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Abstract

Object detection and 6D pose estimation in the crowd

(scenes with multiple object instances, severe foreground

occlusions and background distractors), has become an im-

portant problem in many rapidly evolving technological ar-

eas such as robotics and augmented reality. Single shot-

based 6D pose estimators with manually designed features

are still unable to tackle the above challenges, motivat-

ing the research towards unsupervised feature learning and

next-best-view estimation. In this work, we present a com-

plete framework for both single shot-based 6D object pose

estimation and next-best-view prediction based on Hough

Forests, the state of the art object pose estimator that per-

forms classification and regression jointly. Rather than us-

ing manually designed features we a) propose an unsuper-

vised feature learnt from depth-invariant patches using a

Sparse Autoencoder and b) offer an extensive evaluation

of various state of the art features. Furthermore, taking

advantage of the clustering performed in the leaf nodes of

Hough Forests, we learn to estimate the reduction of un-

certainty in other views, formulating the problem of select-

ing the next-best-view. To further improve pose estimation,

we propose an improved joint registration and hypotheses

verification module as a final refinement step to reject false

detections. We provide two additional challenging datasets

inspired from realistic scenarios to extensively evaluate the

state of the art and our framework. One is related to domes-

tic environments and the other depicts a bin-picking sce-

nario mostly found in industrial settings. We show that our

framework significantly outperforms state of the art both on

public and on our datasets.

1. Introduction

Detection and pose estimation of everyday objects is a

challenging problem arising in many practical applications,

such as robotic manipulation [18], tracking and augmented

reality. Low-cost availability of depth data facilitates pose

estimation significantly, but still one has to cope with many

challenges such as viewpoint variability, clutter and oc-
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b)

d)

a)

Figure 1: Sample photos from our dataset. a) Scene containing

objects from a supermarket, b) our system’s evaluation on a), c)

Bin-picking scenario with multiple objects stacked on a bin, d)

our system’s evaluation on c).

clusions. When objects have sufficient texture, techniques

based on key-point matching [22, 30] demonstrate good re-

sults, yet when there is a lot of clutter in the scene they

depict many false positive matches which degrades their

performance. Also, holistic template-based techniques pro-

vide superior performance when dealing with texture-less

objects [14], but suffer in cases of occlusions and changes

in lighting conditions, while the performance also degrades

when objects have not significant geometric detail. In or-

der to cope with the above issues, a few approaches use

patches [31] or simpler pixel based features [5] along with

a Random Forest classifier. Although promising, these tech-

niques rely on manually designed features which are diffi-

cult to make discriminative for the large range of everyday

objects. Last, even when the above difficulties are partly

solved, multiple objects present in the scene, occlusions and

distructors can make the detection very challenging from a

single viewpoint, resulting in many ambiguous hypotheses.

When the setup permits, moving the camera can be proved

very beneficial for accuracy increase. The problem is how
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to select the next best viewpoint, which is crucial for fast

scene understanding.

The above observations motivated us to introduce a com-

plete framework for both single shot-based 6D object pose

estimation and next-best-view prediction in a unified man-

ner based on Hough Forests, a variant of Random Forest

that performs classification and regression jointly [31]. We

adopted a patch-based approach but contrary to [14, 31, 5]

we learn features in an unsupervised way using deep Sparse

Autoencoders. The learnt features are fed to a Hough Forest

[12] to determine object classes and poses using 6D Hough

voting. To estimate the next-best-view, we exploit the capa-

bility of Hough Forests to calculate the hypotheses entropy,

i.e. uncertainty, at leaf nodes. Using this property we can

predict the next-best-viewpoint based on current view hy-

potheses through an object-pose-to-leaf mapping. We are

also taking into account the various occlusions that may ap-

pear from the other views during the next-best-view estima-

tion. Last, for further false positives reduction, we introduce

an improved joint optimization step inspired by [1]. To the

best of our knowledge, there is no other framework jointly

tackling feature learning, classification, regression and clus-

tering (for next-best-view) in a patch-based inference strat-

egy.

