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Abstract

In this paper we study large-scale optimization problems

in multi-view geometry, in particular the Bundle Adjustment

problem. In its conventional formulation, the complexity

of existing solvers scale poorly with problem size, hence

this component of the Structure-from-Motion pipeline can

quickly become a bottle-neck. Here we present a novel for-

mulation for solving bundle adjustment in a truly distributed

manner using consensus based optimization methods. Our

algorithm is presented with a concise derivation based on

proximal splitting, along with a theoretical proof of conver-

gence and brief discussions on complexity and implementa-

tion. Experiments on a number of real image datasets con-

vincingly demonstrates the potential of the proposed method

by outperforming the conventional bundle adjustment for-

mulation by orders of magnitude.

1. Introduction

With the number of images and video available over the

internet reaching several billions of terabytes and grow-

ing, the need for novel tools capable of handling such vast

amount of data becomes apparent. In this paper we present

a framework for solving a wide range of large-scale opti-

mization problems in multi-view geometry in a distributed

manner.

Our work focuses on Structure-from-Motion and in par-

ticular the Bundle Adjustment problem [23, 9], which is

the process of iteratively refining the camera parameters

as well as the 3D points of a scene reconstruction through

non-linear optimization. Bundle adjustment constitutes a

core component in most state-of-the-art multi-view geome-

try systems, and is typically invoked as a final refinement

stage to approximate initial scene estimates as well as a

means for removing drift in incremental reconstructions.

The Levenberg-Marquardt algorithm has proven to be the

most successful method for solving this formulation, as it is

simple to implement, robust to initialization, and its frame-

work makes it very amenable to taking advantage of the

forms of sparsity that typically arise in multi-view geometry

problems. Each step of this algorithm produces an estimate

of the parameters that improves upon the previous and the

resulting series of iterates can be shown to converge to a

local minimum of the objective function at hand.

Despite its long history within the field of computer vi-

sion, bundle adjustment still receives a significant amount

of research attention. In its conventional formulation, the

complexity of bundle adjustment scales quite poorly with

the size of the problem considered; as we transition from

small and moderate reconstructions to truly large scale

settings, bundle adjustment quickly becomes a computa-

tional bottle-neck. Hence, recent efforts in this topic have

primarily been focussed towards improving the computa-

tional efficiency of bundle adjustment, in particular when

applied to very large-scale reconstruction problems, see

[16, 14, 24, 6, 15, 3], with a number of publicly available

software packages as a result [16, 24, 1]. These previous ap-

proaches typically boost performance of bundle adjustment

by raising the efficiency of specific computational steps

taken within the algorithm itself. For example, a number

of methods have been introduced in attempts at improving

the efficiency of solving the linear systems that rise within

the bundle adjustment algorithm. In [6] the authors advo-

cated the use of conjugate gradients along with a novel pre-

conditioning to replace the Cholesky factorization typically

employed. In the paper [2] a method was proposed using

a combination of sparse methods, preconditioned conjugate

gradient and approximation methods with some very im-

pressive results.

Other research directions include the work of [18]. Here

the authors attempt to split the problem into a number of

smaller subproblems, solve these individually and in par-

allel and then subsequently merge them into one large fi-

nal reconstruction. However, because this method relies on

decoupling the full scene into sub-maps that are as inde-

pendent as possible, the degree of parallelism that can be

achieved is limited to particular classes of scenes.

The paper [24] proposed a very efficient method for solv-

ing large scale 3D scene reconstruction problems by capi-
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talizing on multicore GPUs and CPUs commonly available

in today’s computers. Some extremely impressive improve-

ments in run-time was reported here. However, this work

is more concerned with achieving speed-ups of the conven-

tional bundle adjustment algorithm, exploiting multiple pro-

cessors on a single computer. Less attention was paid to ad-

dressing out-of-core issues and inherent limitations caused

by the algorithmic complexity of this conventional formu-

lation.

This paper focuses on the problem of efficiently solv-

ing large-scale bundle adjustment problems in a distributed

manner. The proposed method is ultimately intended as

an external memory algorithm that fundamentally relies on

message passing between resources, and is therefore capa-

ble of handling datasets exceeding the memory capacity of

a single computer. Furthermore, no assumptions are made

in regards to the sparsity or structure of the scene and no

limitations on the degree of parallelism are imposed.

