
Solving Temporal Puzzles

Caglayan Dicle, Burak Yilmaz, Octavia Camps, Mario Sznaier∗

Dept of Electrical and Computer Engineering, Northeastern University

{cdicle,camps,msznaier}@coe.neu.edu, yilmazbur@gmail.com

Figure 1: Time puzzles: Given a scrambled temporal sequence, we want to order it back in chronological order.

Abstract

Many physical phenomena, within short time windows,

can be explained by low order differential relations. In a

discrete world, these relations can be described using low

order difference equations or equivalently low order auto

regressive (AR) models. In this paper, based on this intu-

ition, we propose an algorithm for solving time-sort tempo-

ral puzzles, defined as scrambled time series that need to

be sorted out. We frame this problem using a mixed-integer

semi definite programming formulation and show how to

turn it into a mixed-integer linear programming problem,

which can be solved with off-the-shelf solvers, by using the

recently introduced atomic norm framework. Our experi-

ments show the effectiveness and generality of our approach

in different scenarios.

1. Introduction

Temporal sequences are encountered frequently in com-

puter vision problems such as tracking, activity recogni-

tion, dynamic textures, and video segmentation. Substantial

performance improvements over conventional appearance-

based methods have been reported when dynamic informa-

tion is also incorporated [1, 4, 11, 13, 28, 33]. However,

such information can only be utilized if the temporal order-

ing of the relevant data (e.g. video frames) is known.

Thus, as the number of images uploaded to the world

wide web continue to increase exponentially, it is only nat-

ural to try to sort (in time) pictures capturing an event (i.e.
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a concert, a soccer game, etc.) but taken by different in-

dividuals, so that processing algorithms could benefit from

the (hidden) dynamic information. The problem of order-

ing a collection of pictures, i.e. the photo sequencing prob-

lem, was initially introduced by Basha et al. in [3]. Here,

we consider a generalization of this problem, which we call

temporal puzzles, where (any) temporal sequence taken out

of order has to be ordered back, as illustrated in Figure 1.

In this paper, we present a framework for solving tem-

poral puzzles, with examples from the field of computer vi-

sion. The proposed approach is based on the premise that

spatio-temporal dynamic information can be encapsulated

using dynamic models, where the simplest model should

always be preferred. This approach is supported by the fact

that favoring simpler models among a set of possible hy-

potheses has proved to be successful in a range of appli-

cations [12, 20, 22, 31, 34]. It should be noted that for

complex signals, the dynamic models might require static

non-linear maps preceding and/or following a simple linear

dynamic model(s) [32], or orchestrating a switch pattern be-

tween a small number of simple models [23], or designing

special inputs [2], or a combination of these. However, in

the sequel we will assume that as we zoom in time and look

into a small time window, the dynamics can be modeled

using a simple linear auto regressive model1. Finally, it is

important to also note that, for this application, knowing

the exact model is not important, but what it matters is the

assumption that the data can be explained by such a model.

The contributions of the paper are as follows:

• A general framework for solving temporal puzzles.

• An atomic norm based algorithm to solve temporal

1This is a valid assumption since auto regressive models are known to

be universal approximators [5, 30].
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puzzles that performs better than the state-of-the-art

method for the special case of photo sequencing, par-

ticularly as the number of image sources increases.

• The problem of video (en)decryption where a video

sequence can be scrambled/de-scrambled by using the

proposed framework.

The paper is organized as follows. Section 2 presents an

overview of the literature and section 3 summarizes needed

background. Section 4 motivates our approach and section

5 presents a SDP formulation of the problem. Section 6

provides and approximation using the atomic norm to ob-

tain the final mixed integer linear program. Section 7 gives

details about the implementation and section 8 presents the

experimental results. Section 9 concludes the paper.

2. Related Work

Temporal puzzles are closely related to the photo-

sequencing problem [3, 17], where a set of photographs

taken by a group of people is chronologically sorted. This is

in contrast with the problem solved by Sadeghi et al. [27],

where they alter the order of the sequence for the sake of

the story. In [3] Basha et al. assume moderately overlap-

ping shots of the scene and use the static regions to spa-

tially align the images. Then, they extract the dynamic fea-

ture points in the scene and sort the images using epipolar

constraints. In their follow up papers [9, 10], they relax the

inter-camera overlap. Instead, they assume that the order-

ing of the images within each camera is known. In contrast,

our definition of temporal puzzles is more general since it

is not restricted to event scenes, but it can also be applied to

different video domains such as dynamic textures, extreme

sport videos, video ads, etc., where there may not be a back-

ground static scene. Moreover, the approach proposed here

does not require prior knowledge of partial ordering of the

data and it can be applied to non-image sequences.

