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Abstract

We propose a new way to train a structured output pre-

diction model. More specifically, we train nonlinear data

terms in a Gaussian Conditional Random Field (GCRF) by

a generalized version of gradient boosting. The approach

is evaluated on three challenging regression benchmarks:

vessel detection, single image depth estimation and image

inpainting. These experiments suggest that the proposed

boosting framework matches or exceeds the state-of-the-art.

1. Introduction

Many problems in machine learning involve the pre-

diction of outputs that are not a single value, but a more

complicated object like a sequence, a graph or an image.

Such problems are referred to as structured output predic-

tion [26]. Markov random fields have become popular for

structured prediction thanks to their ability to exhibit desir-

able global behavior based on the specification of local or

sparse interactions only. For generative models, the parame-

ters can be found by maximum likelihood [46, 19, 6, 4]; and

for both generative and conditional models by discrimina-

tive training [43, 44, 12, 15]. The latter is generally found to

work better except when training data is extremely scarce.

This success is at least partially attributed to the fact that

such models learn to minimize the loss function of interest

for a specific task, rather than solve a more general prob-

lem, namely learning to generate images. The most frequent

approach to discriminative learning of structured models is

via max margin (structSVM, [47, 45]). One limitation of

structSVMs is that the model must be linear in its parame-

ters in a joint feature space. Recent alternatives include re-

gression tree fields [12, 14], where nonparametric potentials

are learned by minimizing a loss function using a projected

gradient method.

In this paper we propose, for the first time, a general-

ization of gradient boosting that allows directly training a
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Figure 1. Structured regression gradient boosting. Given input xi

and structured ground truth yi, we iterate the following: given the

current prediction ϕm−1(xi), compute gradient ri,m of the struc-

tured loss. Next, train shallow regression trees that produce good

fits bk,m to the structured loss gradient image and filtered versions

thereof. Use these fits to parametrize the data terms of a Gaussian

conditional random field. Its MAP solution hm(xi) is added to the

current strong structured learner with a weight αm found through

line search. Repeat M times.

structured regression model and exploit all its benefits for

structured regression tasks in a principled way (Sect. 2).

The procedure, summarized in Fig. 1 and Algorithm 1, is

described in detail in section 2. In section 3, we study per-

formance on a number of benchmarks for which many pa-

pers have previously pushed the accuracy to levels that are

remarkable given the difficulty of those problems. We close

with a brief summary in section 4.

1.1. Related Work

Discrete and continuous conditional random fields

(CRFs) [18, 33, 43, 12] are structured prediction models

that model explicitly the relation among latent variables.

Learning the optimal parameters of these models has been
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studied extensively in the literature. StructSVMs [47, 45]

have been applied to learn the parameters of a linear joint

feature function over the input-output pairs while maxi-

mizing a margin [42]. In contrast, non-linear mappings

on joint feature functions have been learnt using gradient

boosting while minimizing the negative conditional log-

likelihood [46, 19, 6, 4]. Following the idea of discrimina-

tive learning, few methods [30, 29, 37] have been proposed

for structured regression that share only partial ideas with

the Gradient Boosting framework. Ratliff et al. [30] add a

new feature as a nonlinear function of the original base fea-

tures using a weak classifier trained from a previous predic-

tion. Parker et al. [29] instead reformulates the structured

perceptron to reweight the training set at each iteration as

in AdaBoost. StructBoost [37] incorporates only the notion

of weak structured predictors into structSVM that are gen-

erated by finding the most violated constraint. In contrast,

the proposed method is the unique method that extends gra-

dient boosting framework to structured output prediction as

an ensemble of weak structured learners while keeping the

original formulation as a specific case.

Closest in spirit to our work is StructBoost [37] which

supports a nonlinear structured learning by combining a set

of weak non-linear structured learners. This approach dif-

fers from the proposed approach in the following points.

First, StructBoost generalizes AdaBoost or LPBoost to

structured learning; our approach is based on gradient

boosting which is in itself a generalization of Adaboost.