This present work is based on consensus optimization

[5], a simple but powerful class of methods with the ap-

pealing property of being able to operate in a distributed

fashion with minimal coordination between nodes. Con-

sensus based algorithms are also extremely straightforward

to implement while typically being able to avoid the over-

head involved in other approaches, such as aggregating up

spanning trees. They belong to a family of optimization

algorithms known as proximal splitting methods; this very

general class of methods have commonly been used in con-

trol and signal processing, applications [8] but has recently

also received attention in the computer vision community

[10, 11]. To our knowledge this is the first study into

their use for distributed Structure-from-Motion recovery in

multi-view geometry.

The paper is organized as follows. In the subsequent sec-

tion, a brief review of multi-view geometry and the bun-

dle adjustment problem is given, along with an introduction

to proximal splitting methods and the Douglas-Rachford

method. This is then followed by a section containing the

derivation of the proposed algorithm, a theoretical conver-

gence analysis and a discussion on implementational de-

tails. Finally, experimental results are given in section 5

followed by concluding remarks.

2. Projective Geometry and Bundle Adjust-

ment

Multi-view geometry typically concerns the problem of

estimating camera and structure parameters that minimize

some aspect of the reprojection error of a number of mea-

sured image points. Here we restrict ourselves to problems

on the following form.

Let π(Pi, Xj) : Q × R
3 7→ R

2 denote the projection,

according to the pinhole camera model, of point Xj ∈ R
3

in image i given its camera matrix Pi ∈ Q ⊆ R
3×4 and

uij = [ ux
ij uy

ij ]
T

the observed image location of the same

point. Here the structure of the setQ depends on the setting

and camera model used; for full projective reconstructionQ
is simply R

3×4 but in the case of calibrated or uncalibrated

euclidean reconstructions this set becomes slightly more in-

volved.

When the error minimized is the total sum-of-squares re-

projection error,

min
Pi,∈Q
Xj ,

i=1,..,m
j=1,..,n

m∑

i=1

n∑

j=1

wij (uij − π(Pi, Xj))
2

(1)

given n measured image points in m images, we arrive at

the well-known Bundle Adjustment problem. Here wij de-

notes the elements of the visibility matrix, a binary variable

that equals 1 if point j is visible in image i and 0 otherwise.

With

P =
[
PT
1 . . . PT

m

]T
, X =

[
X1 . . . Xn

]
,

Π(P,X) =
[
π(P1, X1) π(P1, X2) . . . π(Pm, Xn)

]
,

U =
[
u11 u12 . . . umn

]
,

we can write (1) compactly, using the Hadamard (or ele-

mentwise) product denoted ◦, as

min
P∈Qm

X∈R
3×mn

||W ◦ (U −Π(P,X))||2F . (2)

Bundle adjustment solves (2) using iterative methods for

non-linear least squares optimization. The Levenberg-

Marquardt algorithm is arguably the most successful

method for this formulation. The memory complexity for

the conventional formulation of this algorithm is O(m2),
quadratic in the number of cameras, and a time complex-

ity of O(m3), cubic in the number of cameras. Hence, the

computational costs for this algorithm rapidly becomes pro-

hibitive as the size of the scene grows.

3. Proximal Splitting Methods

Consider a general convex optimization problem on the

following form

min
x∈H

f1(x) + ...+ fN (x)
︸ ︷︷ ︸

=Φ(x)

, (3)

where fi, i = 1, ..., N are proper, convex and lower semi-

continuous functions and H a Hilbert space. Proximal split-

ting methods are a general class of meta-algorithms used for

solving (3). These methods proceed by splitting the objec-

tive functions and evaluating the summands fi individually

so as to yield an efficient and easily implementable algo-

rithm.
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The proximity operator proxf : H → H of a proper,

convex and lower semi-continuous function f : H → R,

with ρ > 0 and H a Hilbert space, is defined as

proxf/ρ(y) = arg min
x∈H

(

f(x) +
ρ

2
||x− y||2

)

(4)

This notion was first introduced by [17] as a generalization

of the concept of orthogonal projections onto convex sets.

The proximity operator plays a central role in the devel-

opment of the proximal splitting methods. These splitting

schemes are first order optimization methods that are partic-

ularly aimed at minimizing a sum of functionals for which

it is possible to efficiently compute its proximity operator.

