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Abstract

Dynamic relocalization of 6D camera pose from single

reference image is a costly and challenging task that re-

quires delicate hand-eye calibration and precision position-

ing platform to do 3D mechanical rotation and translation.

In this paper, we show that high-quality camera relocaliza-

tion can be achieved in a much less expensive way. Based

on inexpensive platform with unreliable absolute reposi-

tioning accuracy (ARA), we propose a hand-eye calibra-

tion free strategy to actively relocate camera into the same

6D pose that produces the input reference image, by se-

quentially correcting 3D relative rotation and translation.

We theoretically prove that, by this strategy, both rotational

and translational relative pose can be effectively reduced to

zero, with bounded unknown hand-eye pose displacement.

To conquer 3D rotation and translation ambiguity, this the-

oretical strategy is further revised to a practical relocaliza-

tion algorithm with faster convergence rate and more reli-

ability by jointly adjusting 3D relative rotation and trans-

lation. Extensive experiments validate the effectiveness and

superior accuracy of the proposed approach on laboratory

tests and challenging real-world applications.

1. Introduction

Camera pose registration and relocalization is an essen-

tial problem in computer vision and robotics, fundamentally

supporting a number of important real-world applications,

such as structure-from-motion (SfM) [22, 37, 16], 3D track-

ing and mapping [24, 17], monocular SLAM [2, 34], and

scene change detection [7, 5].

Despite the diversity of previous successful methods,

in computer vision, most recent efforts on this topic have

been focused on static camera registration and relocaliza-

tion (SCR) [22, 30, 10]. That is, for one or a group of input

images, SCR studies how to align their camera poses into

a unified world coordinate system that may come from a

known 3D scene [10, 30, 15] or from 3D reconstruction us-
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Figure 1. Inexpensive single image DCR. (a) Coordinate systems

of eye 〈RA, tA〉, hand 〈RB, tB〉, target camera pose 〈Rref

A , trefA 〉,
and the unknown hand-eye relative pose 〈RX, tX〉. (b) DCR dy-

namic convergence process. (c)–(d) Our DCR results for near-

planar and nonplanar scenes. (e) Real minute changes (0.1mm

level), occurred during June 2014 and July 2015, discovered by

our DCR in Cave-465 of Dunhuang Mogao Grottoes. (f) HD

panoramic image directly captured by a moving camera whose tra-

jectory is controlled by our DCR. (g) Our inexpensive DCR plat-

form. See text for more details.

ing the input images [22, 16]. In SCR, the camera poses of

input images are fixed and cannot be actively readjusted.
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Figure 2. Working flow of the proposed 6D dynamic camera relocalization. See text for details.

In this paper, we treat camera pose relocalization as a

dynamic process and study dynamic (or active) camera re-

localization (DCR) from single reference image. Our work

was originally motivated by a real-world problem, minute

change monitoring and measurement of ancient murals for

preventive conservation. This is indeed a very challenging

problem due to three major reasons.

1. High accuracy requirement. We want to find and

measure very fine changes occurred on murals with

complex image content and deterioration patterns.

2. Wild environment applicability. Both the equipment

and algorithm should work well in unrestricted envi-

ronments, where both the unpleasant weather and the

need of frequent disassembling/reassembling equip-

ments to realize portability for different caves/spots

can jeopardize hardware accuracy.

3. Long time interval. Relics usually change very

slowly, thus we must precisely relocalize 6D camera

pose to capture the possible minute changes.

Note, there is NO mature solution satisfying all the above

three requirements. For instance, single image DCR could

be directly solved as a robotic visual servoing problem [3,

21, 39, 26]. However, high precision robotics are not appli-

cable to wild environment and cannot be frequently disas-

sembled and reassembled, and its accuracy highly relies on

hand-eye calibration [29, 14, 28]. Rephotography [1] can-

not do this either, due to its much lower relocalization accu-

racy and the limited ability to physically handle only 3D rel-

ative translation. In contrast, as shown in Fig. 1 (c)–(e), the

proposed approach guarantees to produce high-quality 6D

DCR for both near-planar and nonplanar scenes. Fig. 1 also

shows that our DCR has successfully discovered 0.1mm

real mural changes occurred in Dunhuang Mogao Grottoes,

which truly provides ice-breaking results for this important

real-world problem and has great potentials in other areas,

such as online status monitoring of high speed train.

