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Abstract

Our goal is to recognize material categories using im-

ages and geometry information. In many applications, such

as construction management, coarse geometry information

is available. We investigate how 3D geometry (surface nor-

mals, camera intrinsic and extrinsic parameters) can be

used with 2D features (texture and color) to improve ma-

terial classification. We introduce a new dataset, GeoMat,

which is the first to provide both image and geometry data

in the form of: (i) training and testing patches that were ex-

tracted at different scales and perspectives from real world

examples of each material category, and (ii) a large scale

construction site scene that includes 160 images and over

800,000 hand labeled 3D points. Our results show that

using 2D and 3D features both jointly and independently

to model materials improves classification accuracy across

multiple scales and viewing directions for both material

patches and images of a large scale construction site scene.

1. Introduction

Our goal is to recognize material categories using images

and estimated 3D points. In prior material recognition re-

search, surface geometry is a confounder, and much effort

goes into creating features that are stable under varying per-

spective (e.g., scale and rotationally invariant features [33])

and lighting. Although the resulting systems often perform

well for standard material/texture datasets [11, 16, 5, 25],

their success does not always translate to improved cate-

gorization in natural objects or scenes [22, 12]. However,

for many important applications, 3D surface geometry can

be estimated, rather than marginalized, and used to improve

performance. For example, a ground robot can estimate sur-

face geometry from stereo when identifying navigable ter-

rain. Likewise, when surveying progress in a construction

site, 3D points from LiDAR or structure-from-motion can

help distinguish between concrete and stone to determine

if a facade is in place. In principal, geometric estimates

should help with material classification by revealing surface

orientation and roughness and disambiguating texture cues,

but because surface texture and geometry interact in com-

Figure 1: The material patches shown in column one were

misclassified as the class shown in column three by [8] be-

cause the classes are visually similar. However, the geom-

etry (column two and four) for these patches is different.

This paper investigates how to use differences in 3D geom-

etry to improve material classification. We also contribute

the GeoMat dataset consisting of images and geometry for

material patches and a large scale construction site scene.

plex ways, it is not clear how best to take advantage of 3D

points. Can local geometry cues be simply added to exist-

ing color/texture features, or do they need to be considered

jointly? Are approaches to improve robustness of texture

descriptors still helpful? Is it helpful to rectify the image

based on surface geometry? Our paper aims to answer these

questions and provide a material recognition approach that

is well-suited to applications for which surface geometry

estimates are available.

We introduce a new dataset of construction materials

photographed in natural outdoor lighting (called “GeoMat”
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for geometry/materials). Many of the 19 material categories

(Fig. 3) are highly confusable, such as “paving” vs. “lime-

stone” or “smooth cement” vs. “granular stone” (Fig. 1),

but these distinctions are important in a construction setting.

For each category, several different physical samples are

photographed from a variety of orientations and positions,

and structure-from-motion [31] and multi-view stereo [14]

are used to estimate 3D points. We explore two test settings:

individual 2D/3D patches of material samples and scene-

scale images of construction sites with 3D point clouds.

Using our GeoMat dataset, we investigate how estimated

3D geometry can improve material classification in real

world scenes. Surface orientation and roughness provide

valuable cues to material category, and we model them with

histograms of surface normals. Additionally, observed tex-

ture is due to a combination of surface markings, micro-

geometric texture, and camera-relative surface normal. Our

geometric detail is not sufficient to model micro-geometric

texture, but by jointly representing camera-relative surface

normal and texture response, we may reduce ambiguity of

signal. Thus, we try jointly representing texture and nor-

mals. An alternative strategy is to frontally warp the im-

age, based on surface normal, which would undo perspec-

tive effects at the cost of some resolution due to interpola-

tion. Our main technical contribution is to investigate all of

these strategies to determine which strategy or combination

of strategies makes the best use of geometric information.

We also investigate how performance of 3D-sensitive fea-

tures varies with scale and surface orientation.

In summary, our contributions are: (1) we create the

GeoMat dataset for studying material categorization from

images supplemented with sparse 3D points; (2) we investi-

gate several strategies for using 3D geometry with color and

texture to improve material recognition; (3) we investigate

effects of scale and orientation and application to images of

construction sites.

