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Abstract

Dynamic events are often photographed by a number of

people from different viewpoints at different times, result-

ing in an unconstrained set of images. Finding the corre-

sponding moving features in each of the images allows us

to extract information about objects of interest in the scene.

Computing correspondence of moving features in such a set

of images is considerably more challenging than computing

correspondence in video due to possible significant differ-

ences in viewpoints and inconsistent timing between image

captures. The prediction methods used in video for improv-

ing robustness and efficiency are not applicable to a set of

still images. In this paper we propose a novel method to

predict locations of an approximately linear moving feature

point, given a small subset of correspondences and the tem-

poral order of image captures. Our method extends the use

of epipolar geometry to divide images into valid and invalid

regions, termed Temporal Epipolar Regions (TERs). We for-

mally prove that the location of a feature in a new image is

restricted to valid TERs. We demonstrate the effectiveness

of our method in reducing the search space for correspon-

dence on both synthetic and challenging real world data,

and show the improved matching.

1. Introduction

While most moving object analysis is based on video

data, videos of dynamic scenes are not always available.

Instead of videos, still images captured by observers of a

dynamic event may be considered for analyzing a moving

object. Such a set of images, termed CrowdCam ([1, 10]),

is taken from multiple viewpoints at different times. As

in videos, feature matching may serve as a basic compo-

nent for analysis of moving objects. A common strategy

to improve efficiency and robustness of feature matching in

a video sequence is to limit the search space of a feature

location using prediction. Such methods are not applica-

ble to CrowdCam data, as video based approaches assume

short, consistent time intervals between frames as well as

Figure 1: An example (dataset h1) of limiting the search

space for correspondence using TERs. Epipolar lines cal-

culated from three correspondences (yellow stars) are used

in conjunction with a known temporal order to define valid

regions in a fourth image, greatly limiting the search space

for correspondence. (Best viewed on a computer screen.)

no significant viewpoint change. In this paper, we propose a

method to predict the possible location of a candidate match

in CrowdCam images.

To predict the location of moving features, assumptions

must be made relating to the movement of the object, the

positions of the cameras, or the timing of the frames. Our

work assumes the following: (i) The features to be matched

are moving in an approximately linear 3D trajectory. This is

a common assumption in many video-based tracking works

(e.g., [30]). (ii) The epipolar geometry between pairs of

cameras can be computed using static features from a com-

mon background. Our method does not require epipolar ge-

ometry for every pair, but at least three fundamental matri-

ces for each image in which we search for correspondence.

(iii) The temporal order of the image captures is given or can

be computed directly from the data. When reliable camera

clocks are unavailable, the temporal order of CrowdCam
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images can be computed using photo sequencing[9, 10].

These studies use a similar setup and the two aforemen-

tioned assumptions. (iv) The feature location in at least

three images is given. If not, we can use standard matching

techniques as an initialization in order to find them. Note

that prediction methods in videos also assume that some ini-

tial correspondence can be computed.

In order to predict the possible locations of a moving fea-

ture in a new image, I , we utilize assumptions (i-iv) to de-

fine valid and invalid regions for correspondence in I . As-

sumptions (ii) and (iv) are used to compute epipolar lines

in I from the known correspondences. In contrast to static

points, a moving point is not restricted to lie on the epipo-

lar line. However, using the approximate linear motion and

known temporal order, we show how to use epipolar lines to

restrict the possible locations of the point. To that end, we

define regions in I which are bounded by the epipolar lines

and their parallels. We prove that the given temporal order

of the set of images determines whether each region is valid

or invalid for the feature location. As such, we name these

regions Temporal Epipolar Regions (TERs). The validity of

each TER depends only on the temporal order, and there-

fore for any set of images and features, the same lookup

table may be used to assign validity to TERs (e.g., Table 1).

We discuss relaxing our assumptions in Sec. 4.

We demonstrate, through experimental results on a vari-

ety of datasets, that TERs considerably restrict the possible

location of features within the images. We further show

that additional matched features increase the set of known

corresponding points and, in turn, decrease the size of the

valid TERs in the remainder of the images. As TERs reduce

the search space for a corresponding feature, they may in-

crease the efficiency and accuracy of any feature matching

algorithm. The overhead required for our method consists

of preprocessing to calculate the fundamental matrices and

computing the temporal order, if not available. The calcula-

tion of the valid regions is computationally inexpensive as

it involves computing epipolar lines and utilizing a lookup

table.

