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Abstract

Structured light sensors are popular due to their robust-

ness to untextured scenes and multipath. These systems

triangulate depth by solving a correspondence problem be-

tween each camera and projector pixel. This is often framed

as a local stereo matching task, correlating patches of pixels

in the observed and reference image. However, this is com-

putationally intensive, leading to reduced depth accuracy

and framerate. We contribute an algorithm for solving this

correspondence problem efficiently, without compromising

depth accuracy. For the first time, this problem is cast as

a classification-regression task, which we solve extremely

efficiently using an ensemble of cascaded random forests.

Our algorithm scales in number of disparities, and each

pixel can be processed independently, and in parallel. No

matching or even access to the corresponding reference pat-

tern is required at runtime, and regressed labels are directly

mapped to depth. Our GPU-based algorithm runs at a 1KHz

for 1.3MP input/output images, with disparity error of 0.1

subpixels. We show a prototype high framerate depth cam-

era running at 375Hz, useful for solving tracking-related

problems. We demonstrate our algorithmic performance,

creating high resolution real-time depth maps that surpass

the quality of current state of the art depth technologies,

highlighting quantization-free results with reduced holes,

edge fattening and other stereo-based depth artifacts.

1. Introduction

Consumer depth cameras have revolutionized many as-

pects of computer vision. With over 24 million Microsoft

Kinects sold alone, structured light sensors are still the most

widespread depth camera technology. This ubiquity is both

due to their affordability, and well-behaved noise charac-

teristics, particularly compared with time-of-flight cameras

that suffer from multipath errors [17]; or passive stereo tech-

niques which can fail in textureless regions [43, 5].

Structured light systems date back many decades; see

∗Authors equally contributed to this work.

[39, 16]. Almost all follow a similar principle: A calibrated

camera and projector (typically both near infrared-based)

are placed at a fixed, known baseline. The structured light

pattern helps establish correspondence between observed

and projected pixels. Depth is derived for each correspond-

ing pixel through triangulation. The process is akin to two

camera stereo [43], but with the projector system replacing

the second camera, and aiding the correspondence problem.

Broadly, structured light systems fall into two categories:

spatial or temporal. The former uses a single spatially vary-

ing pattern, e.g. [14, 45], and algorithms akin to stereo

matching to correlate a patch of pixels from the observed

image to the reference pattern, given epipolar constraints.

Conversely, the latter uses a varying pattern over time to

encode a unique temporal signature that can be decoded at

each observed pixel, directly establishing correspondence.

Temporal techniques are highly efficient computationally,

allowing for a simple, fast lookup to map from observed to

projected pixels, and estimate depth. However, they require

complex optical systems e.g. MEMS based projectors and

fast sensors, suffer from motion artifacts even with higher

framerate imagers, and are range limited given the precision

of the coding scheme. Therefore many consumer depth

cameras are based on spatially varying patterns, typically

using a cheap diffractive optical element (DOE) to produce

a pseudo-random pattern, such as in Kinect.

However, spatial structured light systems carry a fun-

damental algorithmic challenge: high computational cost

associated with matching pixels between camera and pro-

jector, analogous to stereo matching. This computational

barrier has also motivated many local stereo methods; see

[43, 5]. Whilst progress has been made on efficient stereo

methods, especially so called O(1) or constant time methods

[5], these often trade accuracy or precision for performance,

and even then very high framerates cannot be achieved.

Just a single disparity hypothesis often requires two lo-

cal patches (in left and right images) to be compared, with

many pixel lookups and operations. Spatial structured light

algorithms e.g. in Kinect [14, 26], attempt to reduce these

comparisons, but even then ∼20 patch comparisons are re-
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quired per pixel. These are even higher for dense stereo

methods. In addition, there are further sequential operations

such as region growing, propagation or filtering steps [5].

This explains the fundamental limit on resolution and fram-

erate we see in depth camera technologies today (typically

30-60Hz VGA output).