2. Related Work

Features: Early methods for material classification

used filter bank responses to extract salient statistical char-

acteristics from image patches [11, 37, 32, 4, 3]. Leung and

Malik [21] introduced the LM-filter bank and proposed “3D

Textons”, which, despite the name, are clustered 2D filter

responses at each pixel without direct 3D information. The

term “texton” was coined by Julez [18] twenty years earlier

to describe elements of human texture perception, and “3D”

conveys the goal of classifying 3D material textures. Varma

and Zisserman [33] later proposed the “RFS” filter bank and

an in-plane rotationally invariant (via max pooling) “MR8”

response set. A string of subsequent work, led by Varma

and Zisserman, replaced filter responses with more direct

clusterings and statistics of intensities of small pixel neigh-

borhoods [34, 26, 36, 7, 15, 29, 30, 24]. Liu et al. [22]

explored a variety of color, texture, gradient, and curvature

features for classifying object-level material images. It was

recently shown by Cimpoi et al. [8, 9] that convolutional

neural networks and fisher vectors with dense SIFT outper-

forms previous approaches for texture classification.

These works all explore purely 2D image-based features

and, as such, aim to be robust to 3D surface variations by

encoding texture for samples observed from various view-

points and lighting. We show that directly encoding local

surface geometry both jointly and independently with tex-

ture yields significant gains. We are the first, to our knowl-

edge, to investigate how to integrate 3D geometric cues with

texture representations for material classification. We note

that object segmentation from RGB-D images is a com-

monly studied problem (e.g., Koppula et al. [19]), but be-

cause the image resolution is too low for texture to be an

effective cue and the focus is on object rather than material

categories, the problem is dissimilar (the same is also true

of LiDAR classification approaches).

Datasets: The CUReT dataset created by Dana et

al. [11] was the first large-scale texture/material dataset,

providing 61 material categories, photographed in 205

viewing and lighting conditions. The KTH-TIPS dataset

by Hayman et al. [16] added scale variation by imaging 10

categories from the CUReT dataset at different scales. For

both datasets, all images for a category were from the same

physical sample, so that they may be more accurately called

texture categorization than material categorization datasets.

Subsequently, KTH-TIPS2 by Caputo et al. [5] was intro-

duced, adding images from four physical samples per cat-

egory. Still, variation of material complexity within cate-

gories was limited, motivating Liu et al. [22] to create the

Flickr Materials Database containing images for ten cate-

gories with 50 material swatch images and 50 object-level

images. Several recent datasets have focused on material

recognition for applications. This includes the construc-

tion materials dataset by Dimitrov and Golparvar-Fard [12]

which consists of 200x200 patches of 20 common construc-

tion materials, and the Describable Texture Dataset by Cim-

poi et al. [8] which provides 5,640 texture images jointly

annotated with 47 material attributes. Most recently, Bell et

al. [2] contributed the Materials in Context Database, con-

sisting of many full scenes with material labels.

While these datasets provide ample resources for study-

ing image-based material classification, there does not yet

exist a dataset that provides geometry information together

with real-world material images. Our GeoMat dataset pro-

vides real world material images and geometric information

in the form of point clouds, surface normals, and camera in-

trinsic and extrinsic parameters. Our dataset also differs in

that the taxonomy is chosen to be relevant to a practical ap-

plication (construction management), rather than based on

visual distinctiveness, leading to several groups of highly
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Figure 2: Each GeoMat material category is made from 3 to 26 different samples where each sample consists of 8 to 12

images at different viewpoints, a segmented point cloud, and normal vectors.

Figure 3: GeoMat represents 19 material categories.

confusable material types. For example, Varma and Zis-

serman [35] report accuracy of 96.4% on the 61 CUReT

classes using the MR8 representation; the same MR8 repre-

sentation achieves only 32.5% accuracy on our dataset.

