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Abstract

In this paper, we introduce a similarity metric for curved

shapes that can be described, distinctively, by ordered

points. The proposed method represents a given curve as

a point in the deformation space, the direct product of rigid

transformation matrices, such that the successive action of

the matrices on a fixed starting point reconstructs the full

curve. In general, both open and closed curves are repre-

sented in the deformation space modulo shape orientation

and orientation preserving diffeomorphisms. The use of di-

rect product Lie groups to represent curved shapes led to an

explicit formula for geodesic curves and the formulation of

a similarity metric between shapes by the L2-norm on the

Lie algebra. Additionally, invariance to reparametrization

or estimation of point correspondence between shapes is

performed as an intermediate step for computing geodesics.

Furthermore, since there is no computation of differential

quantities on the curves, our representation is more robust

to local perturbations and needs no pre-smoothing. We

compare our method with the elastic shape metric defined

through the square root velocity (SRV) mapping, and other

shape matching approaches.

1. Introduction

The analysis of the shape of an object has several ap-

plications in computer vision, engineering, computational

anatomy, and bioinformatics [23, 14, 6]. In fact, in [16]

the practical importances of shape analysis and modelling

were categorized as shape optimization: finding a shape

that satisfies a certain design requirement, e.g. active con-

tours, and shape analysis: statistical analysis of shapes, e.g.

distance between shapes, mean shapes and probability dis-

tribution of shapes. Consequently, a significant effort has

been made to describe shapes based on features or land-

marks that satisfy predefined requirements [28, 1]. How-

ever, in [24] feature based approaches are argued to be in-

adequate to represent a shape; since, shape space in gen-

Figure 1: Illustration of the proposed representation. Given

the discrete path starts at point p1, the curve’s representation

is (ĝ1, · · · , ĝn−1), where the ĝ’s are rigid transformation

matrices.

eral is formulated as non-linear and infinite dimensional

space. Thus, theoretically, an infinite-dimensional object

can not distinctively be represented by a finite-dimensional

feature. For instance, landmark-based approaches [10] re-

quire the landmark points to be selected either automati-

cally or with expert’s input. This leads to inconsistent rep-

resentation, as the same shape can, potentially, be repre-

sented by two completely different sets of landmark points.

In contrast, in [24, 29, 11] shapes were parametrized by

functions. Thus, shape space is considered in its entirety

as an infinite dimensional space. Moreover, the infinite

dimensional space is complemented with a distance met-

ric. Hence, in principle, shape space is framed as infinite

dimensional Riemannian manifold. There are several ad-

vantages in using the Riemannian framework to define a

shape space. The first advantage is the treatment of shape

space as a smooth manifold which is only natural consider-

ing the non-linearity of shapes. Secondly, the Riemannian

framework offers a smoothly varying metric, which is es-

sential to measure distance, area and other associated geo-

metric notions in the shape space. Furthermore, under the

Riemannian framework, shape space can be linearised, at

least locally, without disregarding the non-linear nature of

shapes; effectively, opening shape analysis problems to sta-

tistical treatment. Consequently, several and different dis-

tance metrics were considered in infinite dimensional man-

ifolds [25, 16, 11, 17, 18, 29].

In the infinite dimensional setting, shape space is usually

15042



given as Imm(S1,Rn)/Diff(S1), where Imm(S1,Rn) is the

space of all parametrized functions immersed in R
n and de-

fined on a 1-dimensional circle, S1, while Diff(S1) is the

group of diffeomorphisms acting on S
1. The most common

metric in such a space is L2(a, b) =
∫

〈a, b〉ds, where a and

b are vector fields tangent to a curve at the shape space and

integrated with respect to the arc length. Although, this met-

ric looks simple, its geodesic equation is difficult to solve.