For any y ∈ H , x̄ is a stationary point of (4) if and only

if the inclusion 0 ∈ ∂f(x̄)+ρ(x̄−y) holds, or equivalently

x̄ ∈

(

I +
1

ρ
∂f

)−1

y, (5)

with I the identity operator.

Returning to our original problem (3), where, for the

sake of brevity, we let N = 2, if we further assume that

a solution to this problem exists then it follows by Fermat’s

theorem that x̄, a minimizer of (3) must satisfy

0 ∈ ∂f1(x̄) + ∂f2(x̄). (6)

By exploiting its additive structure the above inclusion can

then equivalently be recast as a fix-point iteration in a num-

ber of different ways, resulting in a variety of different

proximal splitting algorithms, most notably the Forward-

Backward and Douglas-Rachford splitting schemes [7].

In this paper we restrict ourselves to the latter, for which

the inclusion (6) can be expressed as

x̄+
1

ρ
∂f2(x̄) ∈

(

I +
1

ρ
∂f1

)−1

(I + ∂f2) (x̄) +
1

ρ
∂f2(x̄),

(7)

arriving at the fix-point iterations,

zt+1 = proxf1/ρ
(xt), (8)

xt+1 = xt − zt+1 + proxf2/ρ
(2zt+1 − xt) (9)

In addition to its simplicity these above expressions have

the further desirable property of preserving separability. If

f1 or f2 are separable functions then so are the correspond-

ing proximity operators in (8)-(9). It is this attribute that

allows for the distributability of the algorithm proposed in

the following section.

It should also be mentioned that strong connections be-

tween proximal splitting methods and a number of already

existing classes of algorithms have been established. For in-

stance, the popular Alternating Direction Method of Multi-

pliers [4] can be shown to be equivalent to a Douglas- Rach-

ford iteration applied to the dual problem. In fact methods

such as the Split Bregman and alternating Split Bregman

algorithm [13], the augmented Lagrangian methods [4] and

Projected Landweber algorithm, to name a few, can all be

viewed as special instances of the classical proximal split-

ting methods; see [7, 21] for more details.

In some cases it is of interest to only realize a Douglas-

Rachford splitting scheme on a subset of the variables. This

can be shown to benefit both computational and memory

requirements of the standard Douglas-Rachford algorithm,

for instance if one or both of the entering functions in (3)

are separable or invariant to some of the entries of x.

Let H1 and H2 be some partition of the Hilbert space H ,

i.e. H = H1 × H2. Then the partial proximity operator

prox†f : H2 → H , of f : H → R, is defined as

prox†
f/ρ(y) = arg min

[ x1
x2
]∈H

(

f(x1, x2) +
ρ

2
||x2 − y||2

)

.

(10)

Following as in (4), for x̄ = prox†f/ρ(y) the equivalent

inclusion becomes

x̄ = ([ 0I ] +
1

ρ
∂f)−1

[
0
y

]
. (11)

Here we assume that f is strongly convex in x1, ensuring

the existence of the operator ([ 0I ] +
1
ρ∂f)

−1.

The inclusion (7) can be modified accordingly (omitted

here), thus arriving at a partial Douglas-Rachford splitting

zt+1 = prox†
f1/ρ

(xt
2), (12)

xt+1 = xt − zt+1 + prox†f2/ρ(2z
t+1
2 − xt

2) (13)

The convergence properties for this partial formulation can

be shown to be similar to that (8)-(9) with only some minor

additional assumptions, see [7].

4. Distributed Bundle Adjustment

We are now ready to derive our proposed formulation of

a distributed bundle adjustment algorithm for solving the

Bundle Adjustment problem (1). We will show that refor-

mulating the problem in a very specific way allows us to

apply the partial proximal splitting framework of section 3

in a straight forward and distributable manner.

First we split the m images into l disjoint partitions. Let

ck ∈ {1, ...,m}, k = 1, ..., l with
⋃

k ck = {1, ...,m} and

ci ∩ cj = ∅, ∀i 6= j. Next, introduce ml additional latent

variables denoted X̄k
j ∈ R

3, j = 1, ...,m, k = 1, ..., l. To

simplify notation it will prove convenient to also define the

following latent visibility matrix

w̄k
j =

{
1, ∃i ∈ ck s.t. wij = 1,
0, otherwise.

