, our method also shows

better stability (less zigzag up and down) when more clicks

are given as compared with other methods, including the

two RGBD based methods.

We show example segmentation results from each

dataset in Fig. 5. These examples cover various real world

scenarios where selection can be challenging. Row 1 shows

a case where the object has similar color as the background.

By leveraging depth, it can be selected by our algorithm ef-

fortlessly. In row 2, depth information is almost useless in

selecting the world map on the wall. After placing a back-

ground click outside it on the wall, the algorithm knows

the color cue is more useful to distinguish foreground from

background and uses it for the selection.

Rows 3-6 contain objects that are within complex back-

grounds and are not uniformly colored, especially for the

footrest and bed in row 5 and 6 where other objects, e.g.

magazine, toys are also part of them. Depth alone is not suf-

ficient due to the similar depth where they touch the ground.

However, our multi-cue paradigm is able to combine differ-

ent cues to get the best selection results with only 1-2 clicks.

Note the cue switch in rows 4 and 5 where a transition from

depth cue to normal cue happens inside the object. This al-

lows the algorithm to use the more discriminative normal

cue for separating the ground and the object.

Rows 7 and 8 showcase selection in a cluttered scenes

with large color and depth variation. There are also other

objects with similar appearance and depth close to our tar-

gets. Our algorithm still performs well, requiring only few

clicks. In the last row, the depth image is very noisy and

even incorrect in some image regions, e.g. upper left back-

ground. Our algorithm is quite robust to avoid incorrect

background depth and use the more confident color cue

to determine background region while still leveraging the

depth cue to obtain the complete multi-colored traffic sign

with only 1 click.

This adaptive cue selection characteristic makes our al-

gorithm very effective in producing good segmentation re-

sults based on user intention. Additionally, by looking at the

cue map, we can understand how each feature cue is behav-

ing to get the final results and which cues are more useful

in the given scene context.

Failure Cases While we can always converge to a de-

sired result given enough user interaction, some images re-
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Figure 5: Example results of our RGBD segmentation algo-

rithm. Foreground click is colored green and background

click is red (note the input is only the clicked pixel, the

click circle is only for visualization). Each row is an ex-

ample, from left to right: depth image, color coded normal

map, input clicks and result contour, feature cue map. The

meanings of cue labels are shown in the top bar.

quire more interaction than desired. Example failure cases

are shown in Fig. 6. Most of the failures we observed can

be attributed to two reasons.

The first is highly unreliable depth quality. Row 1 in

Fig. 6 shows an example where the scene is captured out-

door. Current low-cost depth sensors cannot deal well with

outdoor scenes under direct sunlight. The depth map is

Figure 6: Failure cases. Row 1 (left to right): depth im-

age, foreground confidence on depth map, user click and

segmentation result, cue map. Row 2 (left to right): color

superpixel contour overlayed on depth image, user click and

segmentation result, refined segmentation, cue map.

severely corrupted, which causes our depth foreground map

to be incorrect, resulting inaccurate segmentation.

The second reason is misalignment between color and

depth. In row 2, with the color superpixel boundary overlaid

on top of depth image, it is obvious the superpixels from

the color image are not aligned well with the boundary in

the depth image, e.g. zoom in to the lower right boundary

of the dress. When this happens, our algorithm still tries

to use the strongest cue to figure out the boundary, which

in this case is depth background. Our boundary refinement

is able to recover certain part of the true boundary without

adding more inputs.

5. Conclusion

We proposed a novel RGBD interactive image segmen-

tation algorithm based on cue selection. The method ef-

fectively fuses multiple feature cues into a unified multi-

label MRF framework. Foreground confidence is adaptively

computed based on user inputs using a geodesic distance

transform. A pairwise term considering both segmentation

label and cue label is designed to allow selection of one cue

for determining the segmentation result locally while en-

couraging smooth labeling overall. Extensive experiments

on five large scale RGBD datasets captured by Kinect v1

and v2 show our algorithm achieves much better perfor-

mance than algorithms using only color information by ef-

fectively applying depth information. Also, significant im-

provement is obtained beyond the state-of-the-art RGBD in-

teractive segmentation algorithm.

Future work will be devoted to investigate other impor-

tant cues for RGBD segmentation and to extend to au-

tomatic object segmentation. Additionally, our proposed

multi-label MRF is a general approach that can be used

given different cues like texture or motion and applied to

different problems such as semantic or video segmentation.
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