Second, the weak structured learner of StructBoost is a

function that maps an input-output pair to a scalar value

that measures the compatibility of the input and output. In-

stead, our proposed weak structured learner maps the ob-

served variable to a structured output, not just a compatibil-

ity measure. Third, StructBoost is formulated to maximize

a margin; in contrast, our method minimizes an empirical

risk without maximizing the margin as in GCRFs [12, 43]

that are the state–of–the–art on some tasks such as im-

age denoising. Finally, our proposed weak learner extends

GCRF [33] to be more expressive by generalizing the data

term as a set of convolutional kernels and by learning a non–

parametric regression tree used in [12].

The term “Structured Gradient Boosting” has been used

before in [29], though with a completely different goal:

learning the parameters of structured perceptron algorithm

[5] that is reformulated to reweight the training set at each

iteration as in AdaBoost; there, the structure prediction is

relegated to the structured perceptron without learning any

weak learner.

2. Method

We build on the gradient boosting framework, but unlike

the original formulation use structured output weak learn-

ers. Gradient boosting aims at approximating a function

φ∗ : R
p → R by a linear combination of weak learners.

Instead, we propose Structured Regression Gradient Boost-

ing (SRGB) to approximate a mapping ϕ∗ : Rp → R
q by a

function ϕM of the form

ϕM (x) =
M
∑

t=1

αth
t(x). (1)

Here, αt ∈ R are real-valued weights, ht : Rp → R
q are

weak structured regression predictors and x ∈ R
p is the

input vector, e.g. an observed image or all features derived

from an image.

Given structured training exemplars {
(

xi, yi
)

}Ni=1,

where xi ∈ R
p and yi ∈ R

q , we aim to minimize an empir-

ical risk function

L
(

ϕM
)

=

N
∑

i=1

L
(

yi, ϕM (xi)
)

. (2)

Here, L (y, ϕ(x)) is a loss function that is differentiable

w.r.t. each dimension of the predicted structured output.

The risk function L in (2) is minimized in a greedy man-

ner by iteratively adding up weak structured regression pre-

dictors as in the Gradient Boosting framework [9]. Other

approaches such as structSVM endow the r.h.s. of Eq. (2)

with an additional regularization term. In our case, regular-

ization is accomplished by restrictions on the set of admis-

sible weak learners, and by choosing a suitable number of

iterations M .

Boosting updates can be interpreted as first-order ap-

proximations of the gradient descent direction in function

space [9]. At each iteration m, we seek for the weak struc-

tured learner hm that best predicts the average (negative)

gradient direction to minimize the empirical risk function

L(ϕm).
Denote by

ri,m = −
∂L(yi, ϕm−1(xi))

∂ϕm−1(xi)
(3)

the column vector summarizing the negative gradient direc-

tion of the loss given the current prediction w.r.t. all dimen-

sions of the current structured output prediction. We then

want to solve, in each boosting iteration,

hm = argmin
h(·)∈H

N
∑

i=1

1

2

∣

∣

∣

∣h(xi)− ri,m
∣

∣

∣

∣

2

F
(4)

where || · ||F is the Frobenius norm. The weak learners

h ∈ H in our case correspond to Gaussian Conditional

Random Fields with potentials encoded by nonparametric

regression trees (see Section 2.2). A nice feature of this

choice is that the final predictor (the strong learner) is just

a sum of GCRFs and is thus itself a single GCRF, affording

very fast inference at test time.
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An important contribution is the way in which the param-

eters of this GCRF are learned discriminatively, namely by

simplifying the minimization of Eq. (4) in terms of an alter-

native quadratic formulation that has the same global min-

imum as the original formulation but which can be found

in closed form, without resorting to projected gradient de-

scent.