(14)
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Using the indicator function (for a set S), here defined as

ιS(x) =

{
∞, x /∈ S,
0, x ∈ S,

(15)

we can now rewrite (1) as the equivalent problem,

min
Pi,∈Q

X̄k
j ,

∑

1≤k≤l
1≤j≤n
i∈ck

wij ||uij − π(Pi, X̄
k
j )||

2
2

+
∑

1≤k1≤l−1
k1+1≤k2≤l

1≤j≤n

ι~0

(

w̄k1
j w̄k2

j (X̄k1
j − X̄k2

j )
)

. (16)

Here ~0 denotes the zero vector. Letting

f1(P, X̄) =
∑

1≤k≤l
1≤j≤n
i∈ck

wij ||uij − π(Pi, X̄
k
j )||

2
2, (17)

and

f2(P, X̄) =
∑

1≤k1≤l−1
k1+1≤k2≤l

1≤j≤n

ι~0

(

w̄k1
j w̄k2

j (X̄k1
j − X̄k2

j )
)

. (18)

we obtain a formulation in line with the proximal splitting

of the previous section. Allowing us to apply the partial

Douglas-Rachford iterations (12)-(13) to solve (16). The

partial formulation was employed since, with f2 being in-

dependent of P , the resulting subproblems then becomes

particularly simple to solve, as we will show next.

First we turn to solving the proximal operators relevant

to the partial Douglas-Rachford Splitting (12). With f1
given by (17) then prox†

f1/ρ
: R3×n×l 7→ Qm×R

3×n×l is

obtained as the minimizer of,

prox†f1/ρ(Z) =

arg min
P,∈Qm

X̄

∑

1≤k≤l
1≤j≤n
i∈ck

wij ||uij − π(Pi, X̄
k
j )||

2
2 +

ρ

2
||X̄ − Z||2F .

(19)

Since the partitions ck are disjoint we can write (19)

l∑

k=1

min
Pi,∈Q|ck|,

X̄k∈R
3×n

n∑

j=1

∑

i∈ck

wij ||uij − π(Pi, X̄
k
j )||

2
2

+
ρ

2
w̄k

j ||X̄
k
j − Zk

j ||
2 (20)

Note that the inner summand of the above problem is com-

pletely independent over k and that each of these subprob-

lem is a total sum-of-squares problem to which a standard

bundle adjustment solver is directly applicable. Conse-

quently prox†f1/ρ can be evaluated by solving l smaller, in-

dependent SfM problem in parallel. This formulation thus

allows us to efficiently solve (20) by distributing this prob-

lem across an arbitrary number of processors.

The second iteration (13) with f2 as in (18) is given by

the solution to,

proxf2/ρ(Z) =

arg min
X̄

∑

1≤k1≤l−1
k1+1≤k2≤l

1≤j≤n

ι~0

(

w̄k1
j w̄k2

j (X̄k1
j − X̄k2

j )
)

+
ρ

2
||X̄ − Z||2F

(21)

=

n∑

j=1

(

min
X̄j

∑

1≤k1≤l−1
k1+1≤k2≤l

ι0

(

w̄k1
j w̄k2

j (X̄k1
j − X̄k2

j )
)

+
ρ

2

l∑

k=1

(X̄k
j − Zk

j )
2
)

. (22)

Here we again have a problem that is separable across j
and can consequently also be solved in a distributed man-

ner. In addition, here prox†
f2/ρ

has a particularly conve-

nient closed form solution. Since, for all j, it must hold

that

w̄k1
j w̄k2

j (X̄k1
j = X̄k2

j ), k1, k2 = 1, ..., l, (23)

at the solution of (22). Then this problem can be rewritten

equivalently as a equality constrained least-squares problem

for which the following close form solution holds

[

proxf2/ρ
(Z)

]k

j
=

{ ∑l
k=1 w̄k

j z
k
j∑

l
k=1 w̄k

j

, w̄k
j = 1,

zkj , otherwise
(24)

The above expression can be obtained through variable sub-

stitution in (22) followed by setting the gradient of the re-

sulting expression to zero. We summarize our proposed

method in algorithm 1.