Our solution to the temporal puzzle problem is based on

Occam’s razor principle: explain the data using the sim-

plest model. Here, the “simplest model” is defined as the

model with the lowest dynamic complexity fitting the avail-

able data [32]. When the dynamic model is an auto regres-

sive model (AR), its complexity can be measured by the or-

der of the model [11]. When the dynamic model is a Ham-

merstein/Wiener one (i.e. a combination of static non-linear

mappings to low dimensional manifolds and linear dynamic

systems), its complexity can be measured by the dimension

of the manifold embedding the data and the order of the

linear dynamic system [32]. In this paper, we will restrict

ourselves to cases where AR models adequately capture the

temporal evolution of the data.

3. Background

3.1. AR Models and Hankel matrices

Consider an nth order AR process: yk+1 =
∑n

i=1
aiyk−i. Given a set of N ordered noisy samples,

{d}i = {y}i + {η}i for i = 1, . . . , N , possibly with

missing data and corrupted with outliers, it is possible to

estimate the underlying clean sequence {y}i by solving a

structured rank minimization problem [1]:

minimize
y

rank{Hy}

subject to p(y,d) ≤ ηmax

(1)

where Hy is the block Hankel matrix of the clean data:

Hy =











y1 y2 . . . yk

y2 y3 . . . yk+1

...
... . . .

...

yl yl+1 . . . yN











(2)

and p(y,d) is a data penalty term that depends on the miss-

ing data support and the noise-model. Noise tolerance ηmax

is a trade-off between complexity of the model and data fi-

delity. As ηmax is relaxed it becomes possible to find a rank

deficient minimizer for (1) corresponding to a lower order

solution. This property of AR modeling makes them a good

choice for signal processing applications where a low order

AR model approximating the measurements are sought.

3.2. Poles Expansion of a Transfer Function

The transfer function of a single input, single output, lin-

ear time invariant (LTI) system of order n, G(z), is defined

as the rational function (m < n) [25]:

G(z) =
Y (z)

U(z)
= A.

∏m

i=1
(z − zi)

∏n

i=1
(z − pi)

=
n
∑

i=1

αiz

z − pi
(3)

where A, Y (z) and U(z) are the gain and the z-transforms

of the output and input of the system, respectively. It can

be shown [25] that this ratio is independent of the particular

input used and that it completely characterizes the system.

The frequencies pi and zi which are the roots of the de-

nominator and numerator of the transfer function are called

the poles and zeros of the system, respectively. Poles and

zeros are either real, or they must appear in complex con-

jugate pairs. Finally, bounded-input, bounded-output stable

systems have all of their poles inside the unit circle in C.

3.3. The Atomic Norm

Let A be a centrally symmetric collection of “atoms”

such that the elements of A are the extreme points of the

convex hull of A, conv(A), and t conv(A) is an isotropic
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Figure 2: Octahedron with the vertices ±ex,±ey and ±ez

dilation of this convex hull by a factor of t. Its associated

gauge function, ‖x‖A is defined as [8]:

‖x‖A = inf{t > 0 : x ∈ t conv(A)} (4)

i.e., the smallest dilation factor such that t conv(A) will con-

tain x. Since the set A is centrally symmetric, this gauge

function is indeed a norm (e.g. see [8]), that can be written

as:

‖x‖A = inf

{

∑

a∈A

|ca| : x =
∑

a∈A

caa

}

(5)

The atomic norm is often used in optimization problems

of the form:
minimizex ‖x‖A
subject to y = Φx

(6)

This formulation has the advantage that it provides a sim-

ple, yet general, expression that incorporates many popular

optimization formulations which can be obtained by sim-

ply selecting the appropriate atom set. For example, con-

sider the set of atoms formed by the canonical basis vectors

±ei ∈ R
n. For n = 3 the convex hull of A is the octa-

hedron shown in Figure 2. In this case, the corresponding

atomic norm is simply the ℓ1 norm. Similarly, if the set of

atoms consists of all unit Frobenius norm rank-1 matrices,

the corresponding atomic norm is the nuclear norm.