The main contributions of our work are (i) the introduc-

tion of the novel problem of predicting the location of mov-

ing image points in a CrowdCam setting and (ii) the pro-

posed extension of epipolar geometry to constrain the loca-

tion of moving feature points in a set of images, as opposed

to the classic use of epipolar lines for restricting the location

of static features.

2. Related Work

Prediction of feature (or object) location in successive

frames is a basic building block in video based tracking

methods (see review by [30]). A naı̈ve prediction is a win-

dow around the location of the feature (or object) in a pre-

vious frame (e.g., [6, 4, 13, 33]). Another approach is

to utilize a motion model learned from previous frames.

This approach often utilizes Kalman or Particle filters (e.g.,

[24, 8, 20, 21, 25]). As these strategies for prediction as-

sume short, consistent, time intervals between frames as

well as no significant viewpoint change between frames,

they do not apply to CrowdCam image sets.

The epipolar constraints between a pair of images are

used to restrict the possible set of correspondences for static

scenes. For example, they can be used to find dense corre-

spondence for pairs of images (e.g., [28]) or rejecting in-

correct matches when searching for sparse correspondence

(e.g., [12, 35, 19, 32, 14]. A recent work by Shah et al.

[29] uses epipolar geometry between wide-baseline images

to predict correspondence to improve matching in the pres-

ence of repetitive structures. When a set of images is avail-

able, Structure From Motion can also be used to improve

correspondences ([34, 31]). However, these studies, which

use geometric constraints, only apply to static features.

Finding correspondence between still images has been

very well studied and varies in its approaches according

to the goal of the work. Direct comparison of descriptors

[23, 22, 27, 17, 7] may be the most common approach for

matching. Our proposed method is complementary to di-

rect feature matching, as TERs are used to limit the search

space. Therefore, matching strategies may be used in con-

junction with our method for improved matching accuracy.

The CrowdCam is becoming increasingly popular as var-

ious devices such as smartphones are used for capturing

dynamic events. Therefore, novel problems are being ad-

dressed in a number of recent studies. Some focus on visu-

alization of CrowdCam video sequences (e.g., [5, 1]). Oth-

ers order the images in time [9, 10, 16] or space (e.g., [2]).

Our work is another step forward in extracting information

available in CrowdCam images.

3. Spatial-Temporal Consistent Regions

In this section, we define TERs, the validity of regions,

and describe how to determine which of the TERs are valid.

Assume a 3D point Q travels along a unidirectional linear

trajectory and is projected to the set of images I = {Ij}

at a set of unknown times T = {t(Ij)}. Let, Ŝq = {qj}
be the unknown projection of Q onto the set I such that qj
is the projection of Q onto image Ij at time t(Ij). Given a

known corresponding subset Sq ⊂ Ŝq , our goal is to find the

remainder of the set. Finding qu in Iu requires overcoming

possible ambiguities and may be computationally intensive.

To narrow the search, we propose a method for defining

valid and invalid image regions where qu ∈ Iu can or cannot

be located. To do so, we use the fundamental matrices Fu,j

between images Iu and Ij , where qj ∈ Ij and qj ∈ Sq .

In order to define the said regions, we use the temporal

order of the set of images given by the permutation σ of the

1221



indices of I. As such, σ : {1 . . . N} → {1 . . . N}, such

that t(Iσ(1)) < t(Iσ(2)) . . . < t(Iσ(N)).

3.1. Consistency Definitions

To best describe our method, we begin by defining the

spatial-temporal consistency of a set of points. We then pro-

pose a method to determine valid and invalid regions using

spatial-temporal consistency.

Definition 1: The set of points Sq is spatial-temporally con-

sistent (STC) with a linear motion and σ iff the following

conditions hold:

1. There exists a set of capturing times T = {t(Ij)}
which is consistent with the temporal order, σ.

2. There exists a set of 3D points SQ = {Qj} along a 3D

line, L, such that qj is the projection of Qj onto image

Ij at time t(Ij).