In this paper we present HyperDepth, a new algorithm

that breaks through this computational barrier without trad-

ing depth accuracy or precision. Our approach is based on

a learning-based technique that frames the correspondence

problem into a classification and regression task, instead

of stereo matching. This removes the need for matching

entirely or any sequential propagation/filtering operations.

For each pixel, our approach requires less compute than a

single patch comparison in Kinect or related stereo methods.

The algorithm independently classifies each pixel in the

observed image, using a label uniquely corresponding to a

subpixel position in the associated projector scanline. This

is done by only sparsely sampling a 2D patch around the

input pixel, and using a specific recognizer per scanline.

Absolutely no matching or even access to the corresponding

reference pattern is required at runtime. Given a calibrated

setup, every pixel with an assigned class label can be directly

mapped to a subpixel disparity and hence depth.

To train our algorithm, we capture a variety of geometric

scenes, and use a high-quality, offline stereo algorithm [7] for

ground truth. This allows our recognizers to learn a mapping

for a given patch to a (discrete then continuous) class label

that is invariant to scene depth or affine transformations due

to scene geometry. Using this approach, we demonstrate

extremely compelling and robust results, at a working range

of 0.5m to 4m, with complex scene geometry and object

reflectivity. We demonstrate how our algorithm learns to

predict depth that even surpasses the ground truth. Our

classifiers learn from local information, which is critical for

generalization to arbitrary scenes, predicting depth of objects

and scenes vastly different from the training data.

Our algorithm allows each pixel to be computed indepen-

dently, allowing parallel implementations. We demonstrate a

GPU algorithm that runs at 1KHz on input images of 1.3MP

producing output depth maps of the same resolution, with

217 disparity levels. We demonstrate a prototype 375Hz cam-

era system, which can be used for many tracking problems.

We also demonstrate our algorithm running live on Kinect

(PrimeSense) hardware. Using this setup we produce depth

maps that surpass the quality of Kinect V1 and V2, offline

stereo matching, and latest sensors from Intel.

1.1. Related Work

Work on structured light dates back over 40 years [46,

35, 4, 3]. At a high level these systems are categorized as

temporal or spatial [40, 39, 16].

Temporal techniques require multiple captures of the

scene with a varying dynamic pattern (also called multishot

[16]). This projected pattern encodes a temporal signal that is

uniquely decoded at each camera pixel. Examples of patterns

include binary [41, 20] gray code, [35], and fringe patterns

[19, 53]. These techniques have one clear advantage, they

are computationally very efficient, as the correspondence

between camera and projector pixel is a biproduct of decod-

ing the signal. Depth estimation simply becomes a decode

and lookup operation. However, systems require multiple

images, leading to motion artifacts in dynamic scenes. To

combat this, fast camera and projector hardware is required,

such as demonstrated by the Intel F200 product. However,

these components can be costly and fast motions still lead

to visible artifacts. Systems are also range limited given

temporal encoding precision.

Spatial structured light instead use a single unique (or

pseudo unique) 1D [27, 51] or 2D pattern [24, 14, 26, 45]

for single shot depth estimation. These techniques appeal as

they use simple optical elements, i.e. no dynamic projector

and regular framerate cameras, and are more robust to mo-

tion artifacts and range limitations. However, they also suffer

from a fundamental challenge: the correspondence problem

becomes far more challenging. Almost all methods frame

this problem as a local stereo matching problem. For ex-

ample, the PrimeSense algorithm inside the Kinect [14, 26],

first extracts observed dots, then matches a patch around

each dot, with corresponding patches in the reference image

using NCC. This leads to ∼20 NCC patch matches per pixel,

with the minimum NCC score being selected. Then a sequen-

tial region growing process creates a dense disparity map.

Each of these steps: dot extraction, NCC patch matching,

disparity selection, and region growing takes considerable

time with many pixel lookup and operations.

There is a large body of work on stereo matching, some of

which is relevant for structured light systems. For example,

[15] first detects sparse support points in stereo images and

performs sparse correspondence search among them before

a dense propagation step. Others approximate global opti-

mization methods [18, 12, 30, 6, 47, 48] based on dynamic

programming and achieve reasonable frame rates but are

restricted to low-resolution images and operate on a strongly

quantized depth range (typically at 64 discrete depth values).