3.4. System Identification using the Atomic Norm

Here, we briefly summarize some results from [29] on

how to use the atomic norm for system identification.

Consider a set with an infinite number of atoms, where

each atom is the impulse response of a stable first order LTI

system with transfer function of the form:

ap(z) =
wpz

z − p
, (7)

where p is inside the unit circle in C and where the scaling

factor is wp = 1−|p|2, so that the maximum singular value

of the (infinite) Hankel matrix of the atom is 1.

Now, consider a stable LTI system of order n with trans-

fer function G. From (3), G can be written as a linear com-

bination of n of the above atoms2:

G(z) =
n
∑

i=1

ciai(z) (8)

with atomic norm
∑n

i=1
|ci| =

∑n

i=1
|αi/wi|. Hence, low

order dynamical models can be estimated from experimen-

tal data by solving a problem of the form of (6) to mini-

mize the number of poles needed. However, minimizing

the atomic norm in this setting is an infinite dimensional,

convex problem. To circumvent this obstacle, Shah et al.

[29] proposed the Discretized Atomic Soft Thresholding

(DAST) algorithm that uses an ǫ-net discretization of the

unit disk in the complex plane, hence approximating the

infinite dimensional set of first order stable LTI systems

(atoms) by a finite one.

4. Solving Temporal Puzzles

Imagine a sequence of images of a walking person, taken

from a static camera. Given some frames in random order,

it is likely that one could successfully order them by assum-

ing that the person is walking with constant velocity -i.e. a

second order AR model.

Natural phenomena, like the one above, often can be ex-

plained through ordinary or partial differential equations,

which in discrete time can be approximated by difference

equations. Such relations usually have low order, and the

associated data, when in correct time-order, can be encap-

sulated through simple dynamic models. On the other hand,

the shuffled data usually require models with higher order

complexity.

Based on this intuition, we propose an informal defini-

tion of simplicity for a sequence of data.

Definition 1 We say that a sequence is simple if an arbi-

trary data point in the sequence can be estimated using only

a few n data samples, and that a single estimation rule ex-

tends and applies to the whole sequence. The number of

samples n required by this rule, measures the complexity of

the sequence.

Remark 1 Definition 1 is very general in the sense that it

includes non-causal sequences, but vague since “few” is

not specified. In the sequel, because we are working with

temporal sequences, we will restrict ourselves to causal se-

quences, where data should be explained only in terms of

past measurements and we will seek sequences with low

complexity.

Consider a simple time sequence given by a second order

(n = 2) AR process where the rule is yk = (2 cosT )yk−1−

2If a pole pi is not real, its conjugate must also be used.
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yk−2 for k = 0, . . . , 8 and T = 0.1125π. There are 9! pos-

sible permutations of this sequence. The histogram of the

orders of AR models explaining these sequences is given in

Table 1. That is, there are two permutations that can be ex-

Table 1: AR model orders for sequence permutations.

Order n 2 3 4 5 Total

Sequences 2 4 38 362836 362880

plained with order 2 AR models, four that can be explained

with order 3 AR models, and so on. The only sequences that

are of order 2 are the original sequence itself and the exact

time-reversed sequence, as expected. Note that more than

99.98% of the possible permutations have corresponding

full rank Hankel matrices. The ratio approaches to 100%

even further as the true order of the underlying model in-

creases.

The above example suggests that to solve temporal puz-

zles we should search for low-order AR models represent-

ing the underlying model of the given sequence. Thus, in

the following sections we present the mathematical formu-

lation to this approach.

5. Problem Formulation

In this section we formulate an optimization problem,

based on the intuition provided in section 4, which will

serve as the starting point towards a practical algorithm for

solving temporal puzzles. After setting the initial problem,

we will propose a series of modifications, each one equiva-

lent to the previous one (exactly or approximately for a spe-

cific class of problems), where we successively get closer to

a solvable formulation by the end of Section 6.

Suppose that we are given a vector u ∈ R
N as a tempo-

ral puzzle, i.e. uN
i=1 represents a sequence of N numbers

obtained by randomly permuting a simple (as in Definition

1) time sequence of length N , denoted by a vector v ∈ R
N .