In order to evaluate our framework, we do an exten-

sive evaluation for single shot detection of various state

of the art features and detection methods, showing that

the proposed approach demonstrates a significant improve-

ment compared to the state of the art techniques, on many

challenging publicly available datasets. We also evaluate

our next-best-view selection to various baselines and show

its improved performance, especially in cases of occlu-

sions. To demonstrate more explicitly the advantages of our

framework, we provide an additional dataset consisting of

two realistic scenarios shown in Fig. 1. Our dataset also

reveals the weaknesses of the state of the art techniques to

generalize to realistic scenes. In summary, our main contri-

butions are:

• A complete framework for 6 DoF object detection that

comprises of a) an architecture based on Sparse Autoen-

coders for unsupervised feature learning, b) a 6D Hough

voting scheme for pose estimation and c) a novel active

vision technique based on Hough Forests for estimating

the next-best-view.

• Extensive evaluation of features and detection methods

on several public datasets.

• A new dataset of RGB-D images reflecting two usage

scenarios, one representing domestic environments and

the other a bin-picking scenario found in industrial set-

tings. We provide 3D models of the objects and, to

the best of our knowledge, the first fully annotated bin-

picking dataset.

2. Related Work

Unsupervised feature learning has recently received the

attention of the computer vision community. Hinton et al.

[15] used a deep network consisting of Restricted Boltz-

mann Machines for dimensionality reduction and showed

that deep networks can converge to a better solution by

greedy layer-wise pre-training. Jarrett et al. [16] showed

the merits of multi-layer feature extraction with pooling and

local contrast normalization over single-layer architectures,

while Le et al. [19] used a 9-layer Sparse Autoencoder to

learn a face detector only from unsupervised data. Fea-

ture learning has also been used for classification[27] using

RNNs, and detection[3] using sparse coding, trained with

holistic object images and patches, respectively. Coates et

al. [7] investigated different single-layer unsupervised ar-

chitectures such as k-means, Gaussian mixture modes, and

Sparse Autoencoders achieving state of the art results when

parameters were fine-tuned. Here, we use the Sparse Au-

toencoders of [7] but in a deeper network architecture, ex-

tracting features from raw RGB-D data. In turn, in [13] and

[34] it was shown how CNNs could be trained for super-

vised feature learning, while in [23] and [24] CNNs were

trained to perform classification and regression jointly for

2D object detection and head pose estimation, respectively.

Object detection and 6 DoF pose estimation is also

frequently addressed in the literature. Most represen-

tative are techniques based on template matching, like

LINEMOD [14], its extension [25] and the Distance Trans-

form approaches [21]. Point-to-Point methods [10, 26] form

another representative category where emphasis is given on

building point pair features to construct object models based

on point clouds. Tejani et al. [31] combined Hough For-

est with [14] using a template matching split function to

provide 6 DoF pose estimation in cluttered environments.

They provided evidence that, using patches instead of the

holistic image of the object, can boost the performance of

the pose estimator in cases of severe occlusions and clut-

ter. Brachmann et al. [5] introduced a new representation

in form of a joint 3D object coordinate and class labelling,

which, however suffers in cases of occlusions. Addition-

ally, Song et al. [28] proposed a computationally expensive

approach to the 6 DoF pose estimation problem that slides

exemplar SVMs in the 3D space, while in [4] shape priors

are learned by soft labelling Random Forest for 3D object

classification and pose estimation. Lim et al. [20] achieved

fine pose estimation by representing geometric and appear-

ance information as a collection of 3D shared parts and ob-

jectness, respectively. Wu et al. [33] designed a model that

learns the joint distribution of voxel data and category la-

bels using a Convolutional Deep Belief Network, while the

posterior distribution for classification is approximated by

Gibbs sampling. The authors in [32] tackle the 3D object

pose estimation problem by learning discriminative feature
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descriptors via a CNN and then passing them to a scalable

Nearest Neighbor method to efficiently handle a large num-

ber of objects under a large range of poses. However, com-

pared to our work, this method is based on holistic images

of the objects, which is prone to occlusions [31] and only

evaluated on a public dataset that contains no foreground

occlusions.