3. Dataset

We created the GeoMat dataset (Figs. 2, 3, and 4) to

investigate how local geometric data can be used with

image data to recognize materials in real-world environ-

ments. The training set consists of “focus scale” 100x100

patches of single materials sampled from high resolution

photographs of buildings and grounds. There are two test

sets: (i) 100x100 patches sampled from photographs of dif-

ferent physical surfaces, and (ii) “scene scale” photographs

of a construction site. Both focus scale and scene scale

datasets consist of images and associated 3D points esti-

mated through multiview 3D reconstruction.

3.1. Focus Scale Training and Testing Sets

The focus scale data is sampled from high-resolution

(4288x2848 pixels) images that predominantly depict a sin-

gle material, such as a “brick” wall or “soil - compact”

ground. The dataset consists of 19 material categories as

shown in Fig. 3. There are between 3 and 26 different phys-

ical surfaces (i.e. different walls or ground areas) for each

category; each surface is photographed from 8 to 12 view-

points (Fig. 2). A marker of known scale is present in each

image. Structure from motion [31] and multi-view stereo

[14] are used to generate a point cloud, normal vectors, and

camera intrinsic and extrinsic parameters. The points are

manually labeled into regions of interest to facilitate sam-

pling patches that consist purely of one material.

We make training and testing splits by assigning approx-

imately 70% of the physical surfaces of each category to

training and the remainder to testing. For example, given

a category with three surfaces, training samples will come

from two of the surfaces and testing samples will come from

the remaining unused surface. Similarly, for a category with

23 samples, training samples will come from 16 of the sur-

faces and testing samples will come from the remaining 7

unused surfaces. Since each category consists of at least

three different surfaces, this ensures that there are at least

two surfaces per category for training, at least one surface

per category for testing, and the samples drawn for training

are from different surfaces than those drawn for testing.

For each category, we extract 100 training patches and

50 testing patches at 100x100, 200x200, 400x400, and

800x800 resolutions. This results in a total of 400 training

patches and 200 testing patches per category. These patches

are scaled to 100x100 to simulate viewing the materials at
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Figure 4: The scene scale dataset consists of 160 images of a construction site with an accompanying point cloud, normal

vectors, and camera intrinsic and extrinsic parameters. The SFM-registered camera frusta are shown in green. 11 of the

19 material categories are represented: “Brick”, “Cement – Smooth”, “Concrete – Precast”, “Concrete – Cast in Place”,

“Foliage”, “Grass”, “Gravel”, “Metal – Grills”, “Soil – Compact”, “Soil – Loose”, and “Wood”.

different scales/distances. We extract an equal number of

patches from each surface. For example, if we want to ex-

tract 200 testing patches from 10 surfaces, then 20 testing

patches are extracted from each surface. Since each sur-

face consists of many images, we then divide the intended

number of patches evenly among the images of that surface.

Continuing with the example, if a surface has 10 images and

we want to extract 20 total patches from that surface, then

we extract 2 patches per image. Each patch is then extracted

randomly from within a region of the image that was man-

ually annotated as representative of the intended category.

Each patch consists of image data, geometry data, and

from which category and surface it was drawn. Examples

are shown in Fig. 1. Image data includes normalized gray-

scale and HSV images and the location in the image from

which the sample was drawn. Geometry data includes a

sparse depth map, sparse normal map, intrinsic and extrinsic

camera parameters, gravity vector, and scale.

3.2. Scene Scale Testing Set

The scene scale data consists of 160 images (4288x2848

pixels each) of one large construction site. Of the 19 ma-

terial categories, 11 are represented: “Brick”, “Cement –

Smooth”, “Concrete – Precast”, “Concrete – Cast in Place”,

“Foliage”, “Grass”, “Gravel”, “Metal – Grills”, “Soil –

Compact”, “Soil – Loose”, and “Wood”. Structure from

motion and multi-view stereo were used to generate a point

cloud, normal vectors, and camera intrinsic and extrinsic

parameters. The point cloud is hand-labeled to match our

19 material categories. Points not matching one of the 19

categories are labeled as unknown. Fig. 4 provides a depic-

tion of the scene scale testing set.