Our major contribution is three-fold: 1) hand-eye cali-

bration free, which enables frequent equipments disassem-

bling/reassembling without losing precision; 2) applicable

to common platforms and wild environments; 3) theoreti-

cally guaranteed convergence and feasible boundary condi-

tion. To our best knowledge, it is the first solid hand-eye

calibration free 6D DCR method in CV and robotics.

2. Related Work

Static camera relocalization (SCR). Many fundamen-

tal computer vision applications relate to camera pose reg-

istration and relocalization, such as sparse or dense 3D

reconstruction [15, 17, 2, 22, 24, 27], monocular SLAM

and camera tracking from RGB [39, 21, 34] or RGBD im-

ages [23, 8, 30, 10]. Basically, they share a common SCR

problem. That is, they all want to align camera poses of

input one or multiple images within a unified world coordi-

nate system, which can be defined by a (partially) known 3D

scene (e.g., monocular SLAM [2, 34] and active scene scan-

ning [23, 35]) or reconstructed via SfM pipeline [15, 16].

Fast and reliable camera pose estimation is critical to

SCR. State-of-the-art method is 5-point algorithm [25], due

to its generality and superior accuracy [31]. Given the

matched feature points set [20] extracted from input images,

5-point algorithm can faithfully generate their relative rota-

tion R and relative translation direction t̄.1 Besides, ESM

is also used in camera pose estimation [24, 27].

Visual servoing. Robotic visual servoing (VS), aiming

to control the pose of robot end-effector (hand) via visual

feedback (eye) [26, 39, 21], is closely related to our work.

In restricted environment, e.g., objects with markers or pla-

nar moving assumption [21, 39], well-calibrated VS could

be used to dynamically relocalize camera pose. However,

as aforementioned, VS is not a cheap and reliable DCR

worker, whose accuracy highly relies on hand-eye calibra-

tion or other restricted conditions.

Rephotography. Computational rephotography aims to

recapture a photograph from the same viewpoint of a histor-

ical photograph. Previous work mainly focuses on the study

of history [32], monitoring of natural environment, such as

glacier melting [9] and geological erosion [11], ecological

research [33]. These work highly relies on manual judg-

ment, that makes it quite hard for operation and its accuracy

is not high. Recently, several computational rephotogra-

1Unlike relative rotation R, only the direction t̄ =
t

‖t‖
of relative

translation t can be determined purely from images.
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phy (CRP) methods [1, 18, 33] have been proposed and im-

proved the efficiency and accuracy. West et al. [33] present

a linear blending based rephotography method for the pur-

pose of monitoring urban tree canopy. Bae et al. [1] propose

an interactive and computational tool to guide users to reach

the desired viewpoint, which can achieve about 0.5m phys-

ical relocalization accuracy. However, these existing meth-

ods rely on many user interactions and lack the accuracy to

support minute change detection of high-value scenes.

Hand-eye calibration. Hand-eye calibration estimates

relative pose between robot hand and eye coordinate sys-

tems, by solving AX = XB, where X is the homo-

geneous representation of the relative pose 〈RX, tX〉 be-

tween the eye coordinate system 〈RA, tA〉 and the hand

system 〈RB, tB〉 [29, 14, 28]. Generally, accurate hand-eye

calibration involves nonlinear optimization in SO(3) and

R
3 [12, 13]. State-of-the-art methods apply branch-and-

bound strategy to search global optimum using labeled im-

ages with object markers in restricted environment [29, 14].

In contrast, this paper gives a hand-eye calibration free ap-

proach to DCR and provides theoretical upper bound of

hand-eye pose displacement, under which relative rotational

and translational pose can be certainly decreased to zero.