Local stereo algorithms are generally faster than their

global counterparts, because they identify corresponding

pixels only based on the correlation of local image patches.

Many correlation functions can be implemented as a filter

with a computational complexity independent of the filter

size [43]. Recent real-time stereo approaches focus on filters

that weight each pixel inside the correlation window based

on image edges, e.g. based on bilateral filtering [22, 38, 50,

31] or guided image filtering [37, 10]. These approaches

show good computational performance with small disparity

levels, but do not scale to high precision estimation.
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PatchMatch stereo [7] has been shown to achieve high

quality dense depth maps by leveraging slanted support win-

dows and sub-pixel disparities within a PatchMatch frame-

work [2]. This technique has recently been extended to

real-time performance by assuming fronto parallel windows

and reducing the number of iterations of disparity propaga-

tion [36, 54]. [25] bring together concepts from PatchMatch

stereo and cost volume filtering within a unified framework,

but the reliance on superpixels limits structured light use.

Whilst all this work leads to less computation for stereo

matching, these approaches ultimately still require a large

number of computations (still fundamentally relying on

computing matching costs across a large number dispar-

ity levels), with often expensive preprocessing, filtering

and propagation steps that can be sequential. This has

meant that even GPU, FPGA or ASIC stereo implemen-

tations [28, 34, 37, 12, 36, 14] can only operate on limited

input/output resolution, at speeds rarely exceeding 30Hz,

often with a trade in accuracy.

Other work has looked at combining a pair of cameras

with either fixed [33, 23, 54] or dynamic structured light

patterns [9, 52]. The former referred to as active stereo, is a

technique used in the recent Intel R200 depth camera. The

latter is used to extend stereo to the temporal domain (space-

time stereo) but suffers from motion artifacts and complex

hardware setups, similar to other temporal structured light

systems. Both these techniques again rely on local stereo

algorithms with computational limitations.

Our work attempts to bring the computational benefits

of temporal structured light to more widespread and appeal-

ing single-shot spatial structured light systems. To achieve

this we take a radical departure from the literature, refor-

mulating this correspondence problem to a classification-

regression rather than stereo matching task. As we will show

in the remainder of this paper, this learning-based approach

brings some extremely compelling computational and accu-

racy benefits. In essence, our approach allows each pixel

in the camera image to be evaluated independently, with

a computational effort similar to testing a single disparity

hypothesis in local stereo methods.

Techniques that employ machine learning for depth es-

timation have begun to appear. [49] explore deep nets for

computing stereo matching costs, but still require multiple

disparity hypothesis evaluation using computationally ex-

pensive learning architectures. [11, 42] predict depth from a

single image, but are expensive and lack the accuracy in gen-

eral scenes. [13] uses diffuse infrared light to learn a shape

from shading mapping from infrared intensity to depth, but

this technique fails in general scenes.

2. Learning to Recognize Structured Light

In this section we reformulate the spatial structured light

correspondence problem from a machine learning perspec-

tive, and show how disparity maps with subpixel accuracy

can be predicted extremely efficiently.

2.1. Problem formulation

We use a setup analogous to the Kinect, where an infrared

(IR) camera is placed at a fixed baseline to a structured

light DOE projector. The IR camera captures images at

1280×1024 resolution. The IR projector generates a pseudo-

random dot pattern in the scene that is observed by the IR

camera as image I . The pattern projector can be seen as a

virtual camera that always observes the same constant image,

referred to as the reference pattern R. We assume images

I and R to be calibrated and rectified. Therefore, for each

pixel p = (x, y) in I the corresponding pixel p̂ = (x̂, y) in

R, that shows the same local dot structure, lies on the same

scanline y. The shift along the x coordinate x̂− x is known

as disparity d and is inversely proportional to the scene depth

Z via Z = bf
d

, where b is the baseline of the system and f

is the focal length.