Once a weak learner hm has been found, its weight αm

in the final predictor is found through line search:

αm = argmin
α

N
∑

i=1

L
(

yi, ϕm−1(·) + αhm(xi)
)

. (5)

For the loss function, we adopt standard choices

from Gradient Boosting, namely the exponential loss

L
(

yi, ϕ(xi)
)

=
∑q

j=1 e
−yi

jϕj(x
i) and the log loss

L
(

yi, ϕ(xi)
)

=
∑q

j=1 log(1 + e−2yi
jϕj(x

i) for binary clas-

sification, or the l2-norm L
(

yi, ϕ(xi)
)

=
∑q

j=1(y
i
j −

ϕj(x
i))2 for regression. In these definitions, ϕj(x

i) is the

jth element of the structured prediction function ϕ(xi), and

yij is the corresponding element of the structured training

label yi.

2.1. Weak structured regressor: GCRF

Denote with x ∈ R
p an observed image, and with z ∈ R

p

its corresponding labelling.

We model the conditional probability with a Gaussian

random field with parameters W ,

p(z|x;W) ∝ exp

(

−
1

2
(z− µ(x))TP (z− µ(x))

)

. (6)

Note that in our experiments, we choose to let the preci-

sion matrix P be a constant, that is, independent of x. Even

so, the model is a Gaussian Conditional (as opposed to a

Gaussian Markov) Random Field because the observations

x enter only via a nonparametric function µ(·). Inspired by

[43], we express the connectivity of our conditional Markov

random field in terms of convolution kernels {fk}
K
k=1. Un-

like [43], we generalize the data term by learning regression

trees that approximate linear functions of the latent vari-

ables, given the observed image x. These linear operations

include finite differences and shifts.

More specifically, we posit

P =

K
∑

k=1

FT
k Fk and µ(x) =

K
∑

k=1

FT
k bk(x;W) (7)

so that the MAP solution of (6) can be found by solving

argmin
z

K
∑

k=1

∥

∥Fk · z− bk(x;W)
∥

∥

2

F
(8)

All matrices Fk are Toeplitz matrices representing convolu-

tion kernels in the spatial domain. As in [43], the first matrix

F1 is the identity matrix, while the others represent deriva-

tives, see Fig. 2. In [43], b1(x;W) = x and bk>1(x;W) =
0. In contrast, we learn the functions {bk}Kk=1 (see section

2.2) to match differentiated and shifted label images, see

Fig. 3.

In matrix notation, the objective function from (8) be-

comes













F1

...

FK






z−







b1

...

bK













T 











F1

...

FK






z−







b1

...

bK













= (Fz− b)
T
(Fz− b)

where F = [F1; . . . ;FK ] stacks all convolution Toeplitz

matrices column-wise and b =
[

b1; . . . ; bK
]

does so for

the filter responses.

Eq. (8) can be solved in closed form:

z(x;b) =
(

F
T
F
)−1

F
T
b (9)

F1r
i,m F2r

i,m F3r
i,m

f1 = I f2 = [−1, 1, 0] f3 = [−1, 1, 0]T

Figure 2. Example of the filter responses on ri,m = yi to be

learnt by {bk(x)}3k=1 as described in Eq. (12) for identity and

horizontal- and vertical- derivative filters, respectively.

. . .

K=13

+1 +1 +1 +1 +1

+1

+1

+1

-1

-1

-1

-1

+1

K=1 K=5

Figure 3. The filters used in the proposed model and grouped ac-

cording to the neighborhood connectivity. Using only the iden-

tity filter amounts to the original gradient boosting framework

(K = 1). It is here complemented with the first order vertical

and horizontal finite differences (K = 3) plus diagonal finite dif-

ferences (K = 5). In addition, adjacent labels can be queried by

means of the shift operators (K = 13).
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2.2. Learning

We now show how to obtain one of the weak learners

hm(x;b) in the form of a GCRF, which in turn depends

on the response functions b = {bk,m(x)}Kk=1 at the mth

iteration:

{

hm, {bk,m}Kk=1

}

= argmin
b(·) ∈ B

N
∑

i=1

1

2

∣

∣

∣

∣h(xi;b)− ri,m
∣

∣

∣

∣

2

F

(10)

s.t.