3. 6D Dynamic Camera Relocalization

Notation. A 3D rotation matrix R ∈ SO(3) can also

be expressed by axis-angle representation 〈θ, ē〉 and quater-

nion (cos θ
2
, ē sin θ

2
), where unit vector ē is the invariant Eu-

ler axis of R and θ is the rotation magnitude about ē. In

this paper, we use R ≃ 〈θ, ē〉 ≃ (cos θ
2
, ē sin θ

2
) to indi-

cate the equivalence of three kinds of representations for

a 3D rotation. Let 〈RX, tX〉 be the constant relative pose

between eye coordinate system 〈RA, tA〉 and hand system

〈RB, tB〉, where R denotes the orientation and t is the po-

sition of a coordinate system w.r.t. a fixed world coordinate

system. As shown in Fig. 1, the input reference image de-

fines the target camera pose 〈Rref
A , trefA 〉. Our problem is

to dynamically relocalize current eye system 〈RA, tA〉 to

the target pose 〈Rref
A , trefA 〉 by properly moving hand, with

unknown 〈RX, tX〉. We use i to indicate iteration number,

thus 〈Ri
A, t

i
A〉 and 〈Ri

B, t
i
B〉 represent the current camera

and hand poses after i-iterations movement, respectively.

3.1. Problem formulation

We want to realize hand-eye calibration free DCR on

common low-cost positioning platform. Compared to ex-

pensive high-precision platforms whose absolute reposi-

tioning accuracy (ARA) and repetitive repositioning accu-

racy (RRA) are both reliable, for proper low-cost platforms,

their ARA is unreliable but RRA can be trusted.2 Hence, we

2An industrial-grade 6D miniature hexapod could worth more than

50,000 USD and requires clean working environment. The repositioning

system in our DCR platform worths less than 30,000 RMB.

should make best use of repetitive moving strategy. Besides,

our DCR model needs to overcome two realistic difficulties:

1. Difficulty 1: Unknown hand-eye calibration,

2. Difficulty 2: We can only obtain the direction of rela-

tive camera translation t̄ from images [25, 31].

We start from the ideal relations between the hand and

eye coordinate systems during the DCR process. Let p ∈
R

3 be an arbitrary 3D point in world coordinate system, c

and h denote its new coordinate in the reference camera

system and corresponding target hand system, respectively.

Similarly, ci and hi denote the coordinate of point p in cur-

rent camera and hand system after i-iterations adjustment.

Since hand-eye relation is fixed and 5-point algorithm can

produce reliable camera pose, ideally, we have

c = Ri
Aci + tiA,

h = Ri
Bhi + tiB,

c = RXh+ tX,

ci = RXhi + tX.

(1)

Since we want hand-eye calibration free DCR (difficulty 1),

we need to “guess” hand-eye relative pose, denoted by

〈R̃X, t̃X〉. Considering camera pose adjustment is achieved

by moving hand, in practice, we have

ci+1 = R̃i
Aci + t̃iA,

hi+1 = R̃i
Bhi + t̃iB,

(2)

where 〈R̃i
A, t̃

i
A〉 and 〈R̃i

B, t̃
i
B〉 are deviated pose adjust-

ment, caused by inaccurate guess of 〈R̃X, t̃X〉.
Considering difficulty 2, we cannot obtain real tiA but its

orientation t̄iA from two consecutively captured images. Its

length should also be “guessed” by si, thus yielding another

approximation

t̂iA = sit̄
i
A. (3)

Combining Eqs. (1)–(3) leads to

c = Ri+1
A

ci+1 + ti+1
A

,

Ri+1
A

= Ri
AR

∗
XR

i
A

−1
R∗

X
−1,

ti+1
A

= tiA +△tiA,

△tiA = Ri
AtX −Ri

AR
∗
Xt̃X −Ri

AR
∗
XR

i
A

−1
q,

q = t̂iA − t̃X +R∗
X
−1tX,

(4)

where R∗
X = RXR̃

−1
X

. Eq. (4) is a general hand-eye cal-

ibration free DCR model that shows the recurrence rela-

tion of camera pose between two adjacent adjustments. A

feasible DCR process should guarantee to reduce the rel-

ative 3D rotational and translation pose displacement to

zero rapidly. The major obstacle comes from the inaccu-

rate guesses 〈R̃X, t̃X〉 and t̂iA, due to Difficulty 1 and 2. It

is clear to see that, if the two guesses are correct, Eq. (4)

trivially collapses to a one-step relocalization.
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3.2. An easytounderstand strategy

Here we give an easy-to-understand strategy by first relo-

calizing 3D relative rotational pose to convergence via iter-

atively adjustments using Eq. (5), then reducing 3D relative

translation to zero using the bisection-try method described

in Theorem 2. The following two theorems theoretically

guarantee that the influence of bounded hand-eye relative

pose displacement 〈RX, tX〉 can be simply ignored in DCR.