The local dot structure in a small spatial neighborhood

in the reference pattern uniquely identifies each pixel p̂ =
(x̂, ŷ) along a scanline ŷ. Therefore, we can assign each pixel

p̂ along a scanline in R to a unique label c = x̂ according to

its x̂ coordinate. If we are able to recognize the class c for a

pixel p = (x, y) in the observed IR image I , we can simply

infer the disparity of p via the direct mapping d = c− x.

Motivated by this observation, we cast the depth estima-

tion problem into a machine learning problem, where given

training data, we learn to recognize the class label in the

observed image I from the local dot structures and, as a

consequence, the depth. Note that in the Kinect reference

pattern, the same local structures reappear in different x̂ coor-

dinates of different scanlines y. Finding these repetitions is a

challenging task itself [29]. To overcome this issue, we sim-

ply use a classifier per line, which also provides additional

robustness against the distortion of the projected pattern.

This allows us to reuse the same class labels c = x̂ in differ-

ent scanlines y. Each of these classifiers has to disambiguate

C = 1280 classes, equal to the width of the image. The

reference pattern is symmetric around the central projector

pixel and repeats three times along the X and Y dimension.

Using a classifier per scanline circumvents this symmetry

problem and in practice, due to distortion of the projector,

classes never repeat within a scanline. As future work, we

could exploit these repetitions to reduce the total number of

class labels and classifiers.

Subpixel Accuracy Class labels need to support subpixel

shifts of the pattern to avoid quantization of disparity maps.

In order to obtain subpixel accuracy, each class is addition-

ally divided into subclasses, equal to the desired level of

subpixel precision. In our case, each step is 0.05 pixels,

meaning class i to class i + 1 has 20 additional subpixel

labels. From now on the labels c can assume continuous
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Figure 1. HyperDepth Algorithm. Overview of the disparity estimation algorithm using decision trees. For each pixel p = (x, y) in the

input IR image (left) we run a Random Forest (middle) that predicts the class ĉ by sparsely sampling a 2D neighborhood around p. The

forest starts with classification and then switches to regression to predict continuous class labels ĉ that maintain subpixel accuracy (see text

for details). The mapping d = ĉ− x gives the actual disparity d (right).

values. It is natural to recast this second step into a regres-

sion problem: we first predict the class, then a regression

function will produce the final result.

2.2. HyperDepth Algorithm

The core part of our algorithm is a recognizer that predicts

continuous class labels independently for each pixel in the

image I . Pixels on the same scanline will share the same rec-

ognizer. In this work we resorted to an ensemble of random

forests per scanline, which have shown great performances

in pixel-wise classification using very simple sparse features

[44, 13]. Decision trees [8] can be naturally used to train

a mixed objective function: we start with a classification

objective and then we switch to a regression one to obtain

subpixel accuracy.

Given an input pixel p = (x, y) and the infrared image

I , a random forest infers a probability distribution p(c|p, I)
over the C classes. The forest learns to map the pixel into

one of the classes looking at its spatial context.

Node Features: Each split node contains a set of learned

parameters δ = (u,v, θ), where (u,v) are 2D pixel offsets

and θ represents a threshold value. The split function f is

evaluated at pixel x as

f(p; θ) =

{

L if I(p+ u)− I(p+ v) < θ

R otherwise
(1)

where I is the input IR image. This kind of pixel difference

test is commonly used with decision forest classifiers due to

its efficiency and discriminative power. The features are also

invariant to illumination variations, which helps to generalize

across different ambient light levels. The relative offsets u

and v are sampled within a maximum patch size of 32×321,

which uniquely identifies all the patterns in the scanline.

1Note that the tree will learn automatically to select the best offsets. The

maximum window size is selected to minimize the number of bits needed

to store a tree node at runtime. Currently we encode each node in 32 bits,

20 bits for two offsets u and v and 12 for the threshold θ.

Note the forest predictions are extremely efficient as only

a small set of these simple feature tests are performed for

each pixel. Furthermore, each pixels (and associated trees)

can be processed in parallel.