For simplicity, we assume that the sequence is sampled with

constant rate and there are no missing samples. In order to

obtain the original sequence with the correct time stamps, v,

given the permuted observations, u, we pose the following

optimization problem:

minimizeq,P n

subject to vt =
∑n

i=1
qivt−i, for t = n+ 1, . . . , N

v = Pu, P ∈ P, n ∈ Z
+

(9)

where P is the set of permutation matrices of appropriate

dimension. Note that (9) is a mathematical way to say: find

the minimum order AR model such that there exists a per-

mutation (a re-ordering) of the sequence u, i.e. v, where

{v}i obeys the AR relation. While (9) is deceivingly sim-

ple to formulate, it is of little practical value since it is very

difficult to solve. In the sequel, we reformulate (9), then re-

lax the reformulation, and finally turn it into an approximate

problem that can be tackled using off-the-shelf solvers.

5.1. Hankel Matrices and Nuclear Norm

In the past decade, Hankel matrices have received in-

creased attention in the field of signal processing and system

identification [1, 21, 35]. One of the main reasons for this

is its relation to AR models, as discussed in Section 4.

We first present the following lemma:

Lemma 1 Every Hankel matrix H ∈ Hn×n can be asso-

ciated with an AR model of order at most n in the sense

that the generating sequence {h}2n−1

i=1
for H obeys an AR

relation of degree at most n.

Proof 1 The proof is by construction. Suppose rank{H} =
k < n. In this case the AR coefficient vector a ∈ R

k is given

by3 a = H
†
1:kHk+1. Suppose the opposite is true, i.e. H is

full rank. An AR relation can be found as a = H−1r where

r ∈ R
n is constructed as follows:

r = [hn+1 hn+2 . . . h2n−2 h2n−1 x]T

for any arbitrary choice of x ∈ R.

Following Lemma 1, we can reformulate (9) without ex-

plicitly using the AR model using the equivalent formula-

tion:

minimizev,P rank{Hv}

subject to v = Pu, P ∈ P
(10)

Although (10) looks more manageable than (9), it is still

hard to solve since it involves a rank minimization coupled

with integer programming. Since the nuclear norm is the

convex envelope for the rank function inside the unit spec-

tral norm ball [14], rank is often relaxed using the nuclear

norm as surrogate [6, 7]. Then, a relaxed version of (10)

can be stated as:

minimizev,P ‖Hv‖∗

subject to v = Pu, P ∈ P
(11)

While the objective function in (11) is convex and can

be cast as an SDP by itself, the constraints make the for-

mulation non-convex. As a matter of fact, the constraint

that P belongs to the set of permutation matrices can be

enforced using integer variables. Unfortunately, to the best

of our knowledge, there are no robust and efficient off-the-

shelf solvers to handle integer programming with SDP con-

straints and/or objectives.

3Here, H1:k denotes the submatrix of the first k columns of H and

Hk+1 denotes the (k + 1)-th column of H.
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6. Atomic Norm Formulation

In this section, we present an approximate formulation

for (11) using atomic norm minimization, which can be im-

plemented with off-the-shelf optimization packages.

The proposed approach uses finite horizon Hankel ma-

trices and, as discussed below, must be able to work with

sequences from unstable systems. To address these require-

ments, we introduce a new Ring Discretized Atomic Finite

Horizon (RDAFH) algorithm for LTI systems identification.

RDAFH, described next, is a modification of the DAST al-

gorithm proposed in [29] that uses a new weighting scheme

to promote better sparsity and atoms with poles restricted

to a ring around the unit circle to improve efficiency and

incorporate unstable systems.

6.1. RDAFH LTI System Identification Algorithm

As shown in Lemma 1, any finite horizon n × n Han-

kel matrix can be associated with the first N = 2n − 1
Markov parameters (impulse response) of an LTI system,

though such a system’s poles can be anywhere on the com-

plex plane (not necessarily confined to the stable region).

The last point is problematic if the atomic transfer functions

are scaled as in (7) because i) such gains are only defined

for inside the unit circle in the complex plane, and ii) since

the Hankel matrices are finite, the weights wp do not longer

normalize their maximum singular value to 1.