Specifically, we can just guess R̃X = I and t̃X = 0. Ac-

cordingly, Eq. (4) can be simplified to

Ri+1
A

= Ri
ARXR

i
A

−1
RX

−1, (5)

ti+1
A

= tiA−Ri
ARXR

i
A

−1
(̂tiA +RX

−1tX)+Ri
AtX. (6)

Theorem 1 (RA convergence). By the rotation adjustment

strategy defined by Eq. (5), if θX ≤
π
3

, then θi+1 ≤ θi and

lim
i→∞

θi = 0. θi and ēi are the angle and axis of Ri
A. θX

and ēX are the angle and axis of RX.

Proof. Using quaternion representation, we have

Ri+1
A
≃ (cos θ

i+1

2
, ēi+1 sin θi+1

2
),

Ri
A ≃ (cos θ

i

2
, ēi sin θi

2
),

RX ≃ (cos θX
2
, ēX sin θX

2
),

Ri
A

−1
≃ (cos θ

i

2
,−ēi sin θi

2
),

RX
−1 ≃ (cos θX

2
,−ēX sin θX

2
).

(7)

From Eqs. (5) and (7), we have

Ri
ARX ≃ (cos θ

i

2
cos θX

2
− sin θi

2
sin θX

2
〈ēi, ēX〉,

cos θ
i

2
sin θX

2
ēX + sin θi

2
cos θX

2
ēi

+sin θi

2
sin θX

2
ēi × ēX),

(8)

Ri
A

−1
RX

−1 ≃ (cos θ
i

2
cos θX

2
−sin θi

2
sin θX

2
〈ēi, ēX〉,

− cos θ
i

2
sin θX

2
ēX−sin

θi

2
cos θX

2
ēi

+sin θi

2
sin θX

2
ēi × ēX),

(9)

where 〈ēi, ēX〉 and ēi× ēX denote the inner and cross prod-

uct of ēi and ēX, respectively. Combing Eqs. (5), (8) and

(9) yields

cos θ
i+1

2
= cos2 θi

2
+ (1− 2 sin2 θX

2
) sin2 θi

2

+sin2 θi

2
sin2 θX

2
〈ēi, ēX〉

2

≥ cos2 θi

2
+ cosθX sin2 θi

2
.

(10)

Note, by the right-hand rule, θi ∈ [0, π] and θX ∈ [0, π].

Define f(θi) = cos2 θi

2
+cosθX sin2 θi

2
−cos θ

i

2
that is an

even function. We need to prove f(θi) ≥ 0 for θi ∈ [0, π].

Since f ′(θi) = sin θi

2
[cos θ

i

2
(cosθX−1)+ 1

2
]. Clearly, when

θX ≤
π
3

, f ′(θi) ≥ 0. Hence, f(θi) is non-decreasing in

[0, π]. Meanwhile, due to f(0) = 0 and the fact that f(θi)
is an even function, we have f(θi) ≥ 0 in [−π, π], thus

cos θ
i+1

2
≥ cos θ

i

2
and θi+1 ≤ θi.

Moreover, note that f ′(θi) ≥ 0 with the equality only

occurs at θi = 0. Therefore, θi will consistently be reduced

to zero, i.e., lim
i→∞

Ri
A = I or lim

i→∞
θi = 0 equivalently.