More ominously, the L2 metric can potentially result in a

zero distance between two different shapes [17, 16]. Con-

sequently, to avoid such behaviour first order Sobolev met-

ric was introduced [17], with numerical solutions. In [25],

an isomorphism from Imm(S1,Rn)/Diff(S1), with first or-

der Sobolev metric, to Hilbert manifold, with L2 metric,

was presented by a mapping function called square root

velocity (SRV). As a result, the first order Sobolev met-

ric was shown to be equivalent to L2 metric on a Hilbert

manifold for certain weighting constants. This led to a nu-

merically efficient distance computation between shapes.

Thus, in [25], geodesic paths were computed with a closed-

form formula for open curves. For closed curves, however,

the geodesic distance is computed with an iterative method

called ”path-straightening”. In [19], a metric that leads to

explicit geodesics of planar curves is presented. Nonethe-

less, in almost all parametrization approaches shapes are

assumed to be C∞(infinitely differentiable) or at least C2,

since most approaches need to compute curvature at some

stage. In fact, most metrics in infinite dimensional space

are defined based on differential quantities of the curve,

e.g. first order Sobolev metric. This, in general, leads to

representation which is sensitive to noise, making a pre-

smoothing stage a necessity [15].

Alternatively, in [7] the theme of taking optimal defor-

mation between shapes as a similarity metric was intro-

duced. In such a setting, a given shape is similar to another

if it is a small deformation away. Hence, similarity and dif-

ference between shapes is quantified by the required defor-

mation to align them. Although, the deformations need not

be low-dimensional, e.g. rigid transformation, they can be

tailored to fit a particular problem. In [6], for example, a

high-dimensional deformation that does not include reflec-

tion was presented to capture variability in a 3-dimensional

human body shape. In [8], a general pattern theory that

analyses patterns generated by geometric units ( e.g. points

and lines) and their relationship based on transformations

that act on the units is presented. In general, the optimal

deformation approach gives a similarity metric that is ro-

bust to noise or outliers unlike other differential based met-

rics or Hausdorff distance (L∞), for example. However, in

most cases the computation of optimal deformation is nu-

merically intensive [29, 7, 8].

In this work, we build on [4] and formulate a new curved

shape representation on the deformation space, which leads

Figure 2: Examples of closed curved shapes with 100 uni-

formly sampled points

to a much simpler similarity metric that is equivalent to L2-

norm. The proposed approach computes the optimal defor-

mation as a similarity metric. Nonetheless, we do not only

compute optimal deformation as a metric but explicitly rep-

resent the curves in the deformation space, which, in our

case, is a finite dimensional Lie group. We also do not re-

fer to a template shape to compute deformations which is

the case in [29, 7, 6, 8, 4]. To encode how a given curve

is deforming through space, a curved shape is represented

by finitely many rigid transformation matrices that are re-

quired to construct the whole curve from a given starting

point, see Figure 1. In essence, the transformation matrices

capture how the shape bends and stretches through space.

The key point of the approach is in using the already es-

tablished Riemannian structure of the rigid transformation

matrix space to compute distance and estimate point cor-

respondence. Overall, the main advantage of our approach

is the computation of geodesic distance between shapes by

L2-norm; closed form solution for geodesic path between

two shapes is possible. Furthermore, the similarity metric is

relatively robust to local perturbations, and deformation of a

shape can be factored with matrix manipulation. Although

the proposed method is closer to [7], we will compare our

results with [25], mainly because it has since been applied

to a wide variety of problems.

The rest of the paper is organized as follows: in Section 2

we will formalize and discuss the proposed shape represen-

tation, definition of similarity metric and point correspon-

dence estimation. In Section 3 experimental results of the

proposed metric is reported. The paper ends with conclud-

ing remarks in Section 4.