We propose to circumvent the issue above by using

the modified pole and horizon dependent gains wp =
(

1− |p|2
)

/
(

1− |p|2n
)

. These weights retain/improve the

sparsity promoting properties of the atoms given in (7),

while addressing the finite horizon imposed by a practical

implementation of the algorithm. This is because they do

normalize to 1 the nuclear norm of the finite horizon, rank

one, n × n Hankel matrix constructed by using the first N
values of the impulse response of the atomic transfer func-

tion for pole p:

Hp = wp















1 p p2 . . . pn−1

p p2 p3 . . .
...

...
...

...
...

...

pn−1 pn pn+1 . . . p2n−2















(12)

To prove this, note that the magnitude of the trace of a rank

one matrix is equal to its non-zero singular value.

Next, in order to include unstable systems, we suggest a

dictionary constructed using atoms with poles restricted to

a ring of radius r around the unit circle in the complex plane

-i.e. with both stable and unstable poles in a narrow band

around the disk. This choice for the pole region works well

in practice for the type of problems encountered in com-

puter vision, since the trajectories can often be enclosed

between two exponential functions, one with a slow decay

and the other with a slow growth.

Finally, we give a simple convex formulation for the

RDAFH identification procedure based on a dictionary ap-

proach. Assume that v ∈ R
N is the output data for a hori-

zon of length N , corrupted by additive noise bounded by

ηmax in absolute value. A dictionary Da ∈ C
N×k is gener-

ated using the impulse responses of k atoms for a horizon of

length N . The poles of the atoms are distributed uniformly

over a ring of radius r around the unit circle in the complex

plane. Then, the following formulation promotes the opti-

mal solution to be the output of a low order AR, consistent

with the noise model:

minimizec ‖c‖ℓ1

subject to ‖Dac− v‖∞ ≤ ηmax

(13)

Note that Dac generates the estimated output which is con-

strained to be within the noise limits of the measured out-

put. The optimization variable c ∈ C
k×1 chooses the poles

of the estimated system. Finally, minimizing the ℓ1 norm of

c promotes a sparse optimal vector, hence a low order AR.

6.2. Solving the Puzzle

The last step needed to formulate the algorithm to solve

temporal puzzles is to add the permutation matrix P ∈ P
constraint to the formulation in (13):

minimizec ‖c‖ℓ1

subject to v = Dac

‖Pu− v‖∞ ≤ ηmax, P ∈ P

(14)

Finally, any a priori partial ordering information avail-

able can be easily incorporated by introducing an auxiliary

vector, l = [1, 2, . . . , T ]T . If the ith data point is known to

precede the jth input data point for a given sorting problem,

this can be enforced by adding the constraint Pi
T l < Pj

T l

to (14), where Pi denotes the ith column of P.

In summary, the first constraint in (14), together with the

objective function, promotes v to be the output of a low

order AR model; the second constraint guarantees that the

optimal v is consistent with a permutation of the measure-

ment vector u and the noise model; and the third constraint

can be written as a couple of integer constraints on matrix

P making sure that it represents a permutation matrix.

6.3. Extension to Vector Data

Problem (14) can be trivially extended to handle vector

data {u}i ∈ R
D by considering simultaneously one AR

model for each dimension but a single permutation matrix:

minimizecd,P

∑D

d=1
‖cd‖1

subject to vd = Dacd d = 1, . . . , D

‖Pud − vd‖∞ ≤ ηmax, P ∈ P

(15)
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7. Implementation Details

We used Gurobi [15] to solve Problem (15) since it is

known to find high quality solutions to mixed integer linear

programs.

For the pole atoms in Da, we observed that the ring de-

fined by 0.98 ≤ |p| ≤ 1.02, p ∈ C, with a discretization

of ǫ = 0.05 performs well with our examples. This choice

results in a dictionary of about 200 columns. Note that de-

pending on the problem horizon and the desired dictionary

size (hence associated computational burden), these two pa-

rameters can be adjusted easily.

Given N data points (frames), each time instance is vec-

torized and concatenated into a matrix, followed by a PCA

to reduce the dimension to D = 5 principal dimensions.

Since PCA is a linear operation it does not change the dy-

namic complexity of the system. Thus, our premise holds

in the reduced dimensions as well.

To improve numerical performance, we modify the first

constraint in (15) to v̇d = Dacd. This is encouraged by

the fact that often for the sequences encountered in real

life scenarios, the dynamic range of the signal might be

quite large, degrading the quality of the solution. In con-

trast, the dynamic range of the derivative of the signals is

rarely high (e.g. for chirp-like signals). Hence, the pro-

posed modification is observed to provide better immunity

to such numerical issues. Note that the modification pro-

posed is not equivalent to taking the derivative of a possibly

noisy data. Finally, in order to break the symmetry of the

solution and improve convergence we assume that the first

frame is known. The resulting algorithm is given next.