h(xi;b) = argmin
z

zTFT
Fz− 2zTFT

b(x) + const.,

Note that Eq. (10) is a bilevel optimization problem; finding

the best weak structured regressor requires also learning an

estimated response function {bk,m}Kk=1 that best predicts

an underlying signal z close to the current gradient direc-

tion ri,m at each sample xi. Thanks to the closed-form so-

lution from Eq. (9), Eq. (10) can be formulated as a direct

optimization problem,

{bk,m}Kk=1 = argmin
b(·)∈B

N
∑

i=1

1

2

∣

∣

∣

∣

∣

∣

(

F
T
F
)−1

F
T
b− ri,m

∣

∣

∣

∣

∣

∣

2

F
. (11)

This optimization problem can be rewritten in terms of

a different quadratic objective function with the same mini-

mizer:

{bk,m}Kk=1 = argmin
b(·)∈B

N
∑

i=1

1

2

∥

∥b− Fri,m
∥

∥

2
(12)

= argmin
b(·)∈B

N
∑

i=1

1

2

∥

∥

∥

∥

∥

∥

∥







b1

...

bK






−







F1

...

FK






ri,m

∥

∥

∥

∥

∥

∥

∥

2

F

.

Gradient descent based techniques have been used to

learn parametric or non-parametric functions potentials for

a GCRF [43, 44, 49, 14, 12, 15]. These techniques aim

to find the global optimum of Eq. (11) with little or no re-

strictions on B. Instead, following the boosting paradigm,

we optimize only over a narrow class B, in our case the

class of shallow regression trees, to obtain weak learners.

Limitations on tree depth are also used in [14, 12, 15] and

are an alternative to early stopping of the gradient descent

[43, 44, 49].

In practice, we approximately minimize the objective in

Eq. (12) by training K shallow regression trees that, given

an input image or its features x, try to approximate the

filtered negative gradient loss images associated with the

training images in the least-squares sense. This is a simple

problem which, in addition, parallelizes naively over the K

subproblems.

See Algorithm 1 for a summary of all steps1.

1A helpful video that shows the temporal evolution of the prediction

2.3. Inference

Given the learned real-valued weights {αt}
M
t=1 and the

weak learners for each filter response {{bk,t}Mt=1}
K
k=1, the

global structured regression function ϕ becomes

ϕM (x) =

M
∑

t=1

αt

(

F
T
F
)−1

F
T
b
t(x) (13)

=
(

F
T
F
)−1

F
T

(

M
∑

t=1

αmb
t(x)

)

. (14)

Computing Eq. (14) using direct methods is prohibitive

due to the large number of variables (number of pix-

els). As a consequence, we solve the equivalent problem
(

F
T
F
)

ϕM (x) = F
T
(

∑M
t=1 αtb

t(x)
)

by conjugate gra-

dient descent instead.

Note that at training time, the learning of the non-

parametric filter responses entails solving M linear systems

of equations; at test time, however, ϕM (x) requires solving

the linear system only once.

Algorithm 1 Training phase of Structured Regression Gra-

dient Boosting (SRGB)

Input: Training samples and labels {
(

xi, yi
)

}Ni=1,

number of filters K, number of iterations M , shrink-

age factor 0 < γ ≤ 1
Initialization: ϕ0(·) = 0

1: for m = 1, . . . ,M do

2: ri,m = −∂L(yi,ϕm−1(xi))
∂ϕm−1(xi)

3: for k = 1, . . . ,K do

4: Train shallow regression trees bk,m to match the

kth filter response

5: argminb(·)
∑N

i=1
1
2

∥

∥b(xi)− Fkr
i,m
∥

∥

2

F
6: end for

7: hm(x;b) =
(

F
T
F
)−1

F
T
b
m(x)

8: αm = argminα
∑N

i=1 L
(

yi, ϕm−1(·) + αhm(xi)
)

9: ϕm(·) = ϕm−1(·) + γαmhm(·)
10: end for

Output: ϕM (·)

3. Experiments

The performance and the versatility of our method is

evaluated on three different regression problems: blood ves-

sel delineation in fundus images, depth estimation from sin-

gle images, and Chinese character inpainting. Across the

datasets, we provide comparison with baseline methods and

with the state-of-the-art on those datasets.