The scene scale data is used only for testing. We use

the dataset to verify that our conclusions drawn from the

simpler focus scale dataset still hold when classifying re-

gions in more typical images. Others could use the data for

testing multiview material recognition or transfering patch-

based material models to scene-scale images. Labeled 3D

points (826,509 total) that are viewable in a given image

are back-projected onto pixels, so that a sparse set of pixels

(about 21,500 per image on average) has ground truth labels

in each image. When testing with the scene scale data, we

use the entire focus scale dataset for training.

4. Classification with Geometric Features

4.1. Features and Modeling

Our main interest is in how to use patch geometry to im-

prove or augment image features. We describe the 2D tex-

ture and color features that we use and then describe several

cues that leverage the estimated depth and surface normals.

4.1.1 2D Features

RFS/MR8: The intensity pattern of a material is a good

cue for recognition [33, 21, 28, 10] because it encodes

surface albedo patterns and small-scale shape. Consider

brick: we expect to see grainy rectangular blocks separated

by layers of mortar. Filter banks have proven useful for

capturing these and other intensity patterns for material
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recognition. We use the RFS filter bank and derived MR8

responses described by Varma and Zisserman [35], which

are shown to be effective on the CUReT dataset [33]. The

RFS filter set contains first and second derivative filters at

6 orientations and 3 scales (36 filters) and Gaussian and

Laplacian of Gaussian (LoG) filters at scale σ = 10 (2

filters). The MR8 filters are created by keeping only the

maximum filter response across each set of orientations for

a given scale, along with the two Gaussian/LoG filters. The

MR8 filters are intended to provide robustness to surface

orientation. In training, filter responses at each pixel are

clustered into 10 clusters per category using k-means,

following the standard texton approach [21]. The RFS and

MR8 features are histograms of these textons (clustered

filter responses), normalized to sum to one.

FV: SIFT [23] features offer an alternative method

of capturing texture patterns and were used by Lui

et.al. [22] for material recognition on the Flicker Materials

Dataset. We quantize multi-scale dense SIFT features using

the Improved Fisher Vector framework [27] as described

by Cimpoi et. al. [8]. In training, the dimensionality

of the dense SIFT features is reduced to 80 using PCA.

The reduced dense SIFT features are then clustered into

256 modes using a Gaussian Mixture Model. The feature

vectors are mean and covariance deviations from the GMM

modes. The feature vectors are ℓ2 normalized and sign

square-rooted as is standard for Improved Fisher Vectors.

HSV: Materials can be recognized by their color —

grass is often green, bricks are often red and brown, and

asphalt is often gray. We incorporate color by converting

image patches to the HSV color space. The HSV pixels are

then clustered into five clusters per category using k-means,

and the resulting histograms are used as features.

CNN: Convolutional Neural Networks offer another

approach for capturing texture and color patterns. We

follow the approach of Cimpoi et. al. [8, 9], and use the

pre-trained VGG-M network of [20]. The features are

extracted from the last convolutional layer of the network.

4.1.2 3D Features

We investigate three strategies for including 3D geometric

information for material classification: (i) jointly cluster

texture features and 3D normal vectors at each pixel (-N);

(ii) independently cluster normal vectors, build histograms

(N3D), and add them to 2D features; and (iii) frontally

rectify the image based on a plane fit before computing

texture filter responses.

-N: Image texture is affected by albedo patterns, sur-

face orientation, and small surface shape variations. These

factors make classification based on filter responses more

difficult. A common solution is to make features robust

to surface orientation by learning from many examples

or creating rotationally invariant features (as in MR8 and

SIFT). We hypothesize that explicitly encoding geometry

jointly with the texture features will be more discriminative.

We interpolate over the sparse 3D normal map to

produce a pixel-wise estimate of normals for a given image

patch. We then transform the normal vectors according to

the camera calibration information so that the normals are

in the coordinate frame of the image plane. For MR8 and

RFS, we then concatenate the normal vectors onto the filter

responses at each pixel and cluster them into 10 clusters per

category to create MR8-N and RFS-N textons. The textons

are then used to build MR8-N and RFS-N histograms.