Hypotheses verification is employed as a final refinement

step to reject false detections. Aldoma et al. [1] proposed

a cost function-based optimization to increase true positive

detections. Fioraio et al. [11] showed how single-view hy-

potheses verification can be extended to multi-view ones in

order to facilitate SLAM through a novel Bundle adjustment

framework. Buch et al. [6] presented a two-stage voting

procedure for estimating the likelihood of correspondences,

within a set of initial hypotheses, between two 3D models

corrupted by false positive matches.

Regarding active vision, a recent work presented by Jia

et al. [17] makes use of the Implicit Shape Model com-

bined in a boosting algorithm to plan the next-best-view for

2D object recognition, while Atanasov et al. [2] proposed

a non-myopic strategy using POMDPs for 3D object detec-

tion. Wu et al. [33] used their generative model based on the

convolutional network to plan for the next-best-view but is

limited in the sense that the holistic image of the object is

needed as input. Since previous works are largely depen-

dent on the employed classifier, more related to our work

is the recently proposed Active Random Forests [9] frame-

work, which, however (similar to [33]) requires the holistic

image of an object to make a decision, making it not appro-

priate for our patch-based method.

3. 6 DoF Object Pose & Next-Best-View Esti-

mation Framework

Our object detection and pose estimation framework

consists of two main parts: a) single shot-based 6D object

detection and b) next-best-view estimation. In the first part,

we render the training objects and extract depth-invariant

RGB-D patches. The latter are given as input to a Sparse

Autoencoder which learns a feature vector in an unsuper-

vised manner. Using this feature representation, we train a

Hough Forest to recognize object patches in terms of class

and 6D pose (translation and rotation). Given a test image,

patches from the scene pass through the Autoencoder fol-

lowed by the Hough forest, where the leaf nodes cast a vote

in a 6D Hough space indicating the existence of an object.

The modes of this space represent our best object hypothe-

ses. The second part, next-best-view estimation, is based

on the previously trained forest. Using the training sample

distribution in the leaf nodes, we are able to determine the

uncertainty, i.e. the entropy, of our current hypotheses, and

further estimate the reduction in entropy when moving the

camera to another viewpoint using a pose-to-leaf mapping.

Fig. 2 shows an overview of the framework. In the follow-

ing subsections, we describe each part in detail.

3.1. Single Shot­based 6D Object Detection

State of the art Hough Forests Features In the literature

some of the most recent 6D object detection methods use

Hough Forests as their underlying classifier. In [5] simple

two pixel comparison tests were used to split the data in the

tree nodes, while the location of the pixels could be any-

where inside the whole object area. In our experiments, we

also added the case where the pixel tests are restricted inside

the area of an image patch. A more sophisticated feature for

splitting the samples was proposed by Tejani et al. [31] who

used a variant of the template based LineMOD feature [14].

In comparison with the above custom-designed features, we

use Sparse Autoencoders to learn an unsupervised feature

representation of varying length and layers. Furthermore,

we learn features over depth-invariant RGB-D patches ex-

tracted from the objects, as described below.

Patch Extraction Our approach relies on 3D models of the

objects of interest. We render synthetic training images by

placing a virtual camera on discrete points on a sphere sur-

rounding the object. In traditional patch-based techniques

[12], the patch size is expressed directly in image pixels. In

contrast, we want to extract depth invariant, 2.5D patches

that cover the same area of the object regardless of the ob-

ject distance from the camera, similar to [29]. First, a se-

quence of patch centers ci, i = 1..N is defined on a regular

grid on the image plane. Using the depth value of the under-

lying pixels these are back-projected to the 3D world coor-

dinate frame, i.e. ci = (x, y, z). For each such 3D point ci
we define a planar patch perpendicular to the camera, cen-

tered at ci and with dimensions dp×dp, measured in meters,

which is subdivided into V ×V cells. Then, we back-project

the center of each cell to the corresponding point on the im-

age plane, to compute its RGB and depth values via linear

interpolation1. Depth values are expressed with respect to

the frame centered at the center of the patch (Fig. 2). Also,

we truncate depth values to a certain range to avoid points

not belonging to the object. Depth-invariance is achieved

by expressing the patch size in metric units in 3D space.