and the negative gradient direction at each iteration can be viewed at

hci.iwr.uni-heidelderg.de/Staff/fdiego/SRGB/.
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Method Prec. Recall F AUC

CS [31] 78.81 74.74 76.72 84.12
FC-CRF [28] 79.10 78.08 78.55 −
Kernel Boost [2, 3] 81.10 79.75 80.42 88.84
SE [8, 7] 68.22 65.33 66.74 70.70
N4 [10] 80.41 80.76 80.58 88.93
Learning Boost [11] 79.57 79.47 79.51 −
NN Projections [38] 81.28 79.95 80.61 84.97
SRGB 81.67 80.16 80.91 89.17

Table 1. Vessel segmentation. Comparison to the state of the art

on the DRIVE dataset.

F-measure
iter 0 iter 1 iter 2 iter 3

sep. joint

K = 1 78.82 80.33 80.62 80.81
K = 3 79.53 78.93 80.59 80.80 80.86
K = 5 79.70 78.17 80.57 80.74 80.75
K = 13 79.54 77.93 80.68 80.89 80.91

Table 2. Vessel segmentation. Performance for various choices of

K (and thus implicitly for the connectedness of the Gaussian Con-

ditional Random Field) and for different number of autocontext

stages. In the first stage, we differentiate between learning inde-

pendently a nonparametric regression tree for each of the filter re-

sponses and learning jointly the influence among filter responses.

3.1. Vessel Segmentation

The first problem is the segmentation of blood vessels

in retinal scans. We test our approach on the DRIVE

dataset [41], which contains 20 training images and 20 test

images of size 565×584 as well as the corresponding man-

ual vessel segmentation and ROI masks.

We compare our approach with the latest and state-

of-the-art methods: CS [31], Fully-Connected CRF [28],

SE [8, 7], KernelBoost [2, 3], N4-fields [10], Learning

Boost [11] and NN-projections [38]. The latter two ap-

proaches [38, 11] refine and enhance the segmentation given

a base segmentation algorithm, in this case [39] and [3],

respectively. Earlier, the features were learned discrimina-

tively using the Gradient Boosting framework [2, 3] or a

neural network [10]. Following [8, 7], we use hand-crafted

features as implemented in [40] that comprise smoothing

filters, edge detectors and eigenvalues of the structure ten-

sor at different scales (49 features in total). Finally, fol-

lowing KernelBoost [2], we implement the autocontext [48]

idea by training a cascade of 4 sequential Structured Re-

gression Gradient Boosting predictors. Each predictor re-

ceives all the original features plus the output of the previ-

ous stage as input. The number of boosting iterations was

set to M = 500, the tree depth is limited to 3 levels for

each weak filter learner, the regularizing shrinkage factor

(see Algorithm 1) is set to γ = 0.1 and the log-loss is used.

All of the above are standard choices for gradient boosting.

Precision/recall curves for the baseline Gradient Boost-

ing framework and the proposed method at different levels

of the cascade are shown in Fig. 4; while Table 2 shows the

F–measure obtained for different relation among latent vari-

ables and for different number of cascade iterations. There

is a clear advantage over the baseline at the first stage when

neighboring information is considered. The increase in per-

formance is reduced at the last stage, although our proposed

approach requires fewer cascade stages to achieve a given

performance level.
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Figure 4. Results for the DRIVE dataset [41] in the form of the

recall/precision curves. Our approach outperforms the baseline in

the last stages of the cascade.
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Figure 5. Results for the DRIVE dataset [41] in the form of the

recall/precision curves. Our approach is slightly above the perfor-

mance of the current state-of-the-art methods by Ganin et al. [10],

Becker et al. [3] and Sironi et al. [38], and much better than [8]

and [31].