For FV, we first reduce the dimensionality of the SIFT

features to 80 using PCA. Then, we concatenate the 3D

normal vectors onto the reduced SIFT descriptors for each

pixel and cluster into 256 modes using a Gaussian Mixture

Model. The modes include characteristics of both the

texture and normal vectors. The Improved Fisher Vector

formulation [27] is then used to create FV-N feature vectors.

N3D: It is unclear whether a joint or independent

representation of geometry will perform better, and it

is also possible that both representations may help with

overall discrimination. Thus, we formulate the N3D feature

as an independent representation of the sparse normal map.

As described for (-N), we interpolate over the sparse

3D normal map to produce pixel-wise normal estimates

for each patch and transform the normal vectors into

the coordinate frame of the image plane. Rather than

concatenating the normals with the texture features (as

was done with (-N)), we independently cluster the normal

vectors into five clusters per category using k-means and

use the resulting histograms as our N3D features. Note

that we also tried clustering the normal vectors using a

Gaussian Mixture Model and building Fisher Vectors but

saw worse performance using this method.

Rectification: In addition to directly encoding 3D

surface geometry, frontally rectifying the image may

improve texture features by making filter responses more

directly correspond to albedo and microshape changes,

removing the confounding factor of overall surface ori-

entation and scale. We perform rectification using a

homography defined by making the mean surface normal

face the camera. The rectified patch is scaled to 100x100.

4.2. Classification

For this work, we are interested in investigating the util-

ity of different geometric features and establishing a base-
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Features - +HSV +N3D +HSV+N3D

( RFS [33] / RFS-N ) ( 33.24 / 37.76) ( 45.03 / 47.89 ) ( 49.68 / 49.55 ) ( 51.24 / 52.29 )

( MR8 [33] / MR8-N ) ( 32.47 / 41.34) ( 45.32 / 47.84 ) ( 49.74 / 50.63 ) ( 53.03 / 53.37 )

( FV [8] / FV-N ) ( 60.97 / 66.95 ) ( 62.92 / 68.76 ) ( 65.87 / 68.16 ) ( 66.37 / 69.05 )

( FV+CNN [8] / FV-N+CNN ) ( 68.92 / 73.80 ) ( 67.82 / 72.05 ) ( 72.08 / 73.84 ) ( 70.79 / 72.13 )

Table 1: Including 3D geometry features increases the mean accuracy for all feature sets. Both joint and independent

modeling of the 3D geometry improve the mean accuracy. The best mean accuracy is 73.84%.

line for classification with the GeoMat dataset. We use a

one vs. all SVM scheme for classification because SVMs

have been shown to achieve exemplary performance on

texture classification tasks for all our 2D features [16, 8,

9]. Experiments with only histogram features (RFS/MR8,

HSV, RFS-N/MR8-N, N3D) benefit from weighting the his-

tograms before concatenating them. We learn the weights

by grid search using leave-one-out cross-validation on the

training set with a nearest neighbor classifier (which can be

done very efficiently by caching inter-example histogram

distances for each feature type). The weighted and con-

catenated histograms are then classified with a χ2 SVM.

For experiments that include non-histogram feature vectors

(FV, FV-N, CNN), the feature vectors and histograms are

individually L2 normalized before being concatenated. We

use libSVM [6] for training.

4.3. Application to Scene Scale

In our scene scale test set, the input is RGB images at

original scale with a sparse set of reconstructed points. We

use this data to verify that our conclusions on the curated fo-

cus scale dataset still hold for typical images of large-scale

scenes. To apply our patch-based classifer, we segment each

image into 290-300 superpixels (roughly 200x200 pixels

each) using SLIC [1]. For each superpixel, we extract the

image patch and corresponding sparse normal map for the

minimum bounding rectangle. The sparse normal map is

then interpolated and transformed into the coordinate frame

of the image plane. The image patches are resized for the

CNN and used as-is for all other features. Classification is

done on each patch independently and accuracy is measured

as the average accuracy per pixel label.