Theorem 2 (tA bisection-try convergence). When eye rel-

ative rotation Ri
A converges to I, with current step size

si, we measure 〈̄ti+1
A

, t̄iA〉. If 〈̄ti+1
A

, t̄iA〉 ≥ 0, we guess

the length of ti+1
A

by si+1 = si, otherwise we do bisec-

tion si+1 := si
2

and guess t̂i+1
A

= si+1t̄
i+1
A

. Using this

bisection-try method, just before the bisection, we strictly

have ‖ti+1
A
‖ ≤ si+1. As si is monotonically reduced to

zero, so is ‖ti+1
A
‖.

Proof. If the relative rotation has converged to I, Eq. (6)

can be reduced to

ti+1
A

= tiA −△
i = tiA −RXt̂

i
A = tiA −RXsit̄

i
A, (11)

where si is the bisection step size before i-th adjustment.

By Rodrigues’ rotation formula, we have

RXt
i
A = cosθXt

i
A + sinθX(ēX × tiA)

+(1− cosθX)〈ēX, t
i
A〉ēX.

(12)

Hence, 〈RXt
i
A, t

i
A〉 ≥ 0, because

〈RXt
i
A, t

i
A〉 = cosθX‖t

i
A‖

2 + 0
+(1− cosθX)〈ēX, t

i
A〉

2 ≥ 0.
(13)

That is, ∠(tiA,RXt
i
A) ≤

π
2

, where ∠(a,b) denotes the an-

gle between vectors a and b. Since ∠(△i,RXt
i
A) = 0,

∠(tiA,△
i) ≤ π

2
and 0 ≤ cos∠(tiA,△

i) ≤ 1.

Now, let us check the i-th iteration i when s bisection

happens. We have ∠(ti+1
A

, tiA) ≥
π
2

. This means

〈tiA −△
i, tiA〉 = ‖t

i
A‖

2 − 〈△i, tiA〉
= ‖tiA‖

2 − ‖tiA‖si cos∠(t
i
A,△

i)
≤ 0.

(14)

Hence, we have ‖tiA‖
2 ≤ ‖tiA‖si cos∠(t

i
A,△

i) ≤ ‖tiA‖si,
which leads to ‖tiA‖ ≤ si.

Theorem 2 shows that using the bisection-try method,

t̂iA = sit̄
i
A can gradually approach to tiA. In this case,

Eq. (6) and (11) can be further simplified to

ti+1
A

= tiA −RXt
i
A = (I−RX)t

i
A. (15)

Therefore, we have ‖ti+1
A
‖ ≤ ‖tiA‖, if and only if (iff) the

magnitudes of eigenvalues of I−RX are not greater than 1.

Clearly, since the eigenvalues of RX are 1 and e±jθX , the

eigenvalues of I−RX are 0 and 1−cosθX±j sinθX, whose

magnitudes are not greater than 1 iff cosθX ≥
1

2
. That is,

we need θX ≤
π
3

to guarantee ‖ti+1
A
‖ ≤ ‖tiA‖ in Eq. (15).

Theorem 1 and 2 theoretically prove that this easy-to-

understand strategy can lead to convergent DCR. Moreover,

the bisection strategy to approach relative camera transla-

tion takes advantage of the RRA of inexpensive positioning

platforms, thus its real repetitive accuracy is reliable.
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3.3. The algorithm and implementation details

As shown in Fig. 1(a), there exist pair ambiguities be-

tween particular axes rotation and translation, e.g., pitch

and height movement. That is, with the existence of trans-

lational displacement, during the first rotational relocaliza-

tion stage, the theoretical DCR strategy may be not able to

converge well, because in this case the 5-point algorithm is

quite possible to generate unreliable large rotation estima-

tion that is actually caused by translation. To overcome this

problem, based on Theorem 1 and 2, we propose a prac-

tical DCR algorithm that jointly adjusts both 3D rotation

and translation in the process. Detailed working flow of

the proposed DCR algorithm is shown in Fig. 2 and Al-

gorithm 1. Besides, separately relocalizing rotational and

translational relative pose highly relies on the mechanical

independence of rotation and translation platforms. In prac-

tice, some translation axes movement may cause extra ro-

tational displacement, even the first stage of relative rota-

tional pose relocalization does very well, subsequent trans-

lation axes movement may certainly jeopardize the final

DCR accuracy. As verified by our extensive experiments,

the rotation-translation joint relocalization algorithm con-

stantly outperforms sequential adjustment strategy in both

convergence rate and accuracy.