2. Shape representation

Assume a given curved shape S is distinctively described

by a set of k discrete points uniformly sampled from the

boundary of the shape. In practice, this is done by enforc-

ing a roughly equal arc length between consecutive points,

see Figure 2. Subsequently, similar to [10], location and

uniform scaling of a given shape, S = (p1, · · · , pk) where

pi ∈ R
n, are filtered out as follows
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S = (p∗1, · · · , p
∗
k) =

(p1 − p̄

h
, · · · ,

pk − p̄

h

)

, (1)

where

p̄ =
1

k

k
∑

i

pi ∈ R
n, h =

√

√

√

√

k
∑

i

‖pi − p̄‖22 ∈ R,

where ‖·‖2 denotes L2-norm. Thus, any curved shape S is a

point in R
kn. Furthermore, the sampled points are assumed

to be ordered according to arc length. The starting point

p1 and ordering direction of a path are selected arbitrarily.

Later in the paper, we will discuss the impact of ordering di-

rection and selection of starting point; this is similar to what

was described as reparametrization in the literature [16, 25].

We further denote the space of k ordered and normalized

points, using (1), by C. Subsequently, any curved shape

Si ∈ C is assumed to be able to deform into any other shape

Sj ∈ C by a group action; i.e. α : G× C → C where G is a

group. In this work, we will only consider Euclidean trans-

formations without reflection and thus the group under con-

sideration is the direct product of Special Euclidean group;

i.e. G = SE(n)k. To that end, the deformation of a shape

by group action is given as GS = (g1p1, · · · , gkpk), where

G ∋ G = (g1, · · · , gk) such that gi ∈ SE(n). However,

deformations that do not change the nature of the shape,

e.g. rotation of a shape, are redundant and need to be fil-

tered out. In addition, since scale and location are filtered

out from S , we can restrict shape preserving deformations

to a particular subgroup Q = {(q1, q2, · · · , qk) ∈ SO(n)k |
q1 = q2 · · · = qk}; here, SO(n) denotes the special or-

thogonal group. Consequently, the deformation of a given

shape Sj by any Q ∈ Q will define an equivalence class

[Sj ] in C. Thus, [Sj ] is the set of all shapes that are gener-

ated by rotating Sj . The key point of this paper, however,

is in identifying a given shape S ∈ C by a group element

Ĝ ∈ G, using the imposed order of points. More precisely,

a mapping function is defined on C as follows

f(S) =

{

Ĝ = (ĝ1, · · · , ĝk) if S is a closed curve

Ĝ = (ĝ1, · · · , ĝk−1) if S is an open curve

(2)

such that

ĝi × pi = pi+1.

Given a staring reference point p1 and an ordering direction,

the inverse of the mapping function, for closed curves, is

defined as

f−1(Ĝ) = (p1, ĝ1p1, ĝ2ĝ1p1, · · · , ĝk · · · ĝ1p1). (3)

The inverse for open curves can be defined similar to (3).

Consequently, given a fixed starting point and ordering di-

rection, any shape S ∈ C has a unique representation in

G, see Appendix A on computing the optimal g ∈ SE(n)

between two high dimensional points. Intuitively, f(·) em-

ploys the order of points to capture how a curved shape

bends and stretches along the path starting from a fixed

point. More importantly, f(·) preserves the shape equiva-

lence relationship induced by rotating shapes.

Proposition 1. If Ĝa and Ĝb are the representations of

Sa,Sb ∈ [Sj ] then Ĝa is equivalent to Ĝb by conjugacy,

Ĝa ∼ Ĝb.

Proof. Since, Sa,Sb ∈ [Sj ] we can write Sa = QSb where

Q = (q1, · · · , qk) ∈ Q. Let Sa = (pa1 , · · · , p
a
k) and Sb =

(pb1, · · · , p
b
k), then from (2) we have

ĝbi × pbi = pbi+1

= qi+1 × pai+1

= qi+1 × ĝai × pai

Since q1 = q2 = · · · = qk, we can compute elements of Ĝb

in terms of Ĝa as follows

ĝbi × qi × pai = qi+1 × ĝai × pai

ĝbi = qi × ĝai × q−1
i .