3. The relative spatial locations of each point in SQ

along L correspond to the temporal order, σ.

Note that if t(Ii) < t(Ij) < t(Ik), then Qj ∈
L〈Qi, Qk〉. That is, Qj is located on the interval of L be-

tween Qi and Qk. Therefore, (1) can be verified using the

relative spatial locations of SQ along L.

Assume that we are given Sq and we search for its un-

known correspondence qu in an additional image Iu. A

point αu ∈ Iu is a candidate location for qu only if

Sq∪{αu} is a STC set. Such a αu is termed a valid spatial-

temporally consistent point with respect to Sq and σ or, for

short, a valid point.

It is possible to compute L through trajectory reconstruc-

tion, when at least five correspondences are known, and a

full calibration of all cameras is available (e.g., [3, 15]). We

would like to consider the validity of a point while avoiding

direct computation of the 3D set SQ (and therefore L) and

the timing set T . Our method requires a weaker calibration

(only fundamental matrices between partial set of images)

than those required for L recovery, and only three corre-

sponding points as initialization. Furthermore, our method

is less sensitive to deviation from linear motion.

Consider the set of 2D points, Su = {pj}, the projec-

tions of SQ onto a single image, Iu. That is, pj is the pro-

jection of Qj onto Iu. Note that the spatial order of SQ

along L is identical to the spatial order of the corresponding

set Su along ℓu, the projection of L onto Iu. Therefore, the

temporal consistency of Sq can be verified by the spatial or-

der of Su along ℓu. However, Su and ℓu are both unknown.

That being said, as we know that pj ∈ Iu corresponds to

the given qj ∈ Sq , we can limit the location of pj ∈ Iu
to the epipolar line ℓj on Iu, given by ℓ̃j = Fuj q̃j (where

k̃ are the homogeneous coordinates of k). As such, let us

consider the order of the intersections of a line ℓ, passing

(a) (b)

Figure 2: (a) As ℓ is unknown, candidate locations of αu

are limited to a region between the parallel lines. (b) With

two nonparallel lines, there always exists an ℓ crossing αu,

which preserves any σ.

through αu, with the epipolar lines defined by Sq and the

point αu. If the order of the crossings matches σ, we say

that ℓ conserves σ. The point αu is valid if there exists a

line ℓ which conserves σ. Conversely, αu is invalid if no

such line exists.

Definition 2: (i) A valid temporal epipolar region is the

set of all valid points in an image Iu with respect to Sq

and σ. (ii) An invalid temporal epipolar region is the set of

all invalid points in an image Iu with respect to Sq and σ.

In order to demonstrate how TERs and their validity are

calculated efficiently, we take a closer look at the epipolar

lines corresponding to Sq on Iu.

3.2. Two Epipolar Lines

First, let us discuss the degenerate case where we are

given two parallel epipolar lines, ℓj and ℓk, on Iu and σ =
(j, u, k). Consider a point αu in the area between ℓj and ℓk
and any line ℓ, not parallel to ℓj , passing through it. Let

αj and αk be the intersections of ℓ with the lines ℓj and ℓk.

Clearly, αu is on the interval between αj and αk on ℓ; hence

the order of σ is preserved by ℓ and therefore αu is a valid

point (Fig. 2a). Note that all points within this area are sim-

ilarly valid, while all points outside the area are invalid. As

such this image is split into one valid and two invalid tem-

poral epipolar regions.

In the more general case, in which the epipolar lines

are not parallel, all candidate points in the image are valid

(Fig. 2b). We next show that, given more than 2 epipolar

lines, it is possible to limit the valid regions.

3.3. Three Epipolar Lines

Given three epipolar lines, ℓi, ℓj , and ℓk, and a tempo-

ral order defined by σ, we can split the image plane of Iu
into sixteen distinct TERs of five types (Fig. 3). TERs are

defined by ℓi, ℓj , and ℓk, and their parallels. We define the

line ℓ̂j as a line parallel to ℓj and passing through the inter-

section of ℓi and ℓk (ℓ̂i and ℓ̂k are defined similarly). The

following claims are proved in the supplementary material:
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Figure 3: Three epipolar lines (ℓi, ℓj , ℓk) and their parallels (ℓ̂i, ℓ̂j , ℓ̂k) split an image plane into sixteen distinct regions (in

gray) of five types.