Training We assume ground truth data for the class labels

are available, in the next subsection we describe in details

the acquisition procedure. For each scanline of the image

we train multiple trees independently on a subset S of the

training data. For the first few levels of the tree we consider

classes as integer values, solving the classification problem.

For our application, set S contains training examples (p, c)
where p identifies a pixel within a particular training image

and c is the pixel’s ground truth label. Starting at the root, a

set of candidate split function parameters δ are proposed at

random. For each candidate, S is partitioned into left SL(δ)
and right SR(δ) child sets, according to Eq. 1. The objective

function

Q(δ) = E(S)−
∑

d∈{L,R}

|Sd(δ)|

|S|
E(Sd(δ)) . (2)

is evaluated given each of these partitions, and the candidate

δ that maximizes the objective is chosen. The entropy E(S)
is the Shannon entropy of the (discrete) empirical distribution

p(c|S) of the class labels c in S:

E(S) = −

C
∑

c=1

p(c|S) log p(c|S),with (3)

p(c|S) =
1

|S|

∑

(·,·,c′)∈S

[c = c′] . (4)

Training then continues greedily down the tree, recursively

partitioning the original set of training pixels into succes-

sively smaller subsets. Training stops when a node reaches a

maximum depth, contains too few examples, or has too low

entropy or differential entropy.

After we learned integer disparities, we continue the train-

ing with a regression function for the last 6 levels of the

trees in order to obtain subpixel accuracy. In particular we
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maximize Eq. 2, where the entropy is generalized to han-

dle continuous values. We tested other regression objective

functions, based on the variance computed from the samples

(p, c) ∈ S, however they led to considerably worse results.

We also tried a direct regression approach, but given the com-

plexity of the problem we noticed substantial overfitting.

2.3. Training Data Generation

In the previous section we assumed the availability of

class labels for training. Recall that disparity d = c − x,

where x is the horizontal position of the pixel in the image

and c = x̂ the class label. Hence, given a pixel p = (x, y)
and disparity d, we can generate a class label via c = d+ x.

To compute disparities for training, we have to recover the

reference IR pattern R, the relative pose of R with respect

to I and then rectify both R and I . Finally, an accurate

stereo matching algorithm computes a disparity map on the

rectified images that are used for training. Note that when

using the Kinect sensor with our approach, we could directly

use the depth maps from the Kinect to generate training

labels. However, we found that the depth maps from Kinect

are affected by a high level of quantization. Moreover this

procedure would not generalize to other structured light

systems where Kinect output is not available.

To infer the reference pattern, we leverage the calibration

procedure proposed by Mcllroy et al. [29]. In contrast to this

prior work that uses a static camera and a moving IR pro-

jector, in our setup we have a rigid assembly of the camera

and projector, which we exploit in our calibration process.

We first calibrate the intrinsic parameters of the IR cam-

era and we capture images of a flat surface by moving the

camera-projector assembly to multiple positions. Similar to

[29], we then solve a non-linear optimization via Levenberg-

Marquardt to obtain the pattern projected by the IR projector,

and the extrinsics of the projector with respect to the cam-

era. We assume that the projector is a virtual camera that is

located at a known initial displacement from the camera (the

approximate physical location of the projector with respect

to the camera), which is used to initialize the solver. In addi-

tion to the extrinsics, we recover the reference pattern as seen

at the image plane resulting in a simple camera model for

the projector with zero distortion. The recovered reference

pattern is shown in the supplementary material. Note that

similar to [29] we recover the distorted pattern as seen at the

image plane. Given this reference pattern and the calibration

parameters of camera-projector setup we perform a standard

bilinear stereo rectification to recover the rectified reference

pattern and the rectified IR image.

Once the rectified reference pattern and the current recti-

fied IR image are available, we can generate disparity maps

using an accurate, but offline, stereo matching method. For

our training data generation we use PatchMatch stereo [7],

which is a state of the art local stereo matching approach

that in comparison to other methods gives excellent recon-

struction quality for slanted/curved surfaces and estimates

sub-pixel disparities without quantization. Note that a local

method performs very well for our scenario since there are

virtually no untextured regions in the input images. In the

future, more sophisticated global stereo methods could be

employed to further raise the quality of the training data.