Algorithm 1 Practical 6D dynamic camera relocalization

Input: Iref , initial and stopping moving step s0 and smin.

1: Initialization: initialize platform to zero position, s =
s0, 〈R̃X = I, t̃X = 0〉, i = 1, t̄0A = 0;

2: Homography-based coarse camera relocalization to re-

duce error in the range of platform [7];

3: while s > smin do

4: Capture current image Ii and compute 〈Ri
A, t̄

i
A〉;

5: Rotate platform by R̃i
B = R̃−1

X
Ri

AR̃X = Ri
A;

6: if t̄iA · t̄
i−1
A

< 0 then

7: Bisection s = s
2

;

8: end if

9: t̂iA = st̄iA;

10: Translate platform by t̃iB = t̂iA;

11: i++;

12: end while

Output: DCR result Ii−1.

Specifically, since precision positioning platforms usu-

ally cannot have large moving range, we first use the

homography-based CR [7] to roughly relocate camera to

make its relative pose within the range of mechanical plat-

forms. We then repeatedly capturing current image and

calculate its 6D pose displacement 〈Ri
A, t̄

i
A〉. We directly

rotate Ri
A and check the direction consistency of t̄iA and

t̄i−1
A

. If they are not in the same direction and s is not small

enough, this means last time move has passed the objec-
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Figure 3. Convergence of RA and tA. (a) and (b) represent the

3D rotation and translation convergence, respectively. Red, green

and blue lines represent X, Y and Z axis respectively, and black

lines indicate the angle θ and step size s in (a) and (b).

tively position, i.e., s is too large and need to be bisected

s ← s
2

first and then to move st̄iA; otherwise, we directly

move st̄iA. In practice, we initialize s0 as 1

5
full translation

range of the platform. Larger or smaller s0, if feasible, will

only impact the convergence rate. Besides, to counteract in-

evitable mechanical gaps, for a single axis movement along

a particular direction with length L, we first go 1.1L along

that direction and then return 0.1L inversely.

4. Experimental Results

Baselines. We compare our DCR with manual relocal-

ization, homography-based relocalization [7] and computa-

tional rephotography [1, 33]. Note, manual relocalization

just uses human visual judgment to manually steer camera

pose. For better performance, we do manual relocalization

very carefully in our experiments. The homography-based

relocalization uses reference image and current image to

generate a homography matrix that produces two navigation

rectangles, guiding users to correct relative camera pose [7].

Criterion. To evaluate the performance of camera re-

localization, we present feature-point displacement flow

(FDF), a sparse field of feature-point displacement vectors,

and average feature-point displacement (AFD) to quantita-

tively measure the relocalization accuracy:

AFD(Pref ,Pcur) =
1

n

n∑

i=1

‖Pi
ref −Pi

cur‖2 (16)

where Pref and Pcur are the matched feature-point coordi-

nates in reference image and current relocalized image, re-

spectively, n is the number of matches. In our experiments,

we use SIFT feature detector, descriptor and robust match-

ing with RANSAC correction.

4.1. Convergence and accuracy

Laboratory tests. Given the initialization of RA, tA and

fixed known RX, tX, we can simulate the proposed camera

relocalization process in computer. Fig. 3 demonstrates the

rotation and translation convergence process of our DCR.

The initial setup is as follows: initial angle of RA, tA, an-

gle of RX and tX are (π
4

,π
5

,-π
4

), (20,-15,15), (π
8

,π
8

,π
8

) and

(15,10,10), respectively.
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Fig. 3 is a typical DCR convergence process, which

clearly shows that tA is bounded by the step size s dur-

ing the whole DCR procedure. With the decrease of step

size s, tA is accordingly descending. In contrast, the angle

θ of RA is monotonically decreasing to zero. Fig. 3 indeed

validates the theoretical convergence of our DCR.

Table 1. Average number of iterations and AFD of 10-times DCR

tests of theoretical strategy and the proposed algorithm.