(i) In each region, all points are valid or all points are in-

valid. This classification is dependent not on the epipolar

lines but on σ. (ii) There are 4!/2 possible orders up to di-

rection that must be considered. For each region, 6 of these

orders are valid while the remaining 6 are invalid. (iii) For

a given σ, 8 of the 16 regions are valid TERs, while the

other 8 are invalid.

Table 1 summarizes the classifications of TERs as valid

or invalid given σ, defined without loss of generality as hav-

ing the suborder σ′ = (i, j, k) and four possible locations

of u. In practice, much of the efficiency of our method is

derived from this classification scheme. As we know which

TERs will be valid given a certain σ, there is no need to

search for ℓ for every point αu in each region. Instead, we

can simply label regions as valid or invalid using Table 1.

We next outline the proof for the above classifications.

Inspired by [9], we define for a point, αu, six sections.

Each section defines a unique order in which an ℓ passes

through αu and the set of epipolar lines. The sections are

defined using two types of critical lines. The first is the line,

cij , connecting αu with the intersections of a pair of epipo-

lar lines. Formally, let γij = ℓ̃j × ℓ̃i and cij = α̃u × γ̃ij .

The second type of critical line is parallel to the epipolar

lines and passes through αu (i.e., ci is parallel to ℓi and

passes through αu). Fig. 4 gives an example of sections for

a point in R2(i, j). Note that αi = ℓ̃× ℓ̃i (in homogenoues

coordinates) and that αj and αk are similarly defined.

The following observations can be easily verified geo-

metrically.

A1 The order of αi and αj is swapped in neighboring sec-

tions which share the border cij .

A2 The location of αi in the order moves from first to last

(or vice versa) in neighboring sections which share the

border ci.

A3 Within each section, the order of intersections of all

lines is preserved.

Using these observations about sections and the order of

critical lines, we use one valid order to calculate the rest.

Let us consider as an example the region R2. Without loss

of generality, two non-parallel lines divide a 2D space into

four areas. In the general case, a third line will pass through

three of these areas. The remaining area is defined to be R2.

Definition 3: R2(i, j) is defined as the area comprised of

ℓi and ℓj through which ℓk does not pass.

Claim 1: R2(i, j) is a valid TER for all orders in which u
is not adjacent to k in σ.

Proof Outline of Claim 1: A formal proof can be found in

the supplementary material. Consider a line ℓ in the section

bordered by the pair (cij , cik) (see Fig. 4). By definition

it passes through αu and R1 (the triangular region defined

by three non-parallel epipolar lines). It is easy to visually

verify that the intersection order is given by σ = (u, j, i, k).
The intuition is as follows. As cij and cik both intersect ℓi
on the border of R1, ℓ must also intersect ℓi in this interval.

As this intersection is outside of R2(i, j), ℓ must intersect

ℓj between αu and ℓi. As R1 is a closed convex shape (tri-

angle), any line passing through it must cross two of its bor-

ders. As such, ℓk and ℓi are adjacent in the intersection or-

der. Finally, as ℓk does not pass through R2(i, j), it cannot

be between ℓj and ℓi in the order. Therefore, we conclude

that the order of intersections of ℓ must be σ = (u, j, i, k).

To find the remainder of the valid orders of R2(i, j),
we utilize observations A1-A2 and the order of the criti-

cal lines, given by (cjk, cij , cik, ci, ck, cj) (a formal proof is

given in the supplementary material). Critical line cik is on

the border of neighboring sections (cij , cik) and (cik, ci).
To find the order in section (cik, ci), A1 dictates that a

swap be made between i and k in the order, such that

σ = (u, j, k, i). Using A2, the order in section (ci, ck),
which shares the border ci with (cik, ci), is given by moving

i to the opposite end of the order. As such, for this section

we have that σ = (i, u, j, k). The remaining valid orders,

σ = (k, i, u, j), σ = (j, k, i, u), and σ = (u, i, j, k), can

be computed similarly. These six orders represent the 6 dis-

tinct valid orders of R2(i, j) out of the 12 possible orders.