5. Results and Analysis

Table 1 provides the mean classification accuracies on

the testing data of the focus scale component of the GeoMat

dataset. Since jointly clustering texture and 3D geometry

(-N) is an alternative representation of the texture features,

we display it in conjunction with the texture representation

(texture representation / joint texture and normal represen-

tation). Then, each extra feature set that is concatenated is

shown as another column of the table. We consider all of

the original 2D features (RFS, MR8, FV, FV+CNN) to be

baselines. From this table we see that the highest overall ac-

curacy is 73.84% for FV-N+CNN+N3D which outperforms

the best 2D baseline of FV+CNN [8] at 68.92%. Note also

that the accuracy of using just N3D features is 32.50%.

We also tried several other baselines. First, we tried the

approach of Cimpoi et al. [9]. This approach constructs Im-

proved Fisher Vectors from the output features of the last

convolutional layer of the pre-trained ImageNet network

[20]. This method achieved 63.79% mean accuracy on our

focus scale dataset. We also investigated the texture classi-

fication method provided by Sifre et al. [30]. This method

learns a joint rotation and translation invariant representa-

tion of image patches using a cascade of wavelet modu-

lus operators implemented in a deep convolutional network.

We tested this baseline method with the same range of oc-

tave options as [30] and achieved a best accuracy of 36.53%

with the number of octaves set to 3. Both of these baselines

performed worse than FV+CNN at 68.92%.

The results shown here are a subset of our experiments

and were chosen to highlight interesting trends. Additional

experiments can be found in the supplemental material.

Both joint and independent representations of geom-

etry improve mean classification accuracy. These two

options map to (-N) features and N3D features respectively.

From Table 1 and comparing column by column, we first

see in column two that the (-N) significantly improves the

mean classification accuracy compared to the 2D texture

features (e.g. FV-N outperforms FV). In column three, we

see that HSV provides a boost to the mean accuracies in

every case; however, the inclusion of (-N) still improves

the mean accuracies by at least 2% and by almost 6% for

FV+HSV (e.g. FV-N+HSV outperforms FV+HSV). In

column four, we can make two observations. First, we see

that the inclusion of independent normal features (N3D)

significantly improves the mean accuracy compared to the

2D texture features (e.g. FV+N3D outperforms FV). In

addition, we see that in every case except RFS, including

both joint and independent geometry features (-N and N3D)

improves over using just one (e.g. FV-N+N3D outperforms

FV-N and FV+N3D). Note that the improvement for adding

either (-N) or N3D (e.g. FV-N or FV+N3D) is larger than

the additional improvement gained by adding one to the
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(a) Confusion: FV+CNN (Best 2D). (b) Confusion: FV-N+CNN+N3D (Best 3D). (c) Difference: (Best 3D - Best 2D).

Figure 5: The difference confusion matrix (Best 3D - Best 2D) shows the categories where the best 3D confusion matrix (b)

performed better (blue cells) or worse (red cells) than the best 2D confusion matrix (a). The largest improvements are for

Soil, Stone, and Cement. These categories often have similar visual appearance, but not necessarily similar 3D geometry.

Including 3D geometry alleviates some of the confusion between these categories.

Features - Rectified

RFS 33.24 34.42

RFS-N 37.76 39.82

MR8 32.47 35.03

MR8-N 41.34 42.05

FV 60.97 60.26

FV-N 66.95 66.82

FV+CNN 68.92 70.13

FV-N+CNN 73.80 72.97

FV+CNN 68.92 68.95

FV-N+CNN 73.80 73.71

FV+CNN 68.92 70.13

FV-N+CNN 73.80 72.92

Table 2: Rectification tends to help for filter features and not

help when (-N) is included. Because the better performing

features often perform worse with rectification, rectification

does not appear to be an effective use of 3D geometry for

improving classification. For FV+CNN, we denote which

features are using rectification using boldfaced text.

other (e.g. adding N3D to FV-N). This makes sense because

both features are modeling similar information; however,

it is interesting that they still both contribute when used

together. This trend is maintained with the inclusion of

HSV features in column five.