Algorithm 1 Algorithm for temporal puzzles

1: Input: S dynamic sequence, Da atoms dictionary, Q

partial orderings, D number of principal components,

2: Output: Permutation σ
3: Project S on D principal comp., ud ← PCAD,d(S)

4: Convert Q to permutation constraints, Pi
T l < Pj

T l

5: Solve equation (15) with derivative v̇d = Dacd

8. Experiments

We compared our algorithm against the state-of-the-

art method proposed in [9] using 25 sequences from four

datasets (See Figure 3 for sample frames of these se-

quences). The first dataset is from [3], the second one is

from [24], and the third one is from [18], all of which are

examples of crowd photography, i.e. pictures of a com-

mon event scene taken by multiple non-stationary cameras.

All the scenes include objects with non-rigid motions and

were captured from different viewpoints by various cam-

eras from arbitrary locations and at arbitrary times. The dy-

namic objects cover a small percentage of the field of view.

Figure 3: Sample frames from datasets from: Row 1: Basha

et. al; Row 2: Park et al; Row 3: Kazemi et. al; Rows 5-8:

This paper.

The fourth set is a video decryption dataset that we com-

piled from videos downloaded from YouTube, BBC Motion

Gallery and datasets [19, 26]. Unlike the previous cases, the

images in this dataset were taken by a single but (often fast)

moving camera and then they were shuffled, i.e. encrypted,

in time. This dataset is very challenging since these images

are mostly dynamic as a whole, with few or no static objects

(e.g. ocean waves) in the field of view that could be used as

a reference.

The Kendall distance is used to score a candidate sort-

ing, which is defined as the number of elements in the set

constructed from two sequences σ1 and σ2 as follows:

G(σ1, σ2) = {(i, j) | σ1(i) < σ1(j), σ2(i) > σ2(j)} (16)

where σi is the permutation string and i, j ∈
[1, 2, . . . , N ]. Intuitively, the Kendall distance gives

the minimum number of swaps between two sequences.

We report the normalized distance, i.e. Kendall distance

divided by number of possible pairs. The lower it is, the

more similar the two sequences are, with the worst possible

score being 1.

All experiments were repeated for 10 randomly gener-

ated permutations for which the mean Kendall distance and

running times are reported. See Figure 4 and 5 for quantita-

tive and Figure 6 for sample qualitative results, respectively.
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Figure 4: Mean Normalized Kendall distances and runtimes

on crowd photography data. First row: dataset from [3];

second row: dataset from [24]; third row: dataset from [18].

8.1. Crowd Photography Experiments

For the crowd photography datasets, we followed the

same procedure as in [9]. We matched static SURF features

from the background and computed Fundamental matrices

between frames using RANSAC. We manually selected the

dynamic features from the foreground and projected them to

a reference frame. The projected feature locations are used

as input for both algorithms. This approach eliminates the

effects of pre-processing on the evaluation of the relative

performance of the algorithms, and allows us to compare

them based on their time-sorting accuracy alone.

In crowd photography, images from the same source are

likely to be in order, providing a priori partial ordering in-

formation. However, realistic crowd photography scenarios

are likely to have large numbers of image sources, where

each of the sources contributes a few or a single image. In

these scenarios, there are fewer a priori partial orderings

available. Thus, it is important to measure the performance

of the sorting algorithms as a function of the number of par-

tial orderings they use. To this effect, we propose the fol-

lowing experimental protocol: assume that the total number

of images taken for a scene is a fixed number T . Then, these

images are “synthetically” evenly divided into a number c
of ordered sub-groups, to mimic c cameras and c partial or-

derings, where c is varied from 1 to T .

The proposed algorithm outperforms the state-of-the-art

method [9] for all cases. Note that the Kendall distances

and runtimes for the method from [9] quickly increase as

the number of cameras increases and partial order informa-

tion decreases. On the other hand, the proposed method is

very robust to changes in the amount of a priori informa-

tion. Seven out of the ten sequences were sorted perfectly

for the entire range of number of cameras considered. Our

algorithm is orders of magnitude faster than [9] on dataset

[24] and on par with it for the other datasets. We believe

this is an empirical proof that the simplicity prior is a very

strong one, enabling us to solve some instances with very

little information (i.e. no extra partial ordering).