Hence, the remaining 6 are invalid.
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Figure 4: The different sections defined by critical lines,

given αu ∈ R2(i, j) and the order along the line ℓ in the

section bordered by (cij , cik).

3.4. Beyond Three Epipolar Lines

When |Sq| > 3 (more than three images with known cor-

respondences), we calculate valid TERs on Iu for each sub-

set of three images with known correspondences, then find

the intersection of all the valid TERs. For each subset we

use a subpermutation of σ that conserves the relative order

between Sq and u. The intersection of all the valid TERs de-

fines an overall valid region. This region does not guarantee

that there exists a line which conserves σ. Instead, it guar-

antees the correctness of the invalid regions. Even though

this method is not optimal, a larger |Sq| can only further

limit valid TERs, and therefore the search space. For an

optimal computation of the valid region, it is necessary to

define additional region types for each size of Sq . This is

left for future work.

4. TERs and matching

Now that we have defined the validity of TERs, we fo-

cus on how to utilize them to improve feature matching al-

gorithms, and to propose correspondence verification. As

a first step of our method, features are extracted from all

the images (we use SIFT features [18]) and the fundamental

matrices Fij between required pairs of images Ii, Ij ∈ I are

computed (we use the BEEM algorithm [11]). If the tempo-

ral order of the images is unknown, it is possible to utilize

photosequencing [10, 9] as an additional preprocessing step

to calculate it. A set Sq of at least three correspondences

is either given or computed by any standard matching algo-

rithm.

Matching using prediction: Given Sq and the set of fun-

damental matrices Fij , we define TERs in each image for

which correspondence remains unknown. For |Sq| = 3, the

valid regions in each image are defined using Table 1. For

larger |Sq|, the method described in Sec. 3.4 is used. Only

the features in the valid regions are considered as candi-

σ Valid TERs

u, i, j, k R2(i, j), R2(i, k), R3(i, ĵ, k̂), R4(̂i, k̂),

R4(ĵ, k̂), R5(i, î, k̂), R5(j, ĵ, k̂), R5(k, k̂, ĵ)

i, u, j, k R1(i, j, k), R2(i, j), R3(j, î, k̂), R3(k, î, ĵ),

R4(̂i, ĵ), R5(i, î, ĵ), R5(i, î, k̂), R5(j, ĵ, î)

i, j, u, k R1(i, j, k), R2(j, k), R3(j, î, k̂), R3(i, ĵ, k̂),

R4(ĵ, k̂), R5(j, ĵ, k̂), R5(k, k̂, î), R5(k, k̂, ĵ)

i, j, k, u R2(i, k), R2(j, k), R3(k, î, ĵ), R4(̂i, ĵ),

R4(̂i, k̂), R5(i, î, ĵ), R5(j, ĵ, î), R5(k, k̂, î)

Table 1: This table defines, without loss of generality, the

valid regions given a suborder of σ, σ′ = (i, j, k), and the

location of u ∈ σ; all other regions are invalid.

dates for correspondence. From these features, the nearest

neighbor to the features in Sq is chosen as the corresponding

point, αu (note that other matching criteria may be used).

Then, Sq is updated to Sq = Sq ∪ {αu}. The additional

constraints defined by αu are used to update and reduce the

size of the valid regions in the remainder of the images.

This process is repeated until all the images are assigned

correspondence. We present an example of matching using

prediction in Fig. 5. An alternative approach which may be

more efficient, is to compute features only in valid regions.

Relaxed TERs: The valid regions may be unreliable when

the motion deviates from linearity or when the fundamen-

tal matrices are inaccurate. To compensate for this, a sim-

ple forgiveness parameter may be used. The borders of

the valid TERs are extended by this parameter. Note that

larger forgiveness parameters make our method more ro-

bust in handling deviations from our assumptions, but also

increase the valid set of candidate correspondences.