From each training image we extract a collection of patches

P and normalize their values to the range [0, 1]. The ele-

ments corresponding to the four channels of the patch are

then concatenated into a vector of size V × V × 4 (RGBD

channels) and are given as input to the Sparse Autoencoder

for feature extraction.

Unsupervised Feature Learning We learn unsupervised

features using a network consisting of stacked, fully con-

nected Sparse Autoencoders, in a symmetric encoder-

decoder scheme. An autoencoder is a fully connected, sym-

1The cell values calculation can be done efficiently and in parallel using

texture mapping in gpu.
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Figure 2: Framework Overview. After patch extraction, RGBD channels are given as input to the Sparse Autoencoder. The annotation

along with the produced features of the middle layer are given to a Hough Forest, and the final hypotheses are generated as the modes of the

Hough voting space. After refining the hypotheses using joint registration, we estimate the next-best-view using a pose-to-lead mapping

learnt from the trained Hough Forest.

metric neural network, that learns to reconstruct its input.

If the number of hidden units are limited or a small num-

ber of active units is allowed (sparsity), it can learn mean-

ingful representations of the data. In the simplest case of

one hidden layer with F units, one input (x) and one out-

put (y) layer of size N , the Autoencoder finds a mapping

f : RN → R
F of the input vectors x ∈ R

N as:

f = sigm(Wx+ b) (1)

The weights W ∈ R
F×N and the biases b ∈ R

F are

optimized by back-propagating the reconstruction error

||y − x||2. The average activation of each hidden unit is

enforced to be equal to ρ, a sparsity parameter with a value

close to zero. The mapping f represents the features given

as input to the classifier in the next stage. We can extract

“deeper” features by stacking several layers together, to

form an encoder-decoder symmetric network as shown in

Fig. 2. In this case, the features are extracted from the last

layer of the encoder (i.e. middle layer). In experiments, we

use one to three layers in the encoder part, and analyse the

effect of several parameters of the architecture on the pose

estimation performance, such as the number of layers, the

number of features and layer-wise pre-training [15].

Pose Estimation During training, we extract patches from

training images of objects and use the trained network to

extract features from object patches, that form a feature

vector f = {f1, f2, ..., fF }. These vectors are annotated

using a vector d that contains the object class, the pose

of the object in the training image and the coordinates of

the patch center expressed in the object’s frame, i.e. d =
{class, yaw, pitch, roll, x, y, z}. The feature vectors along

with their annotation are given as input to the Hough For-

est. We propose three different objective functions: entropy

minimization of the class distribution of the samples, en-

tropy minimization of the {yaw, pitch, roll} variables, and

entropy minimization of the {x, y, z} variables. Reducing

the entropy towards the leaves, has the effect of clustering

the training samples that belong to the same class and hav-

ing similar position and pose on the object. More details on

the computation of these entropies can be found in [9, 8].

The objective function used is randomly selected in each

internal node and samples are split using axis aligned ran-

dom tests. The leaf nodes store a histogram of the observed

classes of the samples that arrived, and a list of the annota-

tion vectors d. During testing we extract patches from the

test image with a stride s and pass them through the forest,

to reach the corresponding leaf. We create a separate Hough

voting space (6D space) for each object class, where we ac-

cumulate the votes of the leaf nodes. Each vector d stored

in the leafs, casts a vote for the object pose and its center

to the corresponding Hough space. The votes are weighted

according to the probability of the associated class stored

in the leaf. Object hypotheses are subsequently obtained by

estimating the modes of each Hough space. Each mode can

be found using non-maxima suppression and is assigned a

score equal to the voting weight of the mode.

3.2. Next­Best­View Prediction

When detecting static objects, next-best-view selection

is often achieved by finding the viewpoint that minimizes

the expected entropy, i.e the uncertainty of the detection

in the new viewpoint. There have been various methods

proposed for computing the entropy reduction [2, 9, 33].

Hough Forests can facilitate the process since they store ad-

equate information in the leaf nodes that can be used for

predicting such reduction. The entropy of a hypothesis in

the current view can be computed as the entropy of the sam-

ples stored in the leaf nodes that voted for this hypothesis.