Table 1 and Fig. 5 show the F-measure and the preci-

sion/recall curves obtained with the different methods, re-

spectively. Our approach is slightly better than the state-

Figure 6. Example of vessel segmentation on a region with com-

plex topology. From left to right: raw image, ground truth; Kernel

Boost [2, 3], N4 Fields [10], NN-Projections [38] and Structured

Regression Gradient Boosting. Arguably some of these predic-

tions are more accurate than the ground truth.
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Input KB [2, 3] N4 [10] NN-P [38] SRGB

Figure 7. Examples of vessel segmentation on the DRIVE dataset (best viewed on screen). From left to right: original image, Kernel

Boost [2, 3], N4 Fields [10], NN-Projections [38] and the method presented here. True positives are shown in black, false positives in green

and false negatives in magenta. The human-generated ground truth is somewhat subjective, but is the only one available and is the standard

by which all methods are measured. We closely emulate the human expert while reducing false positives.

of-the-art N4 fields [10], NN-Projection [38] and Kernel-

Boost [3], and outperforms the other competitors with only

a single stage of the cascade because the first-round weak

structured learners aim to learn coarse and rough details and

the later ones aim to accurately learn finer details. Some

qualitative results are shown in Fig. 7. Similarly to [38],

Fig. 6 shows the results on the same particularly complex

region of a test image, with several thin junctions and low

contrast, for N4 fields [10], NN-Projection [38] and Ker-

nelBoost [3]. Our approach is able to reconstruct correctly

most of the topology of the blood network except for the

junction of a tiny blurred vessel. Moreover, as can be seen

from Fig. 6, our method predicts even better vessel locations

than the ground truth in some part of the image and with a

very high confidence.

3.2. Depth Estimation

The second problem is the depth estimation from single

image. We test our approach on the Make3D dataset [34,

35, 36], which contains 400 training images and 134 test

images as well as the corresponding depth (we use the stan-

dard training/test split provided with the dataset). Follow-

ing [16], we resize the images to 345 × 460 pixels before

training (maintaining the aspect ratio of the input images).

We rely on the main idea of depth transfer [16] based on

non-parametric learning [21] to compute the features. The

features consists on finding the top-N best candidate im-

ages in a similar database of the input image, and on us-

ing SIFT Flow [22] to warp these images as well as the

depths to the query image. Moreover, we extend our fea-

tures by adding another “coarse” depth map obtained from

DCNF [23] without any inpainting enhancement. Finally,

we train just a single Structured Regression Gradient Boost-

ing, and use a square loss as an empirical risk. The number

of boosting iterations M was set to 50 and the shrinkage is

set to 0.1 but the tree depth is limited to 5 levels for each

weak filter learner.

In Table 3 we compare our approach with different set

of convolutional kernels and with state-of-the-art methods.

From the table, we conclude that exploiting smooth prior

as 4− and 8−neighborhood increases the baseline perfor-

mance and it outperforms with a large margin if more non-
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Method
Error

rel log10 rms

Depth MRF [34] 0.530 0.198 -

Make3D [36] 0.370 0.187 -

Semantic Labelling [20] 0.379 0.148 -

Laplace CRF [1] 0.362 0.168 15.2
Depth Transfer [16] 0.361 0.148 15.10
DiscreteContinuous CRF [25] 0.338 0.134 12.60
DCNF [23] 0.307 0.125 12.89
DCNF-FCSP [24] 0.305 0.120 13.24
SRGB (K = 1) 0.309 0.119 11.76
SRGB(K = 3) 0.309 0.119 11.65
SRGB (K = 27) 0.315 0.118 11.48

Table 3. Depth Estimation. State-of-the-art and baseline compar-

isons on the Make3D dataset.

local information is used to predict the value of a current

pixel. Moreover this framework allows to infer the depth by

a non-linear combination of multiple observations as fea-

tures and outperforms the state-of-the-art. Some examples

of qualitative evaluations are shown in Fig. 8. It is shown

that only Gradient Boosting model gives rather coarse pre-

dictions, but our model yields much better visualizations by

adding smoothness term and more nonlocal prior.

3.3. Chinese character inpainting

The third problem is learning calligraphy properties for

the reconstruction of the occluded parts of handwritten Chi-

nese characters from the KAIST Hanja2 database (Fig. 9).