4.1. Convergence Analysis

Directly applying proximal splitting to a non-convex

problem does in general not guarantee convergence as the

proximity operator is no longer firmly non expansive, a

property which the theoretical analysis of this class of al-

gorithms rests heavily on. An exception is the work in

[12, 22], which analyses the Forward-backward splitting

on non-convex problems. However, very little seems to

have been published regarding the convergence of Douglas-

Rachford splitting applied to non-convex problems.

Here we are able to make provable statements regard-

ing the convergence of the proposed framework. It can be
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shown that with a lower bound on the depth of the recon-

structed scene and with ρ sufficiently large then algorithm

1 will converge to a local minima of (1). We have the fol-

lowing main theorem, the proof can be found in the supple-

mentary material.

Theorem 4.1 (Convergence) With f1 and f2 as in (17)-

(18), let {(P (t), X(t))} ⊂ R3×4×m × R3×n denote a se-

quence generated by Algorithm 1. Assuming that local min-

imizers of (1) exists, are unique and that the scene depth d

is bounded from below by d = P
(t)
i3

[
X

(t)
i

1

]

≥ dmin > 0,

i ∈ [1,m]. Then there exists a R ∋ ρmin > 0 such that

if ρ(t) > ρmin (with t ≥ T for some fixed T) then Algo-

rithm 1 is guaranteed to converge and every limit point of

{(P (t), X(t))} is a local minimizer of (1).

As there is no restriction on the permissible partitions

of the cameras we can thus construct subproblems as small

as desirable, down to a single camera per process, regard-

less of scene structure and camera connectivity. If solved

in a distributed manner with sufficient nodes, this means

that the complexity of this bundle adjustment formulation is

now only O(maxi(|ci|)
3), a significant improvement over

O(m3), the complexity of the conventional bundle adjust-

ment formulation. However, this improved complexity does

come at a cost. The convergence rates of proximal splitting

methods are typically decidedly inferior to those of algo-

rithms such as the Levenberg-Marquardt. In addition, this

difference in convergence speed consistently grows with the

degree of parallelization. This trade-off between complex-

ity and rate of convergence will be further discussed in sec-

tion 5.

4.2. Implementation Details

In this section we will briefly discuss some of the prac-

tical aspects of implementing algorithm 1. As mentioned

in the previous section, the convergence of the proposed

method does not necessarily hold in the non-convex set-

ting, unless ρ is sufficiently large, as shown in theorem 4.1.

Hence, correctly setting the value of ρ is of importance, a

task that is made more demanding owing to the established

relationship between the value of this parameter and the rate

of convergence of proximal splitting algorithms. Setting ρ
too small will not result in a convergent algorithm and set-

ting it too large will render the algorithm intractably slow. A

commonly accepted approach is to modify this penalty pa-

rameter during the progress of the algorithm and start with

a small initial value of ρ to ensure fast convergence in the

initial stages and then gradually increase it to certify over-

all convergence to a stationary point of the problem at hand.

This simple scheme was used in this work ρt+1 = (1+η)ρt,
where typical choices of these parameters were ρ0 = 10−3

and η = 0.01.

Algorithm 1 Distributed Bundle Adjustment

input:

u (image measurements),

{ρ(t)}∞t=0, ρ(t) ∈ R
+ (proximal weighting),

{c1, ..., cl} (camera partitions)
initialize:

P (0), X(0) (initial estimate of cameras & 3D points)

X̄k(0) ← X(0), k = 1, ..., l (initial latent variables)

t = 0
repeat

• {P (t+1), X̄(t+1)} ← prox†
f1/ρ(t)(Z(t))

Solve by evaluating,

{P
(t+1)
i∈ck

, X̄k(t+1)} ← prox†f1/ρ(t)(Zk(t)),
in parallel for all k ∈ [1, l], as in (20).

• {Z(t+1)} ← Z(t) − X̄(t+1)+
proxf2/ρ(t)(2X̄(t+1) − Z(t))

Here the proximity operator is separable in j
and proxf2/ρ is given in closed form by (24).

• X
(t+1)
j ← X̄

k(t+1)
j , for any k ∈ [1, l] such that

w̄k
j = 1, j = 1, ..., n.