That is: H(h) =
∑

lh

H(Slh) (2)

where lh is a leaf voted for hypothesis h, and Slh the set of

samples in these leaves. If the camera moves to viewpoint

v, the reduction in entropy we gain is:

r(v) = H(h)−H(hv) =
∑

lh

H(Slh)−
∑

lhv

H(Slhv
) (3)
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Figure 3: a) Offline construction of the pose-to-leaf mapping, b) Online occlusion refinement of the mapping, c) example of the effect of

occlusion refinement in entropy estimation.

where hv is the hypotheses h as would be seen from view-

point v. In order to measure the reduction in entropy, we

need to calculate the second term of the right side of equa-

tion (3), which requires to find the leaf nodes that should be

reached from the viewpoint v. Since we want to compute

the reduction before actually moving the camera, we can

simulate hv by rendering the object placing a virtual cam-

era at v, give the image as input to the forest and collect the

resulting leaves. However this can be done more efficiently

avoiding the rendering phase (contrary to [33]): we save of-

fline a mapping from object poses (discrete camera views)

to leaf nodes using the training data as shown in Fig. 3a.

Given a 6 DoF hypothesis and this mapping, we can predict

which leaf nodes of the forest are going to be reached if we

move the camera to viewpoint v. Because of the discretiza-

tion of poses in the map index, we choose the view in the

mapping that is closer to the camera viewpoint we want to

examine. Thus, the next-best-view vbest is calculated as:

vbest = argmax
v

r(v) = argmin
v

H(hv) (4)

In case of two or more uncertain hypotheses, the reduction

in entropy is averaged in the new viewpoint. Also, to ac-

count for the cost of the movement, the reduction can be

normalized by the respective cost.

In the general case of multiple objects present in the

scene with cluttered background, we can further refine the

entropy prediction to account for occlusions. In our previ-

ous formulations, we made the assumption that, from a view

v the object is clearly visible. However, due to other objects

present in the scene, some part or the whole object we are

interested in, may be occluded (Fig. 3b). In this case our

estimated entropy reduction is not correct. What we need to

do is to exclude from the entropy calculation the samples in

the leaves that are going to be occluded. More formally:

H(hv) =
∑

lhv

H(Slhv
\ Socc

lhv
) (5)

where Socc
lhv

are the samples that would be occluded in view-

point v. In order to determine this set, first, we incremen-

tally update the 3D point cloud of the scene when the cam-

era moves. Then, we project the {x, y, z} coordinates of

an annotated sample of a leaf onto the acquired scene as

shown from view v, and estimate if it is going to be oc-

cluded or not. Figure 3c shows an example of our dataset,

where there are two similar objects oreo we want to disam-

biguate. From the view -90 degrees to 0 it is difficult to un-

derstand the difference, while from 45 degrees onwards the

difference becomes clearer. However, from the view of 90

degrees the objects of interest become occluded. Calculat-

ing the entropy as described above, we get the true reduction

in entropy which is lower than in the 45 degree case.

Another example of the complete pipeline is shown in

Fig. 4. Given an image (Fig. 4a) we extract the hypotheses

from the Hough voting space (Fig. 4b). Using the optimiza-

tion described in next section 3.3 we refine this by selecting

the best subset (Fig. 4c). The best solution does not include

the objects shown in red box. However, a solution contain-

ing these hypotheses, but not well aligned with the scene

due to occlusion, has a similar low cost with the best one.

Being able to move the camera, we find the next-best-view

as described above according to the uncertain hypotheses

and change the viewpoint of the camera (Fig. 4d). We can

re-estimate a new set of hypotheses (Fig. 4e) with some hy-

potheses still being uncertain (but keeping good ones above

a threshold) and the same process is repeated.