It is not clearly helpful to rectify the images based

on surface geometry. Table 2 shows the mean accuracies

of the data with and without rectification. It is possible to

apply the rectification to either FV or CNN; thus, we denote

which features are using rectification using boldfaced text.

From the results, we can see that rectification tends to

improve the filter features (RFS, RFS-N, MR8, MR8-N)

and some cases where (-N) is not included (FV+CNN).

Rectification worsens the results for FV and also for most

cases where (-N) is included (FV-N and FV-N+CNN).

Because improvements are minimal when they exist and

better performing feature combinations are often worse

with rectification, we conclude that rectification is not an

effective use of 3D geometry for improving classification.

Since experiments with HSV and N3D do not use rectified

images, we do not include them in this table, but the same

trend continues and can be seen in the supplementary

material.

3D geometry helps with categories that look the same

visually but have different 3D geometry. Fig. 5a and

Fig. 5b are the confusion matrices of the best performing

2D (FV+CNN) and 3D (FV-N+CNN+N3D) feature sets re-

spectively. For clarity, cells are hidden if they have a value

below 0.1 in both confusion matrices. Fig. 5c is the sub-

traction of the best 2D confusion matrix from the best 3D

confusion matrix. For clarity, cells are hidden if they have a

value below 0.02.

The difference confusion matrix in Fig. 5c shows the

categories where the best 3D confusion matrix performed

better (blue cells) or worse (red cells) than the best 2D

confusion matrix. The values along the diagonal (which

represent improved classification accuracy for a given

category) have improved in most cases. The largest

improvements are for Soil (Compact, Dirt and Veg, Loose,

and Mulch), Stone (Granular and Limestone), and Cement

(Granular and Smooth). The reason we see larger gains in

this area is because these materials look similar in terms of

color and texture, but not similar in terms of their normal

maps. In Fig. 1, we show in the two left-most columns of
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Figure 6: Mean accuracy improves as the incidence angle

approaches a frontal view. Mean accuracy improves as scale

increases. FV-N+CNN+N3D (yellow, Best 3D) outperforms

FV+CNN (purple, Best 2D) for all scales and angles.

each row an example (image patch and normal map) that

was misclassified in 2D but was correctly classified in 3D.

The 2D incorrect guess then defines the class for columns

three and four, and a hand-selected example is chosen

from the training data that illustrates the possible similarity

between image patches of the confused classes. It is clear

from the examples shown in Fig. 1 why confusions are

likely and also how the 3D geometry helps to alleviate

these confusions. In particular, we see the flat panels and

grooves for paving, the large stone outlines and mortar

for limestone, the smooth surface of granular stone, and

varying degrees of relief for the different types of soil

(mulch, dirt and veg, loose, and compact).

Including 3D geometry improves classification ac-

curacy for all scales and viewing directions. Fig. 6

shows the accuracy of the mean material classification as

it depends on incidence angle and scale. It is interesting

to see that there is a general improvement in accuracy for

increased scale. We suspect this is because the texture

pattern of certain material categories becomes more evident

for farther scales (e.g. it is easier to see the layers of

brick and mortar). We also see that the smaller incidence

angles (closer to being a frontal view) have higher mean

classification accuracies; however, the decrease in mean

classification accuracy does not occur until we reach angles

larger than 31.1 degrees. Lastly, it is worth noting that the

best 3D features (FV-N+CNN+N3D) improve over the best

2D features (FV+CNN) for all angles and scales.

Results are consistent for the scene scale data. Fi-

nally, we test on the scene scale component of the Geo-

Mat dataset. Results are shown in Table 3. We chose to

test the approach using the best performing 2D (FV+CNN)

and 3D (FV-N+CNN+N3D) feature sets from Table 1. The

3D feature set outperforms the 2D feature set considerably

(35.87% vs. 21.01%), which is consistent with our results

for the focus scale component of the GeoMat dataset.

Features Pixel Labeling Accuracy

Hoiem et al. [17] 18.53

FV+CNN [8] 21.01

FV-N+CNN+N3D 35.87

Table 3: For our scene scale dataset, the best 3D geome-

try feature set (FV-N+CNN+N3D) outperforms the best 2D

feature set (FV+CNN) and the external baseline, which is

consistent with our results on the focus scale dataset.