2.4. Runtime Algorithm

At runtime the inputs of the algorithm are the IR image

I and H random forest classifiers, one per scanline, where

each random forest comprises of F trees. Given a pixel

p = (x, y), the output of a single tree f will be:

ĉf = argmax
c

p(y,f)(c|p, I), (5)

where p(y,f)(·) denotes the probability of the floating point

class c computed with the f -th tree for the scanline y. The

aggregation strategy we used among different trees is based

on their agreement on the current class ĉf . Let ĉ1 and ĉ2
the output of 2 different trees. If |ĉ1 − ĉ2| < 0.2 we aggre-

gate the prediction ĉ = p1ĉ1+p2ĉ2
p1+p2

as well as the expected

probabilities p̂ = p1 + p2. The disparity d = ĉ− x is then

assigned to the pixel p based on the highest score p̂.

Invalidation Criteria We invalidate pixels with inaccu-

rately predicted disparities by using the posterior p(c|p, I)
as indication of the confidence for the prediction. In particu-

lar, we use the following invalidation criteria:

• Signal Check. We invalidate pixels that traverse the

random forest and do not observe a sufficient amount

of signal τ = 500 in the IR image I .

• Probability Check. If the probability p̂ of the winning

class ĉ is smaller than 0.6 we invalidate the pixel.

• Winners Check. We make sure that the top 2 predic-

tions are consistent, i.e. they lie in a very close disparity

range: we invalidate if |ĉ1 − ĉ2| > 1.

• Disparity Check. If the predicted label is wrong the

disparity d = ĉ− x could belong to a non valid range.

We invalidate every d < 0 and every d > 422, which is

the maximum number of possible disparities.

For our model configuration, with 4 trees and 12 levels, only

48 pixel differences are processed to compute depth per pixel.

The running time does not depend on number of disparities

or patch size and it is fully parallel for each pixel.

3. Experiments

We now systematically evaluate our proposed algorithm.

It is important to highlight that all results shown were com-

puted on completely new scenes that are not part of the
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Figure 2. Quantitative Experiments. (top) Our disparity error

to ground truth (PatchMatch stereo) as a function of number of

trees and their depth. (middle) Our depth error to ground truth

(PatchMatch stereo) for different numbers of trees. (bottom) Run

time of HyperDepth on 1.3 Megapixel images for different tree

depths (D12, D15) and different tree numbers per scanline (T1 to

T4). The most accurate configuration with 4 trees and depth 15
takes only 2.5msec per image.

training data. Unless noted otherwise, we use the camera-

projector hardware of the Microsoft Kinect and access the

raw IR images using OpenNI.

3.1. HyperDepth Parameters

We first show how we set the HyperDepth parameters and

analyze the computational performance. In order to train

the algorithm we acquired 10000 frames generating training

labels using PatchMatch stereo as described in Sec 2.3. We

trained up to 5 trees per line with 15 levels per tree. Training

1 tree per line takes 1 day on a single GPU implementation

on a NVIDIA Titan X.

We test the performance of our method on 1000 images

that were acquired completely independently from our train-

ing data. Fig. 2 evaluates different configurations of our

models on the test data. The top graph in Fig. 2 shows the

absolute disparity difference between PatchMatch and our

Figure 3. Qualitative Comparisons. We compare disparity maps

generated on the test data with PatchMatch and HyperDepth. Note

how we generalize even in regions where PatchMatch is invalidated.

model with respect to the number of levels per tree. We can

see that after level 14 little improvement is gained since the

disparity error goes down by only 0.005 pixels on the aver-

age. Similarly, more than 4 trees show little improvement,

only 0.001 in disparity error.

To see how this disparity error translates to depth error,

Fig. 2, middle graph, shows a similar analysis in the depth

domain. Notice how the method exhibits very low error

(< 1cm) up to 3 meters. As a baseline, we also plot the the-

oretical error for a high quality stereo system, with disparity

precision of 0.25 pixels (note: this precision is below the

Middlebury subpixel benchmark of 0.5 pixels). We show

that our error would be 3 times lower than this baseline.