3.3. Hypotheses verification and joint registration

State of the art methods [14, 5] assume that only one

object instance exists in the scene. In case of multiple in-

stances however, the produced set of hypotheses may be

conflicting. To address this issue, we improved the global

optimization approach of [1] in order to automatically se-

lect the subset of all possible hypotheses that best explains

the scene. For each hypothesis we render the 3D model of

the object in the scene, we exclude the parts that are oc-

cluded and define p as a point of the object model and q its

nearest neighbor in the scene. If ||p − q|| > pe where pe a

small constant, p is considered an outlier. Given a set of hy-

potheses H and a vector X = {x1, .., xi, .., xN} of boolean

variables, which indicate that hypotheses hi is valid or not,

we introduce the objective function C(X) that should be

minimized in terms of X:
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b)a) d)c) e)

Figure 4: Example of hypotheses verification and active camera movement. a) Input test image, b) complete set of hypotheses overlaid on

the image, c) hypotheses verification refinement, d) active camera movement, e) re-estimating hypotheses.

C(X) = (a1C1 + a2C2)− (a3C3 + a4C4) (6)

where

C1 = (C11 + C12 + C13)/3
C11: normalized distance ||p− q||/pe
C12: dot product of the normals of the points

C13 : max(
|Rp−Rq|

255
,
|Gp−Gq|

255
,
|Bp−Bq|

255
) color similarity

C2 = pin/ptot, pin points for which ||p− q|| ≤ pe
C3: fraction of conflicting inliers over the total inliers

C4: fraction of penalized points over total points in a region

Each Ci is calculated only for the hypotheses that xi = 1.

Contrary to [1], we normalize every term in the range [0, 1]
and noted that each one has a different relative importance

and common range of values. Therefore, unlike [1], we put

a different regularizer ai in each term, which is found us-

ing cross-validation. Furthermore, we further reduce the

solution space of the optimization by splitting the set of hy-

potheses H into non-intersecting subsets Hi. Each subset

can be optimized independently, decomposing the problem

and reducing the time and complexity of the solution.

4. Experiments

The experiments regarding the patch size and feature

evaluation were performed on a validation set of our own

dataset. Object detection accuracy is measured using the

F1-score and is averaged over the whole set of objects.

When comparing with the state of the art methods, we use

the public datasets and the evaluation metrics provided by

the corresponding authors. When evaluating on our own

dataset, we exclude the aforementioned evaluation set.

Patch Size Evaluation A patch in our framework is defined

over 2 parameters: dp is the actual size measured in meters,

and V ×V is the number of cells a patch contains, which can

be considered as the patch resolution. We used six different

configurations shown in Fig. 5a. The maximum patch size

used was limited to the 2/3 of the smallest object dimen-

sions. The network architecture used for patch-size exper-

iments is 2 layers (the encoder part) of 1000 and 400 hid-

den units respectively. Fig. 5a shows that an increase in

the patch size significantly increases the accuracy, while on

the other hand, an increase of the resolution offers a slight

improvement, and that comes at the expense of additional

computational cost. Another important factor is the stride s
during patch extraction. Fig. 5b shows that the smaller the

stride the more accurate the detection becomes.

Feature Evaluation using Hough Forests In order to eval-

uate our unsupervised feature we created 9 different net-

work configurations to test the effect of both the number

of features and the number of layers on the accuracy. We

used 1-3 layers as the encoder of the network with the last

layer of the encoder forming the feature vector used in the

Hough Forest. We varied the length of this feature vector

to be 100, 400 and 800. When we use 2 layers, the first

has 1000 hidden units, while when we use 3 layers, the

first two have 1500 and 1000 hidden units respectively. The

patch size used for these experiments is dp = 48mm with

V = 16, creating an input vector of 1024 dimensions. Us-

ing the same Hough Forest configuration, we evaluate three

state of the art features: a) the feature of [31], a variant

of LineMOD[14] designed for Hough Forests, along with

its split function, b) the widely used pixel-tests [5] and c)

K-means clustering, the unsupervised single-layer method

that performed best in [7]2 with 100, 400 and 800 clusters.

Pixel-tests have been conducted inside the area of a patch

for comparison purposes, however in the next subsection

we compare the complete framework of [5] with ours. Re-

sults are shown in Fig. 5c. The 3-layer Sparse Autoencoder

shown the best performance. Regarding the Autoencoder,

we notice that the accuracy increases if more features are

used, but when the network becomes deeper, the difference

diminishes. However, it can be seen that deeper features sig-

nificantly outperform shallower ones. K-means performed

slightly better than single-layer SAE, while pixel-tests had

worse performance. The feature of [31] had on average

worse performance than Autoencoders and K-means, which

is due to low performance on specific objects of the datasets.