As an external baseline, we train the superpixel-based

classifier from Hoiem et al. [17] that includes region shape,

color, and texture cues. The classifier is trained on our focus

scale training set and applied to Felzenszwalb and Hutten-

locher [13] superpixels generated from the test images, as

in their original algorithm. The baseline classifier achieves

18.53% accuracy, which is slightly worse than our 2D fea-

tures and much worse than our 3D features. Note that our

approach and the baseline do not benefit from scene con-

text or image position, which can be valuable cues, because

they are trained using focus scale patches. Other constraints

and priors could be used to obtain the best possible perfor-

mance, but our experiments are intended to focus on the

impact of geometric features on appearance models.

6. Conclusion

In this paper, we investigate how 3D geometry can be

used to improve material classification. We include 3D ge-

ometry features with state-of-the-art material classification

2D features and find that both jointly and independently

modeling 3D geometry improves mean classification accu-

racy. We also find that frontal rectification based on aver-

age surface normal is not an effective use of 3D geometry

for material classification. We also contribute the GeoMat

dataset which consists of image and geometry data for iso-

lated walls and ground areas and a large scale construction

site scene. Directions for future work include taking advan-

tage of multi view and contextual constraints when inferring

material for large scale scenes from photo collections.
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for texture description. Pattern Recognition, 2012. 2

[16] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh. On the

significance of real-world conditions for material classifica-

tion. In ECCV, 2004. 1, 2, 6

[17] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. 2007. 8

[18] B. Julesz. Textons, the elements of texture perception, and

their interactions. Nature, 1981. 2

[19] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Se-

mantic labeling of 3d point clouds for indoor scenes. In

NIPS, 2011. 2

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems 25. 2012.

5, 6

[21] T. Leung and J. Malik. Representing and recognizing the

visual appearance of materials using three-dimensional tex-

tons. IJCV, 2001. 2, 4, 5

[22] C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz. Exploring

features in a bayesian framework for material recognition. In

CVPR, 2010. 1, 2, 5

[23] D. Lowe. Object recognition from local scale-invariant fea-

tures. In ICCV, 1999. 5

[24] J. Mao, J. Zhu, and A. Yuille. An active patch model for real

world texture and appearance classification. In ECCV. 2014.

2

[25] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllo-

nen, and S. Huovinen. Outex - new framework for empirical

evaluation of texture analysis algorithms. In International

Conference on Pattern Recognition, 2002. 1

[26] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. PAMI, 2002. 2

[27] F. Perronnin, J. Sánchez, and T. Mensink. Improving the

fisher kernel for large-scale image classification. In ECCV.

2010. 5

[28] C. Schmid. Constructing models for content-based image

retrieval. In CVPR, 2001. 4

[29] G. Sharma, S. ul Hussain, and F. Jurie. Local higher-order

statistics (lhs) for texture categorization and facial analysis.

In ECCV, 2012. 2

[30] L. Sifre and S. Mallat. Rotation, scaling and deformation in-

variant scattering for texture discrimination. In CVPR, 2013.

2, 6

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world

from internet photo collections. IJCV, 2008. 2, 3

[32] K. Valkealahti and E. Oja. Reduced multidimensional co-

occurrence histograms in texture classification. PAMI, 1998.

2

[33] M. Varma and A. Zisserman. Classifying images of materi-

als: Achieving viewpoint and illumination independence. In

ECCV, 2002. 1, 2, 4, 5, 6

[34] M. Varma and A. Zisserman. Texture classification: Are fil-

ter banks necessary? In CVPR, 2003. 2

[35] M. Varma and A. Zisserman. A statistical approach to texture

classification from single images. IJCV, 2005. 3, 5

[36] M. Varma and A. Zisserman. A statistical approach to mate-

rial classification using image patch exemplars. PAMI, 2009.

2

[37] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields

and maximum entropy (frame): Towards a unified theory for

texture modeling. IJCV, 1998. 2

1562