• t← t+ 1
until convergence

As stated in section 4 algorithm 1 might at the onset give

the appearance of having quite substantial memory require-

ments, since the introduction of the latent variables X̄ ef-

fectively increases the number of variables by a factor of

(almost) l. These memory requirements can however be

greatly reduced by noting that the individual subproblems

(20) are in fact invariant to any latent 3D point not visi-

ble in the current camera partition. That is, for any given

k = 1, ..., l, we do not need to store the value of X̄k
j unless

w̄k
j = 1. Consequently, not only does each sub-problem

here involve a smaller number of cameras, it only needs to

consider the subset of the structure visible from its reduced

set of cameras.

Finally, we point out the fact that since our proposed

method is iterative in nature, it is not necessary to solve

each bundle adjustment subproblem to machine precision.

In fact, in our current implementation we terminate after

a single bundle adjustment iteration has resulted in an im-

proved reprojection error.

5. Experimental Validation

In this section we present an empirical validation of our

proposed algorithm. In our experiment we were mainly in-

terested in investigating the computational gain achieved by

the presented formulation over that of conventional formu-

lations. This proposed algorithm is a meta-algorithm, one

that does not rely on a specific bundle solver, and we are
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Dataset
Stockholm

City Hall
UWO

Alcatraz

Courtyard

Vercingetorix

Statue

Eglise du

Dome

Arc de

Triomphe

Cameras 43 57 67 68 85 173

3D-Points 47,833 8,880 23,674 10,789 84,792 35,165

Observations 162,782 27,309 68,615 49,378 615,227 369,765

Conventional BA

# Iter 9 9 12 9 12 10

Time 19.01s 6.79s 76.04s 16.35s 167.51s 114.33s

Distributed (#cams/node) 21 28 33 34 28 34

# Iter 13 9 41 14 18 18

Time 12.35s 2.62s 38.37s 6.68s 49.73s 14.41s

Distributed (#cams/node) 7 7 11 17 12 17

# Iter 15 22 60 14 23 19

Time 4.99s 1.59s 16.92s 2.21s 19.24s 5.92s

Distributed (#cams/node) 3 4 6 4 4 10

# Iter 17 23 69 17 33 32

Time 2.92s 0.94s 11.83s 0.69s 9.36s 5.35s

Table 1: Summary of the datasets and results of section 5.1.

primarily interested in determining the potential speed-ups

gained from the distributed formulation over its conven-

tional counterpart. While it would be interesting to test the

speed-up given by our meta-algorithm on more efficient im-

plementation of bundle solvers [1, 14, 24], we leave this as

future work. We argue, nonetheless, that the relative gain

in computational efficiency would essentially remain un-

changed and that this experimental protocol is a legitimate

and suitable proxy for highlighting the potential of the pro-

posed method.

The initialization of refinement methods such as bundle

adjustment is of crucial importance to the results they pro-

duce. As the structure-from-motion problem addressed in

this work are non-convex, there are multiple local unde-

sirable minimas present. If the starting point is not good

enough, the final result will inevitably be poor, but this is

just as true for the conventional bundle adjustment as it is

for the distributed variant proposed here. However, as we

are mainly concerned with computational aspects of (1), we

will simply assume that a sufficiently good initialization has

been made available to us by some other means. In the be-

low we construct initial estimates by manually adding mod-

erate amounts of Gaussian noise to the reconstructions sup-

plied with each the datasets considered.

5.1. Synthetic Experiments

In order to eliminate outside influences on the compu-

tational resources, such as external jobs demanding access

to the distributed system, our initial experiments are con-

ducted in a synthetic setting. We emulated a distributed ar-

chitecture by solving algorithm 1 in serial and subsequently

obtaining the timing information as the maximum of the

time requirements over all the individual subproblems. This

allows us to study the computational requirements separate

from the communication overhead under controlled and re-

peatable conditions.

We carried out experiments on six different real world

datasets, all available from [19, 20]. A summary of these

datasets are given in table 1.

A full and calibrated Euclidean reconstructions of each

of these image sequences was carried out using our pro-

posed algorithm. We compared our approach to that of a

standard bundle adjustment solver. Both algorithms were

implemented in Matlab and run on a standard Intel i7, 3GHz

machine with 256GB of RAM. The same Matlab imple-

mentation of bundle adjustment was employed to solve the

conventional formulation as well as the subproblems of al-

gorithm 1. The results of these reconstructions1 are shown

in figure 1 and table 1.2

These initial results appear very convincing. The left col-

umn of graphs in figure 1 shows how the reprojection error

decreases over time (in seconds); for the conventional bun-

dle adjustment algorithm and the distributed formulation,

with varying numbers of nodes employed.