Figure 5: Normalized Kendall distances and runtimes on

video decryption data. Proposed method is clearly performs

better than [9]. Errors are similar only for javelin set.

8.2. Video Decryption Experiments

For the video decryption dataset, the algorithms are com-

pared without a priori partial ordering information. Raw

images were input to our algorithm. For the competing

method, 6 to 8 dynamic features were manually matched

and fed as input. The feature matching from [16], suggested

by [9], was unable to find reliable results for most of the

video decryption dataset. Note that the results for [9] reflect

optimally matched features, since the process was carried

out manually. In reality, automatically matching dynamic

features in such sequences is extremely hard, which is a se-

vere limiting factor for the applicability of [9].

This set is composed of 15 short sequences from

YouTube, BBC Motion Gallery and well known tracking

datasets [19, 26]. The content of these scenes is more dy-

namic, allowing us to compare the algorithms on scenarios

where the majority of the scene is in motion or the change

in the scene is more drastic than in previous datasets. Below

we give some highlights about a few of these sequences.

Ski is similar to the sequences in the crowd photography

datasets but with changing time resolution. The video starts

with a low frame rate and ends with higher frame rate. This

is a good benchmark to test the sensitivity of the algorithms

against sampling uniformity.

Paper sequence, shows several paper sheets unfolding

into a sentence. There is no static background, and dynamic

features do not follow a linear motion.

Wave is a true dynamic texture and it is the most difficult

sequence for a human to sort.

Javelin sequence is a javelin thrown in the air. It has

extremely small consistent dynamical content.
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Each of these sequences has 10 samples at least 3 time

stamps apart. This ensures that the frames are not very

similar to each other and that they are not trivial to sort.

Remember that feature correspondences are labelled manu-

ally which are required by[9]. Note that this is a best case

comparison for [9] because the algorithm is supplied ground

truth feature matching. Our algorithm receives the raw im-

ages only and does not require feature correspondences for

the video decryption sequences.

Figure 5 shows the normalized Kendall distances for the

proposed and [9] for the video decryption dataset. The pro-

posed method almost perfectly sorts 11 instances and 3 in-

stances with minor error. The methods perform similarly

only for the javelin sequence with our method being 10%
better. The proposed method is at least 2x faster than [9] and

on the average 6x faster. The high accuracy of our method

in this dataset is due to the increased amount of dynamic

information spread over each frame in the dynamic scenes.

In other words, almost every pixel provides a (noisy) dy-

namic sequence, contributing to the useful dynamic infor-

mation extracted. This is typical for the proposed frame-

work: since the increase in dimension introduces new con-

straints/information to (15), then, the more dynamic infor-

mation there is in the image sequence, the better the per-

formance. Furthermore, the competing method performs

poorly (e.g. the Paper sequence has 48% of possible pairs

sorted incorrectly) because individual dynamic features do

not necessarily follow the linear motion assumed in [9].

9. Discussion and Conclusion

We introduced a novel approach to solve temporal puz-

zles based on the concept of dynamics-based simplicity.

This paper illustrates the use of an atomic norm framework

to turn a difficult mixed SDP into an equivalent mixed linear

program. The proposed method is agnostic to the input and

can operate with different data modalities. Furthermore, the

framework is suitable to incorporate available constraints

under different settings.

There are limitations to our approach. First, if two or

more data points (in time) are the same or very similar, it is

impossible to distinguish from each other, by any method.

As a consequence, our method would not work reliably on

perfectly periodic cases. Another limitation is computation.

The proposed solution is more suitable for shorter time win-

dows because of two reasons. One, our current implementa-

tion relies on a linear mixed integer solver and as the num-

ber of sequences grow, the computational complexity grows

very rapidly. Thus, we cannot process more than 20-40

frames in reasonable times. Second and more importantly,

as the time window grows, our simplicity assumption does

not hold, leading to wrong solutions. However, we believe

that the proposed algorithm can effectively be used to sort

small batches.

Figure 6: Results for 8 cameras setting (little or no partial

ordering) for four sequences. Group of rows from top to

bottom: input, ground truth, output of [9], output of pro-

posed method. Red box indicates out of order.
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