This also shows that our algorithm is able to model the dis-

parity prediction within the precision of our training data

(PatchMatch stereo) and the quality of our results is currently

limited by the accuracy of the training data. Fig. 2, bottom,

reports the running time on 1.3 megapixel images using a

NVIDIA Titan X GPU. The top accurate configuration with

4 trees and 15 levels has a disparity error of 0.064 pixels

with a running time of 2.5msec. To reach 1KHz 3 trees

with 12 levels are used with an disparity error of only 0.1
pixels. In Fig. 3 we show the quality of the disparity maps

generated on the test data with PatchMatch and HyperDepth.

Our approach computes correct disparities in image regions

where PatchMatch shows holes or fattened edges. This is

impressive given the fact that our method was trained with

results from PatchMatch.
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3.2. Error Analysis

To quantitatively analyze the error of single depthmaps

we use a setup similar to [32]: we place a camera in

front of a (large) white plane at multiple (known) distances

20, 50, 100, 150, 200, 250, 300, 350cm. For each distance

we record multiple frames and compute the error with re-

spect to the (known) plane equation. We depict the results

in Fig. 4 and Fig. 5. We compare HyperDepth with Mi-

crosoft KinectV1 (PrimeSense), Intel RealSense F200, Intel

RealSense R200 and PatchMatch stereo.

As shown our depth maps contain less error. KinectV1

depth maps suffer from heavy quantization. The F200 con-

tains higher error within the working range of our sensor

> 50cm, but works at a closer distance up to 20cm. Note this

sensor uses temporal structured light, and clearly exhibits

motion artifacts, and limited working range (from 20cm to

100cm), with a large performance degradation after 50cm.

The R200 is an active stereo camera, and this exhibits ex-

tremely high error. Whilst the underlying stereo algorithm is

unpublished, it clearly demonstrates the trade-off in accuracy

that needs to be made to achieve real-time performance. In

this experiment we also outperform the accuracy of Patch-

Match: thanks to the ensemble of multiple trees per line our

depthmaps we are more robust to noise.

Qualitative comparisons are shown in Fig. 5. We also

analyzed the noise characteristic of the algorithm computing

the standard deviation (jitter) of the depthmaps over multiple

frames. Results show (Fig. 4, bottom) that our method

exhibits noise level very similar to the KinectV1, which is

expected. Again, the RealSense cameras poorly performed

with respect to HyperDepth, KinectV1 and PatchMatch. The

latter seems to have higher noise at the end of the range. We

further investigate the level of quantization in KinectV1 by

designing a qualitative experiment where we placed some

objects at 2.5m distance from the camera and we compute the

depth maps with both our method and KinectV1. We show

the point clouds in Fig. 6: notice how KinectV1 depth maps

are heavily quantized, whereas our method produces smooth

and quantization free disparities. This is the main advantage

of the regression approach, which does not explicitly test

subpixel disparities but automatically recovers the output

disparity with high precision.

3.3. 3D Scanning Results

We evaluated the precision of the algorithm for object

scanning. We generated groundtruth 3D models for multi-

ple objects with different shape, texture and material. The

groundtruth is generated via ATOS, an industrial 3D scan-

ning technology [1]. The precision of the ATOS scanner is

up to 0.001mm. We then generated 360◦ 3D models using

our method and multiple state of the art depth acquisition

technologies: KinectV1, KinectV2 (Time of Flight), Patch-

Match [7], Intel RealSense F200 and RealSense R200. To

Figure 4. Error and Noise Analysis. We plot the depth error of

HyperDepth and baseline technologies for a planar target at dis-

tances between 20cm and 350cm. The average error of single depth

maps is shown on the top, whereas the variance within multiple

depth maps is shown in the bottom figure. Our method exhibits

lower error than all baselines.