We further provide a visualization of the filters of the first

layer learned by a network with a 3-layer encoder (Fig. 5d).

The first two rows are filters in the RGB channel, where it

can be seen a bias towards the objects used for the evalua-

tion. Filters in the depth channel resemble simple 3D edge

and corner detectors. Last, we have tried to pre-train each

layer as in [15], without significantly influencing the results.

State of the Art Evaluation In the experiments described

in this subsection, we used an encoder of 3 layers with 1500,

1000 and 800 hidden units, respectively. The patch used has

V = 8 and dp = 48mm, which was found suitable for a

variety of object dimensions. The forests contain four trees

limiting only the number of samples per leaf to 30. For a

2We used the K-means (triangle) as described in [7]
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(a) Patch-grid size (b) stride (c) feature evaluation (d) 1st layer filters

Figure 5: Patch extraction parameters

fair comparison, we do not make use of joint registration or

active vision except when specifically mentioned.

We tested our solution on the dataset of [5], which con-

tains 20 objects and a set of images regarded as background.

The test scenes contain only one object per image, there is

no occlusion or clutter, and are captured with different illu-

mination from the training set, so one can check the general-

ization of a 6 DoF algorithm to different lighting conditions.

To evaluate our framework we extracted the first K = 5 hy-

potheses from the Hough voting space and chose the one

with the best local fitting score. The results are shown in

Table 1 where for simplicity we show only 6 objects and the

average over the complete dataset. Authors provided com-

parison with [14] only with one object, because it was diffi-

cult to get results using their method. This dataset was gen-

erally difficult to evaluate, mainly because some pose an-

notations were not very accurate, resulting in having some

better estimations from the ground truth exceeding the met-

ric threshold of acceptance. More details and results are in-

cluded in the supplementary material. Our method showed

that it can generalize well on different lighting conditions,

even without the need of modifying the training set with

Gaussian noise as suggested by the authors.

Table 1: Results on the dataset of [5] (More on supplementary)
Object [14] (%) [5] (%) Our (%)

Hole Puncher - 98.1 94.3
Duck - 81.6 87.7

Owl - 60.5 90.27

Sculpture 1 - 82.7 89.5

Toy (Battle Cat) 70.2 91.8 92.4

... - ...

Avg. - 88.2 89.1

We have also tested our method on the dataset presented

in [31], which contains multiple objects of one category

per test image, with much clutter and some cases of oc-

clusion. Authors adopted one-class training, thus, avoiding

background class images during training. For comparison,

we followed the same strategy. Since there are multiple ob-

jects in the scene, we extract the top K = 10 modes of the

{x, y, z} Hough space, and for each mode, we extract the

H = 5 modes of the {yaw, pitch, roll} Hough space and

put a threshold on the local fitting of the final hypotheses to

produce the PR curves. Table 2 shows the results in the form

of F1-score (metric authors used) for each of the 6 objects.

The results of methods [14, 10] are taken from [31].

Table 2: Results on the dataset of [31]
Object [14] [10] [31] Our

F1 score

Coffee Cup 0.819 0.867 0.877 0.932

Shampoo 0.625 0.651 0.759 0.735
Joystick 0.454 0.277 0.534 0.924

Camera 0.422 0.407 0.372 0.903

Juice Carton 0.494 0.604 0.870 0.819
Milk 0.176 0.259 0.385 0.51

Average 0.498 0.511 0.633 0.803

In this dataset we see that our method significantly out-

performs the state of arts, especially regarding the Camera

which is small and looks similar with the background ob-

jects, and the Joystick, which has a thin and a thick part. Our

features showed better performance on Milk that contains

other distracting objects on it. It is evident that our learnt

features are able to handle a variety of object appearances

with stable performance and at the same time being robust

to destructors and occluders. Note that without explicitly

training a background class, all the patches in the image are

classified as belonging to one of our objects. While [31]

designed a specific technique to tackle this issue, our fea-

tures seem informative enough to produce good modes in

the Hough spaces.