Theoretical strategy The algorithm

#iterations AFD #iterations AFD

14.4 13.37 10.4 0.85

Convergence rate comparison of two strategies. Here,

we provide detailed comparison of the convergence rate and

accuracy of the proposed two DCR strategies. Table 1 com-

pares the AFD and iteration number in 10 independent DCR

tests using the two strategies. In Fig. 4, we visually compare

the DCR accuracy of the two strategies. Note, the selected

scene in Fig. 4 has minimum AFD value in 10-times tests

using the theoretical strategy.

AFD=0.4825AFD=13.0032

Reference image
strategy

D CR image by
theoretical strategy

D CR image by
the strategy

F DF of the strategyF DF of theoretical

Figure 4. A visual comparison of DCR using theoretical strategy

and the proposed algorithm on a near-planar scene.

From Table 1 and Fig. 4, we can clearly see that the pro-

posed algorithm consistently converges faster than the theo-

retically strategy, and produces much better accuracy. This

is because separately relocalizing 3D rotational and trans-

lational relative pose highly relies on the mechanical inde-

pendence of rotation and translation platforms. In practice,

some translation axes movement may cause extra rotational

displacement, even after the first stage of relative rotational

pose relocalization, which may inevitably jeopardize the fi-

nal DCR accuracy.

DCR accuracy comparison. Physically measuring the

relocalization error is an important and direct criterion to

evaluate relocalization accuracy. However, ground truth is

hard to obtain in practice. To this end, we establish scene-

related FDF/AFD rulers by densely sampling the platform

positions and orientations in 6 DoFs, with two adjacent

samplings having only 0.1mm positional displacement or

0.01 degree rotation shift. Via such rulers, for a particular

scene, we can quantitatively evaluate physically meaningful

6D DCR accuracy with radar chart.

Fig. 5 shows the physical DCR accuracy measurement

on two different scenes, including one near-planar scene

and one nonplanar scene. Table 2 gives the detailed statis-

tics. From Fig. 5 and Table 2, we can clearly see that our

DCR algorithm has reached subpixel accuracy and always

Manual Homography Ours
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Figure 5. DCR accuracy measurement for two scenes, (a) near-

planar scene, (b) nonplanar scene.

Table 2. DCR accuracy statistics for two scenes. Unit of measure-

ment is 1 degree for rotation and 1mm for translation.

Near-planar RAx RAy RAz tAx tAy tAz AFD

manual 0.58 0.56 1.48 7.8 8.2 27.2 20.18

homogrphy 0.22 0.24 0.6 2.8 3 12 8.82

ours 0.01 0.02 0.01 0.1 0.1 0.2 0.26

Nonplanar RAx RAy RAz tAx tAy tAz AFD

manual 0.24 0.22 0.56 3.5 3.6 13.5 6.98

homogrphy 0.13 0.13 0.34 2 2 8 6.01

ours 0.03 0.02 0.03 0.3 0.3 1.3 0.81

outperforms the baseline manual and homography-based re-

localization methods significantly. We also observe that,

in all tested scenes, the physical deviations in Z axis for

both rotation and translation are constantly larger than other

axes. This mainly attributes to the particular focal length

and FoV of the camera. That is, in our camera configura-

tion, it requires relatively larger movement and rotation in Z

axis to cause comparable pixel displacement in image plane

than the translation and rotation in other axes.

Table 3. Comparison of physical camera relocalization error.
CRP [1] Ours Ratio

Translation error (m) 1.135 0.00038 2987

Rotation error (◦) NA 0.02 NA

We also compare the proposed DCR with a state-of-the-

art computational rephotography (CRP) tool, rephoto [33].

Fig. 6 shows the comparative results in two outdoor scenes.

Table 3 gives a comparison of physical camera relocaliza-

tion error of our DCR and another CRP method [1]. It is

clear that, compared to CRP, the proposed DCR have much

higher physical relocalization accuracy.