Unreliable TERs: As there may be noise in the computa-

tion of epipolar lines, TERs may be unreliable when epipo-

lar lines or their intersections are too close together. In these

cases we may declare the TERs unreliable, and thus match

without them (by any standard matching algorithm). Alter-

natively, in cases in which we have n > 3 epipolar lines,

we propose the following workaround. Instead of building

TERs using epipolar lines which are close together, we find

TERs using every subset of epipolar lines which are suffi-

ciently far apart. Then we find the union of the valid TERs

to determine an overall valid area. This allows us to still

utilize the constraints given by each known correspondence

while avoiding errors from close epipolar lines.

Correspondence verification: In some cases no valid re-

gions exist in the image. This can be regarded as a dead end,

as Sq cannot be extended. If we encounter such a dead end,

we deduce that either the linear motion assumption does not
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Image 4 Image 8 Image 7 Image 6 Image 3

Figure 5: Given correspondences in the first, second, and fifth images of a scene (dataset c5), we run our method and find

corresponding points in the remaining five images of the set using matching with TERs (green stars) and without TERs (red

circles).Note: images are labeled based on their order in time but presented in the order, from left to right, in which best

nearest neighboring matches were selected by the TER algorithm. As matching with TERs is run independently of matching

without TERs and each finds matches based on previously found correspondences, incorrect selections by standard matching

may still fall within valid regions (as in image 7).

hold or that there are errors in the computed fundamental

matrices, temporal order, or set Sq . In this case, we can

do no better than matching without TERs. This is demon-

strated in tests 3 and 6 in Sec. 5. If we assign points to

all images without hitting a dead end, it is likely that points

were selected correctly. Note that the more images we have,

the higher the confidence that the matching is correct.

5. Experiments

To study how our method performs in practice, we im-

plemented it in MATLAB and tested it on synthetic and real

data. Quantitative results were obtained by evaluating the

reduction in search space. We also compared a direct near-

est neighbor matching method with and without the use of

TERs.

5.1. Simulated Data

The simulated scenario consisted of a set of 4-8 cameras

capturing a moving point. The cameras were positioned

randomly along a semisphere, all pointed approximately at

the origin, through which a randomly generated line passes.

Images were created by projecting onto each image a ran-

domly selected 3D point along the line, thus generating Ŝq .

The FOV of each camera was set to 30◦ in both x and y

and the distance to the origin was approximately 550 units.

Each image was 512 by 512 pixels.

Test 1: We tested the effectiveness of our method in reduc-

ing the percent of the image which is valid (PV) for differ-

ent values of initial correspondences. This test is required

as we have no closed analytic computation of the size of the

valid region; it depends on the camera configurations and

the location of the moving point. We ran 50,000 simula-

tions, split into five groups of 10,000. Each group had a

different number of cameras generated (between 4 and 8),

all but one of which was given initial correspondences, such

that |Sq| = |Ŝq|−1. The image Iu, which was not assigned

a correspondence, was selected at random. In each simula-

tion we computed valid TERs in Iu using Sq and calculated

the PV.

The results are summarized in Fig. 6(a) as cumulative

histograms of PV, one for each number of initial correspon-

dences, |Sq|. Ideally, a large number of experiments (the y
axis) should have as small as possible percent of the image

valid (the x axis). Our data shows that for |Sq| = 3, approx-

imately 27% of the 10000 simulations have images of which

up to 20% is valid. When considering |Sq| = 4, approxi-

mately 42% of the simulations fall into this category. When

|Sq| = 7, over 65% of our simulations restrict the valid re-

gion to 20% of the image or less. Thus, as expected, for a

larger |Sq|, it is more likely that the search space for an addi-

tional correspondence will be smaller. Indeed, when more

information about the moving point is available through a

larger number of correspondences, the size of the valid re-

gions decreases, as desired. We do not present the cases in

which |Sq| >> 7, as each additional image added to Sq can

only further restrict the search space, and therefore the trend

is expected to continue.

Test 2: We tested the robustness of our method to noise in

pixel locations, which may be caused by deviation from lin-

ear movement. We ran 5,000 simulations, using 6 generated

cameras, three of which were given initial correspondences.