Figure 5. Plane Fitting Comparison. We visualize 3D point

clouds of a planar target at 1m distance. We compare our results

against baseline technologies. Notice the quantization artifacts in

KinectV1 and the high noise in the RealSense cameras. Our method

and PatchMatch produce smoothest results.

this end, we placed each object on a turntable and captured

hundreds of depth maps from all viewpoints from a distance

of 50cm (an exception was Intel RealSense R200 where we

used the minimum supported distance of 65cm). We then

feed the depth maps into KinectFusion [21] to obtain the 3D

mesh. We used the same KinectFusion parameters for gener-

ating results for all methods. We then carefully aligned each

generated mesh with the groundtruth scans and computed

the Hausdorff distance to measure the error between the two

meshes. In Fig. 7 we report the reconstructed objects and

their Root Mean Square Error (RMSE) from the groundtruth.

Our HyperDepth consistently outperforms KinectV1 on all

the objects, especially areas with high level of details are

better reconstructed by our method. This is mainly due to

the absence of quantization and the ability to produce higher

resolution depth maps. KinectV2 is sensitive to multipath

effects, causing errors in those areas where multiple reflec-
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Figure 6. Quantization Experiment. We show point clouds gen-

erated with KinectV1 (middle) and our HyperDepth algorithm

(right). Notice the heavy quantization in the KinectV1 results,

whereas our method infers precise depth.

Figure 7. 3D Scanning Results. Quantitative comparisons between

our method and state of the art depth technologies.

tions occur. As a result, objects are substantially deformed.

Our method provides results on par with, and superior to

PatchMatch, but at a fraction of the compute. Note we use

PatchMatch for training data, and this shows that Hyper-

Depth could be further improved given improvements in

training data. Both RealSense sensors failed in capturing

most of the details, due to the high noise in the depth maps.

3.4. HighSpeed Camera Setup

Our algorithm can be used to create extremely high fram-

erate depth cameras useful for solving tracking related prob-

lems. We built a prototype sensor (see Fig. 8 bottom right)

capable of generating depth maps at 375Hz. We combine the

Figure 8. High Speed Camera Results. HyperDepth results

recorded at 375Hz. (top) smashing a paper cup, (middle) fast

moving hand, (bottom) playing ping-pong.

Kinect IR projector and a USB3 Lumenera Lt425 camera

with an IR bandpass filter. This camera reaches 375Hz with

a 640× 480 central crop of the original 4MP image. Notice

that in order to operate at this framerate we use an exposure

time of 2.5msec, meaning the SNR of the IR images is lower

than in Kinect, making the depth estimation more challeng-

ing. We calibrated the system and generated training data for

our method following the procedure described in Sec. 2.3.

We tested this configuration in different sequences to prove

the feasibility of high speed depth maps. In particular we

show three sequences: a high speed moving hand, capturing

a ping-pong ball hitting a racket, and a cup being smashed

with a wooden stick. We show qualitative results on Fig. 8.

HyperDepth is able to retrieve smooth disparities even in

this challenging configuration.

4. Conclusion

We have reframed the correspondence problem for spatial
structured light as a learning-based classification-regression
task, instead of a stereo matching task. Our novel formula-
tion uses an ensemble of random forests, one per scan line, to
efficiently solve this problem, in a pixel independent manner
with minimal operations. Our algorithm is independent
of matching window size or disparity levels. We have
demonstrated a parallel GPU implementation that infers
depth for each pixel independently at framerates over 1KHz,
with 217 disparity levels, and no sequential propagation
step. Finally we have demonstrated, high quality and high
resolution, quantization free, depth maps produced by our
method, with quality superior to state of the art methods for
both single frame prediction, and fused 3D models. Our
method can be employed in many new scenarios where high
speed and high resolution depth is needed such as hand
tracking and 3D scanning applications.
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[54] M. Zollhöfer, M. Nießner, S. Izadi, C. Rhemann, C. Zach,

M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al.

Real-time non-rigid reconstruction using an rgb-d camera.

ACM Transactions on Graphics (TOG), 33(4):156, 2014. 3

5450