We have also tested [31] and [5] on our own dataset. We

also tried [14], but although we could produce the reported

results on their dataset, we were not able to get meaningful

results on our dataset and so we do not report them. This

is mainly because this method is not intended to be used in

textured objects with simple geometry. We provide results

both with and without using joint object optimization. Our

dataset contains 3D models of six training objects, while

the test images may contain other objects as well. More on

our dataset and evaluation can be found in the supplemen-

tary material. Table 3 shows the results on our database.

The work of [5] is designed to work only with one object

per image and it is not evaluated on the bin-picking dataset.

Our method outperforms all others even without joint op-

timization, but we can clearly see the advantages of such

optimization on the final performance.

Active Vision Evaluation We tested our active vision

method on our dataset, using two different types of scenes.

One is the crowded scenario used for single-shot evaluation,

and the other depicts a special arrangement of objects, one
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(a) Colgate (b) Oreo (c) Softkings (d) Coffecup (e) Juice (f) Camera (g) Joystick

Figure 6: Qualitative results of our framework. Image 6g is the next best view of image 6f.

Table 3: Results on our dataset

Object [31] [5] Our
Our

joint optim.

scenario 1 (supermarket objects)

amita 26.9 60.8 64.3 71.2
colgate 22.8 11.1 26.1 28.6
elite 10.1 71.9 74.9 77.6
lipton 10.5 26.9 56.4 59.2
oreo 26.9 44.4 58.5 59.3
softkings 26.3 26.9 75.5 75.9

scenario 2 (bin picking)

coffeecup 31.4 - 33.5 36.1
juice 24.8 - 25.1 29

Figure 7: Results on active vision on our crowded dataset scenes

behind the other in rows, that is commonly seen in a ware-

house (Fig. 3). All results takes into account all the object

hypotheses during the next-best-view estimation. We com-

pare our next-best-view prediction with and without occlu-

sion refinement with three other baselines [33]: a) maxi-

mum visibility (selecting a view that maximizes the visible

area of the objects), b) furthest away (move the camera to

the furthest point from all previous camera positions), c)

move the camera randomly.

In the crowded scenario, we move the camera 10 times,

measuring in each view the average pose estimation accu-

racy of the objects present in the scene (Fig. 7). We see that

our method without occlusion refinement slightly outper-

forms the maximum visibility baseline because usually the

maximum reduction in entropy occurs when there is max-

imum visibility. Using occlusion refinement, however, we

get a much better estimation of the entropy that is depicted

in the performance.

When the objects are specially arranged, we were inter-

ested in measuring the increase in accuracy only in the sin-

gle next-best-view, i.e. we allow the camera to move only

once for speed reasons. This experiment (Fig. 8) makes

very clear the importance of tackling occlusion when esti-

Figure 8: Results on active vision on scenes with objects arranged

mating the expected entropy. Our method with occlusion

refinement was consistently finding the most appropriate

view, whereas without this step, the next-best-view was usu-

ally the front view, with the objects behind being occluded.

Regarding the computational complexity of our single

shot approach, training 3 layers of 800 features with 104

patches for 100 epochs takes about 10mins on GPU. Our

forest was trained with a larger set of 5·106 patches. Thanks

to our parallel implementation, we train a tree on an i7 CPU

in 90 mins, while [31] and [5] require about 3 and 1 days, re-

spectively. During testing, the main bottleneck is the Hough

voting and mode extraction that takes about 4-7secs to ex-

ecute, with an additional 2secs if joint optimization is used

for 6 objects. Other methods need about 1sec.

5. Conclusions

In this paper we proposed a complete framework for 6D

object detection in crowded scenes, comprising of an un-

supervised feature learning phase, 6 DoF object pose esti-

mation using Hough Forests and a method for estimating

the next-best-view using the trained forest. We conducted

extensive evaluation on challenging public datasets, includ-

ing a new one depicting realistic scenarios, using various

state of the art methods. Our framework showed superior

results, being able to generalize well to a variety of objects

and scenes. As a future work, we want to investigate how

different patch sizes can be combined, and explore how con-

volutional networks can help in this direction.
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