Thus, Ĝa and Ĝb are equivalent by conjugacy, i.e., Ĝb =
QĜaQ−1

�

Although the above proof is done for closed curve rep-

resentations, the argument is equally valid for open curve

representations as well. Furthermore, given point corre-

spondence between any two shapes, Sa and Sb, the opti-

mal rotation Q, such that Sa = QSb, can be computed by

optimizing the following

min
Q∈Q
‖QSb − Sa‖

2
2. (4)

In such a case, Sa and Sb are in the same shape class

if f(Sb) = Qf(Sa)Q
−1. Computationally, if two given

shapes belong to the same shape class then the correspond-

ing eigenvalues of the transformation matrices in f(Sb) and

f(Sa) are similar.

In summary, closed and open curves are represented by

elements of SE(n)k/Q and SE(n)k−1/Q, respectively. At

this stage, we are still assuming a given parametrization.

Thus, neither SE(n)k/Q nor SE(n)k−1/Q are invariant to

reparametrization; we will address this issue later on the

paper. However, it must be noted that SE(n)k is not a rep-

resentation space exclusive to closed curves only–the repre-

sentation space SE(n)k can potentially include open curves

described by (k + 1) points.
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2.1. Distance in SE(n)k

The formulated shape representation space SE(n)k is a

Lie group, thus is a non-linear space. As a result, the usual

definition of shortest path as a straight line does not gen-

eralize to SE(n)k. In this subsection, we will provide an

informal definition of Lie group, overview concepts from

differential geometry and define distance in SE(n) and in

the product group SE(n)k.

A Lie group is a differentiable or smooth manifold with

a smooth group operations; that is, the group’s binary op-

erator (x, y) 7→ xy−1 is smooth. Furthermore, the tangent

space at the identity element e of a Lie group is an algebra

called Lie algebra. Henceforth, we will denote the tangent

space of a smooth manifold M at p ∈ M by TpM , e.g. the

Lie algebra of SE(n) is denoted as TeM or se(n). Since a

Lie group has a smooth invertible binary operator it can be

anchored to any element a ∈ G so that it defines a diffeo-

morphism onto itself. For instance, the left translation of a

Lie group defined as La : G → aG. However, to compute

distance, volume and other geometric notions, an additional

structure called metric is needed. Subsequently, a differ-

entiable manifold M complemented with a smoothly vary-

ing metric tensor q is called a Riemannian manifold (M, q);

the metric tensor q is defined at the tangent space TpM as

qp : TpM × TpM → R
≥0 for every p ∈M , see [21, 5]. As

a result, the distance between A,B ∈M is defined as

d(A,B) = Inf{

∫ b

a

√

γ̇(t)T qtγ̇(t)dt}, (5)

where γ̇(·) is the derivative of any curve defined on a subset

of R, γ : [a, b] → M such that γ(a) = A and γ(b) = B.

Although, there are many curves that start at A and end at

B the one that satisfies (5) is called geodesic curve.

A Riemannian metric on a Lie group is said to be left

translation invariant if the left translation diffeomorphism

is an isometery, i.e., if the following is true

〈x, y〉e = 〈dLax, dLay〉a, ∀x, y ∈ TeM, ∀a ∈ G, (6)

where dLa is the derivative of the left translation. In such a

case, a left translation invariant Riemannian metric is iden-

tified with scalar product 〈·, ·〉 defined on the Lie algebra,

se(n), through the pullback map, dL−1
a . More interestingly,

if a vector field γ̇ on a Lie group is left translation invariant,

i.e., if the following is true for γ̇(h) ∈ ThM

dLaγ̇(h) = γ̇(ah) ∈ TahM, (7)

then its integral curve γ(t) = exp(tγ̇) is geodesic. In a

similar argument, a geodesic curve in SO(n) and R
n can be

defined, respectively, as follows

β(t) = R1(R
−1
1 R2)

t (8)

α(t) = v1 + (v2 − v1)t, (9)

where t ∈ [0, 1]. It can easily be checked that β(·) is

geodesic in SO(n), though, not necessarily unique [20, 2],

whereas α(·) is clearly geodesic since R
n is a vector space.