In these plots, the distributed bundle adjustment formula-

tion outperforms the conventional formulation by orders of

magnitude. It also appears evident that the more nodes used

the faster convergence is achieved. Note that although this

outcome might be unsurprising and intuitively correct, it is

neither an obvious result nor does it follow trivially from

the parallelization of the problem. Recall from section 4.1

1Averaged over 100 iterations with different initializations.
2Convergence is achieved once the magnitude of the normalized gradi-

ent of (1) is less than 10
−3
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Figure 1: Euclidean reconstruction of the datasets of table 1. The left graph shows the Reconstruction Error vs. Time for

Conventional Bundle Adjustment as well as the proposed Distributed Bundle Adjustment (for a varying number of nodes).

The right graph shows the Time to Convergence vs. Communication Overhead per Iteration.
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Figure 2: Euclidean reconstruction of the final-961 dataset. (Left) 3D reconstruction. (Center) Reconstruction Error vs.

Time. (Right) A Gantt chart of (a portion) of the 64 nodes used. Here each row corresponds to individual nodes, each column

to one iteration. The length of each blue bar correlates to the time required to solve the subproblem on that specific node.

that although the algorithmic complexity of algorithm 1 de-

creases with the number of nodes l, the rate of convergence

is inversely proportionate to l. However, these results do

seem to suggest that the speed-ups gained from paralleliza-

tion clearly outweighs the reduced convergence rates.

However, these results do not take any overhead, such

as communication across nodes, into account. The actual

amount of overhead is entirely platform dependent. We ar-

gue that it is justifiable to assume that this overhead is con-

stant across the iterations. Hence, we can study how dif-

ferent levels of overhead effects the overall performance of

algorithm 1. The rightmost column of graphs in figure 1

shows how the time to convergence varies with the overhead

per iteration. From these graphs it is evident that the optimal

choice of the number of nodes will constitute a trade-off be-

tween the complexity of the subproblems and the amount of

overhead inherent to the distributed system used. It should

be noted that for conventional bundle adjustment to out-

perform the distributed algorithm in these experiments, an

overhead of about 400%-600% is required.

5.2. MPI Experiments

To verify these above results on an actual distributed

platform, we implemented the proposed algorithm 1 using

C++, MPI and OpenBLAS, and evaluated its performance

on a Beowulf cluster comprising 33 heterogeneous nodes.

Each node was connected by Gigabit Ethernet and were typ-

ically 2 x 8 core 2.7Ghz machines with 128GB of RAM,

although a number of nodes had up to 48 cores and 256GB

of RAM. MPI was used to distribute the problem to a vary-

ing number of processes run across the cluster. Each sub-

problem (20) was solved in parallel, and the minimum X̄
sent to the root node in order to compute the global solution

(24).

This implementation was evaluated on the Final se-

quence of [3], a dataset consisting of 961 cameras, 187, 103
3D-points and 1, 692, 975 observations. Here algorithm 1

was distributed across 64 machines, the conventional bun-

dle adjustment algorithm was run on a single 32 core ma-

chine, see figure 2. As can be seen, these results are in

strong agreement with the experiments in the emulated set-

ting of the previous section. It should also be noted that in

this experiment and on this system the overhead constituted

approximately 0.1% of the entire computational time.

6. Conclusion

In this paper we have proposed a consensus formula-

tion for distributed bundle adjustment. The resulting meta-

algorithm, here derived from proximal splitting methods,

is both computationally efficient as well as remarkably

straightforward to implement. Our empirical validation

clearly demonstrates the potential of our distributed ap-

proach, as it appears to be able to offer significant speed-ups

of orders of magnitude over the conventional bundle adjust-

ment formulation.

Future work includes further theoretical as well as em-

pirical analysis and verification of the proposed formula-

tion. We also intend to procure access to the necessary in-

frastructure required to carry out a comprehensive experi-

mental evaluation on a large number of considerably more

demanding datasets across a wide range of architectures.
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