We used the original 300 training images and 100 test im-

ages in [27]. Each character is occluded by a centered grey

box of varying size. Following [27], the accuracy is mea-

sured on a dataset with small occlusions, and the predictions

are visualized on images with a larger occlusion area. We

differ from the DTF [27] model slightly in terms of features

and neighborhood. Instead of looking at most 80 pixels

away, we restricted our search area to only 31 pixels away,

but also including the difference between these two pixels.

Moreover, we restricted the relation among latent variables

to 4- and 8-neighbor connections, in this case K = 3 and

K = 5 respectively. Finally, we train just a single Struc-

tured Regression Gradient Boosting, and use a log loss as

a empirical risk. The number of boosting iterations M was

set to 100 and the shrinkage is set to 0.1 but the tree depth

is again limited to 3 levels for each weak filter learner.

The results are shown in Table 4. We include the

baseline decision tree result (DT) of [27], a tree ensem-

ble result of 10 trees (RF) from [32, 17], the MRF and

DTF results taken from [27], the Regression Tree Field

(RTF) approaches from [14], the convex quadratic relax-

ation approach (QP-M3N) of [13], and the structured lo-

cal predictors (SLP) [32] and structured labels in Random

Forests (SLRF). Additionally, we compare the classifica-

Figure 8. Examples of depth predictions on the Make3D dataset

(Best viewed on screen). From left to right: original image, ground

truth, gradient boosting baseline (K = 1), our gradient boosting

with pairwise connectivity (K = 3) and our approach with pair-

wise connectivity and with the data term computed from a fully

connected 5×5 neighborhood (K = 27). The gradient boosting

gives rather coarse prediction mainly due to the coarse depth esti-

mations used as features. In contrast, our full model yields much

better predictions.

tion results for Gradient Boosting and our proposed struc-

tured prediction. Our baseline method outperforms most

of sophisticated state-of-the-art methods; thanks to learn-

ing how to perform the gradient descent for reconstructing

the occluded parts. Hence, our proposed method that learns

jointly the interaction among neighboring pixels is very

competitive, and achieves the best result on this task. Fol-

lowing the works in [27, 14, 32, 17], Fig. 9 shows the some

qualitative results obtained on the large occlusion dataset.

3.4. Practicalities: choice of parameters

For vessel segmentation, we used the parameters pub-

lished in [2].

For the other experiments, the number of iterations M

was increased when the loss on the training set was found to

be high (indicative of underfitting). The maximum depth of

the regression trees was chosen depending on the dynamic

range of the desired output. For targets in [−1, 1] a depth of

3 was used, and for a larger range a depth of 5.
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DT RF MRF DTF RTF1D RTF2D SLP QPM3N SLRF SRGB SRGB SRGB

(avg) [17] [17] [27] [27] [14] [14] [32] [13] [17] (K = 1) (K = 3) (K = 5)

68.52 74.95 75.18 76.01 76.39 77.55 78.07 79.36 78.09 77.66 79.37 79.87
Table 4. Chinese characters: accuracy for inpainting of small occlusions.

Input Truth RF MRF GMRF DTF RTF K = 1 K = 3 K = 5

Figure 9. Chinese characters with large occlusions: inpainting result on test set. All the characters are also shown in [14, Fig. 7].

4. Conclusions and Outlook

We propose a structured regression gradient boosting

method. Analogous to gradient boosting, a non-linear struc-

tured output regression is obtained as a combination of a

set of weak structured learners, while the original formula-

tion is kept in the framework as a specific case. Inspired

by [43, 12], we use a GCRF as a weak structured learner,

whose parameters are learnt discriminatively by means of

nonparametric regression trees. Our proposed approach is

comparable to and sometimes exceeds the state-of-the-art

even with less feature tuning for three challenging bench-

marks. We also observe that the proposed approach has

improved performance over gradient boosting, demonstrat-

ing the usefulness of this nonlinear structured regression

method.

Future work includes generalization to multiclass pre-

dictions, automated selection of the most useful filters F ,

learning of features and letting precision matrix P depend

on the input.
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