Meanwhile, SE(n), which is not a compact group, is a semi-

direct product of a compact group, SO(n), and R
n; it can be

represented in homogeneous coordinates as follows

gi =

(

Ri vi
0 1

)

, s.t., Ri ∈ SO(n), vi ∈ R
n. (10)

Consequently, in [30] the following curve in SE(n) is proven

to be geodesic.

ϕ(t) =

(

R1(R
−1
1 R2)

t v1 + (v2 − v1)t
0 1

)

, (11)

where t ∈ [0, 1]. Subsequently, we can define a scalar prod-

uct on the Lie algebra as

〈(R1, v1), (R2, v2)〉 = 〈R1,R2〉+ 〈v1, v2〉, (12)

where, R ∈ so(n), is the Lie algebra of SO(n). Thus, the

length of a geodesic curve connecting g1, g2 ∈ SE(n) can

be computed by transporting the tangent vectors with the

pullback to the Lie algebra. The geodesic distance, in this

case, reads as

d(g1, g2) =

∫ 1

0

〈dL−1
ϕ(t)(ϕ̇(t)), dL

−1
ϕ(t)(ϕ̇(t))〉dt, (13)

where 〈·, ·〉 is as defined in (12). Since ϕ(t) is a geodesic

curve, the tangent vectors ϕ̇(t) are parallel along ϕ(t).
Hence, the geodesic distance given in (13) is reduced to the

following

d(g1, g2) = (‖ log(RT
1 R2)‖

2
F + ‖v2 − v1‖

2
2)

1/2, (14)

where ‖ · ‖F denotes the Frobenius norm. At this stage,

we can extend the geodesic curve (11) to the direct product

space SE(n)k = SE(n)1 × · · · × SE(n)k as follows

ζ(ĜA, ĜB) = (ϕ(t)1, · · · , ϕ(t)k), (15)

such that ϕ(t)i is the geodesic curve between gi ∈ ĜA and

gi ∈ ĜB . It can be shown that (15) is a geodesic curve in

the product group, see [5]. Subsequently, we can define the

distance in SE(n)k, using the product metric, as follows

d(ĜA, ĜB) = (d(ĝ1A, ĝ
1
B)

2 + · · ·+ d(ĝkA, ĝ
k
B)

2)1/2. (16)

In effect, the geodesic path and distance between two shapes

SA, SB ∈ C, represented by ĜA and ĜA, respectively, can

be computed using (15) and (16), see Alg. 1, Alg. 2 and

Figure 3. We again stress that (16) is subject to point corre-

spondence or parametrization.
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Figure 3: Shapes along the geodesic path between the first and the last shape which are the original input shapes. The odd

rows show results from our approach while the even row are results from [25]. All shapes are represented by 100 uniformly

sampled and normalized points. We note that results from [25] are smoothed and lost local features of the shape.

Algorithm 1: Geodesic distance between closed curves

Data: {ĝ1A · · · ĝ
k
A}, {ĝ

1
B · · · ĝ

k
B} ∈ SE(n)k

Initalization: i = 1, d = 0;

for i ≤ k do

d(ĝiA, ĝ
i
B) = ‖ log((R

i
A)

TRi
B)‖

2
F + ‖viB − viA‖

2
2;

d = d+ d(ĝiA, ĝ
i
B); i = i+ 1;

end

Result: d = (d)1/2

Algorithm 2: Geodesic curve between closed curves

Data: Ĝ0 = {ĝ10 · · · ĝ
k
0}, Ĝ1 = {ĝ11 · · · ĝ

k
1} ∈ SE(n)k

Initalization: i = 1, N = #steps, j = 1
N+1 ;

for j ≤ N
N+1 do

for i ≤ k do

ĝij =

(

Ri
0((R

i
0)