4.2. Active panorama acquisition

With the proposed DCR, we can realize active acqui-

sition of high-quality panorama. Fig. 7 illustrates the de-

tailed working flow of active HD panorama acquisition by

the proposed DCR. Intuitively, we repeatedly relocalize the

“left” part of current camera FoV to the same 6D pose of

the reference image, which is the “right” part of the last-

time captured image. With high-quality camera calibra-

tion and relocalization, this process guarantees to produce
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Figure 6. Accuracy of our DCR with 2 state-of-the-art competitors: Rephoto [33] and homography-based coarse camera relocalization [7].
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Figure 7. Working flow of DCR-based active panorama acquisition. Detailed DCR process in red block is shown in Fig. 2.

seamless panoramic images, by direct image stitching, with

theoretically “unlimited” resolution, as such panorama can

be actively captured as long and big as possible. Note, to

guarantee the stitching quality, we suggest the ratio of com-

mon part of two successive images is not less than 30%. As

shown in Fig. 8, compared to state-of-the-art image stitch-

ing method, like APAP [36], the proposed DCR-based ac-

tive panorama acquisition is able to generate warping and

artifact free panoramic image, even for highly-structured

scenes taken at very close distance. Fig. 1 (f) shows a HD

panorama of ancient mural acquired by our approach.

4.3. Minute change monitoring of ancient murals

Another promising application of the proposed DCR

is long-time-interval minute change monitoring of ancient

Mogao murals, which, as discussed in Sec. 1, is an open

real-world problem. Although ancient Mogao murals have

been seriously protected, they still suffer from many types

of deteriorations caused by various environmental and hu-

man influences. As a result, their status is constantly chang-

ing in a very low speed. It is critically important to pro-

vide feasible imaging method, through which fine-grained

changes become visually apparent thus timely detection and

accurate measurement of such minute changes can trig-

ger and support multi-disciplinary protective preservation.

However, current fact is no suitable method and equipment

can be used for accurate minute change imaging within the

unrestricted environment in Dunhuang Mogao Grottoes.

Using our inexpensive DCR platform shown in Fig. 1(g),

we selected 46 monitoring spots (very small regions) from

11 real Dunhuang caves and have conducted twice DCR-

based image capturing in June 2014 and July 2015, respec-

tively. The proposed approach and platform have success-

fully discovered 0.1mm-level minute changes (measured

by close-range photogrammetry) in 31 monitoring spots

(67%). This is truly a breakthrough, considering practi-

cal state-of-the-art way is simply naked-eye observation by

experts that can only support object-level change detection

during 100-year period. Some realistic yearly DCR results

and corresponding changes derived by image-difference-

aided human labeling are shown in Fig. 9. Our yearly mon-

itoring data also find that caves open for tourists have 14
times faster deterioration speed than closed caves. This, for

the first time, provides real data evidence about the influ-

ence of tourism to cultural heritages during 1 year period.

5. Conclusion

In this paper, we have proposed an inexpensive 6D dy-

namic camera relocalization approach. We theoretically
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Figure 8. Comparison of panorama acquisition using state-of-the-art image stitching method APAP [36] and the proposed approach.
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Figure 9. Real minute deteriorations of Dunhuang Mogao murals discovered by the proposed DCR from June 2014 and July 2015.

prove that both 3D rotational and translational pose dis-

placement can be effectively reduced to zero based on low-

cost RRA-reliable platform, without hand-eye calibration.

We also find that, to make the proposed strategy work, the

feasible upper bound of hand-eye 3D orientation displace-

ment angle should be less than π
3

. Extensive tests validate

the effectiveness and accuracy of our approach. More im-

portantly, we demonstrate the promising applications of our

approach in solving two challenging real-world problems:

1) active acquisition of seamless high-definition panorama

image; and 2) 0.1mm-level minute deterioration monitoring

of very-slowly-changed ancient murals in Dunhuang Mo-

gao Grottoes. Our work indeed shows the great potentials

of combining algorithms with common hardware in active

vision. In near future, we plan to further accelerate our

DCR approach based on reliable superpixel segmentation

and matching [4, 19, 6, 38] and apply it to solve more real-

world change monitoring problems. Besides, we want to ex-

tend the proposed DCR model to faithfully relocalize hand

coordinate system from multiple images. We are also inter-

ested in dynamic lighting recurrence from single image.
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