−1Ri
1)

j vi0 + (vi1 − vi0)j
0 1

)

;

i = i+ 1;
end

j = j + 1
N+1 ;

end

Result: {Ĝ1/N+1, · · · , ĜN/N+1}

2.2. Properties of the metric

The proposed metric does not compute differential quan-

tities of curved shapes. On the contrary, most infinite-

dimensional representations compute differentials of the

curve to define similarity metrics [25, 16]. Differentials,

especially higher derivatives, are highly sensitive to noise

and local perturbations. As a result, differential based ap-

proaches pre-smooth the input curves before processing it

while incurring loss of potentially informative data. For

instance, legitimate features due to local perturbation will

be washed out because of the pre-smoothing procedure, see

Figure 3, row 2, 4 and 6. Although our representation

is based on the relative transformation matrices between

neighbouring points, it is not as severely sensitive as cur-

vature is, for example, to local perturbations [15].

Moreover, the proposed metric is a left translation invari-

ant metric. Thus, the distance between two shapes remains

the same even under a deformation acting on both shapes.

For instance, if G1 ∈ SE(n)k is a deformation acting on

shape SA and SB then, d(ĜA, ĜB) = d(G1 · ĜA,G1 · ĜB).
This fact can be observed by plugging the action of G1
into (14) in which case it will cancel itself out. This prop-

erty is particularly important in transporting deformation

between two similar shapes.

In [25], deformation transportation was framed as fol-

lows: Let S1 and S
′

1 be shape contours representing exactly

the same real world object O1, only S
′

1 is deformed under

external force, e.g., different viewing angle. And let O2 be

a similar object to O1, but not identical, with S2 as its shape

contour. Transporting deformation is then framed as esti-

mating how S2 will deform, under the same external force,

to give S
′

2. In our framework, the deformation due to the
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S1 S
′

1

S2 S
′

2

Figure 4: The first set of shapes shows two examples where

S1 deforms to S
′

1 due to some unknown external factor. The

second set shows the transported deformation to their simi-

lar objects S2 to give S
′

2, respectively.

external force can be factored out as G1 · f(S1) = f(S
′

1),
where f(·) is as defined in (2). Consequently, G1 =
f(S

′

1) · f(S1)
−1. Since our metric is left translation invari-

ant, d(f(S1), f(S2)) = d(G1 · f(S1), G1 · f(S2)). Thus,

S
′

2 = G1 · f(S2), see Figure 4.

2.3. Point correspondence

As pointed out earlier, the distance function given in (16)

is dependent on parametrization; it assumes point corre-

spondence between two curved shapes. In this subsec-

tion, we will present a distance function that is invariant

to reparametrization; we estimate corresponding points be-

tween two given shapes.

Given two closed curves SA and SB represented by k
points, the estimation of point correspondence is formulated

as estimating the starting point and ordering direction of the

points in SB such that (16) is minimized. In that regard,

let ξi be a k-cyclic permutation; i.e. ξi : SB ∋ pj →
p(i+j)mod k ∈ SB , where mod represents the modulo op-

eration. Then, by construction f ◦ ξi = ξi ◦f , where f is as

defined in (2) and ◦ is used to denote function composition.

Subsequently, for a fixed ordering direction the optimal star-

ing point of a closed curve is given by the starting point of

ξi(SB) such that ξi(SB) is the ordering that minimizes the

following objective function

I(f(SA), f(SB)) = min
i∈[1,k]

d(f(SA), ξ
i(f(SB)). (17)

To work with ordering direction, we introduce a nota-

tion for a representation of a given shape ordered in clock-

wise direction and representation of the same shape ordered

in anti-clockwise as f(
−→
S ) and f(

←−
S ), respectively. More-

over, we note that if f(
−→
S ) = (ĝ1, · · · , ĝk) then f(

←−
S ) =

(ĝ−1
k , · · · , ĝ−1

1 ). In light of the direction notation, the opti-

mal starting point and ordering direction of SB with respect

to SA is given by the solution of the following

min(I(f(SA), f(
−→
SB)), I(f(SA), f(

←−
SB))). (18)

Figure 5: The first and the second columns show the in-

put shapes for correspondence point estimation. The third

column shows the estimated corresponding points with our

methods and the last column are results estimated with

Shape Context [1]. For visual clarity, we have scaled the

results.

In effect, equation (18) is presented as the distance be-

tween two closed curves SA and SB where point correspon-

dence is not known a priori. Evidently, (18) can also be

used for finding correspondence between two closed curves,

see Figure 5. The corresponding points between two open

curve can be computed by dropping the k-cyclic permuta-

tion and optimizing the ordering direction alone. The so-

lution of (18) is estimated with a brute-force approach us-

ing a nested loop iteration. Thus, the time-complexity for

closed curves is O(k2). More concretely, on Intel core i7-

3540M with 3.0 GHz×4 processing speed and 7.7 GB RAM

running Ubuntu 14.04 64-bit, MATLAB implementation of

the proposed metric, given in (16), took 0.0868 seconds,

and the whole distance computation set-up, including point-

correspondence estimation and shape representation, took

11.0509 seconds for shapes approximated by k = 100
points.

In summary, the proposed point-correspondence estima-

tion technique assumes the sampling of points with equal ar-

clength spacing. In such cases, the approach performs with

a reasonable accuracy. On the contrary, for cases where a

significant warping is required due to high variation in cur-

vature, for example, accuracy degrades. Furthermore, the

proposed approach does not consider occlusion.

3. Experiments

In this section we report experimental results of the pro-

posed similarity metric on plant leaf classification problem.

Furthermore, experimental results on the robustness of the

metric to local shape perturbations is provided.
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Figure 7: Examples of different leaf types from the Flavia dataset.
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Figure 6: Precision-recall curve of our metric on the Flavia

dataset. In [12], the precision-recall curve of several ap-

proaches is presented.

3.1. Plant leaf classification

Plant leaves are traditionally classified by experts [3].

However, the magnitude of the data that is being collected

is growing exponentially, rendering manual labeling ineffi-

cient. To address this problem, several feature based and

shape analysis methods were proposed [12, 13, 3]. Al-

though, color and texture are valuable features, shape is the

most discriminative, as it is rarely affected by season and

environmental conditions [12]. Consequently, we evaluate

our shape based similarity metric on Flavia dataset [27].

The dataset contains 32 types of leaf species with a total

of 1907 examples, see Figure 7. In [12], a leave-one-out

test scenario was performed on Flavia dataset to evaluate

the elastic similarity metric, derived from SRV-framework,

and to compare with other approaches. Leave-one-out is a

setup where every leaf is used as a query against the rest of

the database. To compare our approach with other methods,

we replicate the leave-one-out scenario with Mean Average

Precision (MAP) used as a performance measure. For this

experiment, every leaf shape is represented by k = 200
points that are uniformly sampled from the boundary of

the shape. Table 1 summarizes the result of our approach

and results reported in [12] and [22]. Although our method

achieved a high MAP it is not necessarily inclusive of all the

Methods MAP

Angle function [11] 45.87

Shape context [1] 47.00

TSLA [22] 69.93

Elastic metric with 200 points [12] 81.86

Gaussian elastic metric with 200 points [12] 92.37

Our method with 200 points 94.11

Table 1: Mean average precision on the Flavia dataset. We

highlight the result of our approach at the bottom.

relevant information; precision drops as recall goes to 1, see

Figure 6. Nonetheless, it outperformed elastic shape metric

and Gaussian elastic metric, discussed in [12], in terms of

MAP. One possible reason for this is that we do not pre-

smooth the data and thus local details are more likely to be

captured with our method.

3.2. Local shape perturbations

To demonstrate the impact of local perturbation on

our metric, we test the proposed method on fighter jets

dataset [26]. The dataset contains 7 types of fighter jets

each with 30 examples, see Figure 9. Variation between the

same type of planes is introduced by deforming parts of the

plane and by the action of rotation matrices. We will be-

gin our experiment by perturbing the shapes of the fighter

jets with a noise sampled from a zero mean Gaussian dis-

tribution with different values for the standard deviation σ.

For all subsequent experiments, the contour of every shape

is approximated by uniformly sampled k = 200 points.

Next, we repeat the leave-one-out test scenario where the

unperturbed/original dataset is queried by every shape from

the original dataset and from the datasets corrupted by a

noise sampled from different Gaussian distributions. Ta-

ble 2 summarizes the computed MAP values and Figure 8

shows their respective precision-recall curve. In general, we

note that the proposed metric is not invariant to shape alter-

ing local perturbations, in terms of noise magnitude, it is

however relatively robust to perturbations that do not alter

the shape significantly, see Figure 9.

4. Conclusion

We proposed a similarity metric for closed and open

curves that can be computed in a closed form solution. The
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Figure 9: The first row shows the 7 types of fighter jets from [26]. The second row shows shapes with additive Gaussian

noise with standard deviation of 2.5.

Noise standard deviation (σ) MAP

0 97.11

0.5 96.72

1.5 89.95

2.5 83.27

Table 2: Mean average precision (MAP) on the fighter jets

dataset for different levels of Gaussian noise.
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Figure 8: Precision-recall curve of our metric on the per-

turbed and original fighter jet planes.

key point in our metric definition is the representation of

how a given curve bends and stretches with rigid transfor-

mation matrices. Subsequently, a dot product defined on the

product Lie algebra is used to compute the distance between

two given shapes. Following the distance metric, point cor-

respondence estimation is given by fixing one shape and

optimally ordering points of another in such a way that dis-

tance between the shapes is minimized. The proposed met-

ric is reasonably robust to small local shape perturbations

unlike metrics based on differential quantities. There are

several ways one can extend the proposed metric. First, it

can be used for image retrieval systems in conjugation with

other features like color and texture. Second, the dot prod-

uct defined in (12) assigns the same weighing constants for

the rotation (bending) and translation (stretching) quantities

of the curve. This is not a necessary condition; a problem

specific similarity metric that emphasizes one over the other

can be defined by weighing the two terms in (14) differ-

ently. Lastly, in scenarios where a labeled training dataset

is available, a label specific similarity metric can be defined

by taking the covariance matrix of the label’s dataset as a

metric tensor to define the dot product in the Lie algebra;

in (12) the metric tensor is identity.

A. Optimal transformation

The optimal rotation matrix between two vectors

p1, p2 ∈ R
2 can be computed by minimizing

min
R∈SO(2)

‖Rp1 − p2‖
2
2. (19)

The solution of (19) is given as R = V UT such that the

covariance of the points is C = pT1 p2 = UΣV T . However,

the solution might include reflection and needs to be recti-

fied, see [9]. Nevertheless, rotation in 2-dimensional space

is about a point and similar with coordinate re-orientation.

In high dimensional space this is not the case. As a re-

sult, (19) does not necessarily give a high-dimensional rota-

tion matrix that preserves the coordinate orientation. Mean-

while, the proposed representation computes the rotations

to capture the bending of a curve relative to a fixed frame.

Hence, orientation preserving rotation matrix is computed

by first estimating an orthonormal basis B of the space from

p1 and p2 with SVD. Next, the rotation plane is identified as

the plane on which p1 and p2 lie. Subsequently, R is com-

puted by minimizing (19) and expressed in homogeneous

coordinates. Finally, the rotation matrix that preserves co-

ordinate orientation is given byR = BRBT .
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