1225



(a) (b) (c) (d)

Figure 6: (a) and (b) show, given different numbers of initial correspondences, the cumulative percentages of the area of

valid TERs in each image, for simulated and real data, respectively. (c) and (d) show the average percent correct matching

per dataset with and without TERs. In (c), Sq is given by ground-truth points, while in (d) Sq was initialized using nearest

neighbor matching. We see that, with the exception of two datasets in which initialization failed, TERs improve the percent

correct matching. Note that in (c) and (d) datasets are grouped by location, and each location is assigned a letter ID (a-i).

Each dataset in each location is also assigned a number, such that a1-a4 are presented in the first leftmost bars of each chart.

We built TERs in the remaining images and selected one of

them at random. If the point projected onto this image was

in a valid region, we added it to Sq for the next iteration.

Otherwise, if all the images had points in invalid regions,

we stopped, as no match could be used for further iterations.

Similarly, we stop if an image has reached a dead end.

In each simulation we tested 4 noise levels per point

on each image for which correspondence was unknown.

The original projected location and the original projection

shifted in x and y by a small random amount selected from a

normal distribution with zero mean and standard deviations

of 1, 3, or 5. We set an upper bound on the noise such that

no shift could be more than twice the standard deviation.

For each noise level used, we find the number of simula-

tions in which: (i) a point in a valid region exists in each

image; (ii) no point was in a valid region in at least one of

the images; and (iii) a dead end occurred. For STD of 0

and 1, all simulations fell into category (i). When the STD

rose to 3, 0.54% of simulations were of category (ii) and

the rest were category (i). Finally, when the STD was 5,

3.34% of the simulations were category (ii), 2 simulations

were category (iii) and the remainder were category (i).

Test 3: We tested whether dead ends can be used to iden-

tify incorrect correspondence. We ran 30,000 simulations,

using between 4 and 6 cameras (10,000 simulations each)

in which we initialized Sq with projections from the gener-

ated line (as in test 2). However, in each of the remaining

images a random point was selected. For this test we used

a forgiveness parameter (as described in Sec. 4) of 2 pixels.

We proceeded through the images as in Test 2. The results

are as follows: using four cameras, no points were found in

valid regions in 46.2% of the simulations, which reflects the

probability of having a random chosen point within an in-

valid region (no dead ends can occur with only 4 cameras).

With 5 cameras 74.81% of the simulations had no matches,

and of the remaining simulations 26.38% were dead ends.

With 6 cameras the results were 70.98% with no matches,

and 66.37% were dead ends. As such, given enough im-

ages, it is increasingly likely that incorrect correspondences

will yield a dead end case.

5.2. Real Data

We evaluated our method on novel datasets captured at

eight locations, by up to six smartphone cameras (e.g., Sam-

sung Galaxy S4, Apple iPhone 5S). At each location up to 7

datasets were captured from different viewpoints and at dif-

ferent times. Each dataset consists of between 5 and 15 im-

ages. In each dataset, we searched for correspondence for

between 1 and 9 dynamic points, visible in all images. The

locations, datasets, and points varied greatly in our exper-

iments. Scenes were captured indoors and outdoors; some

had many moving objects, while others had just one. The

features considered for correspondence were on rigid (e.g.,

cars or soda cans) and non-rigid (e.g., people or dogs) ob-

jects. In addition to these novel datasets, we include in our

results the rock climbing dataset supplied by [26]. From

this dataset, we selected a partial set in which we consider

only the unidirectional movement of the climber. Examples

taken from datasets we considered are presented in Fig. 7

and additional examples may be found in the supplemen-

tary materials. The selection of examples was in part based

on the size of the valid regions, as in many cases, valid

TERs are are too small to be easily viewed in a figure. In

all datasets, the ground-truth correspondences (Ŝq) and the

time order among the images were identified manually.

Test 4: We repeated Test 1 in order to examine the percent

of valid regions in natural still images. The ground-truth

correspondence was used to initialize a set of size |Sq| = 3.

We ran our method and for each experiment selected at ran-

dom a fourth image for which we calculated the valid TERs

and PV. We followed a similar procedure given an initial set

of |Sq| ∈ {4, 5, 6, 7}. We selected at random 1000 sam-
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Dataset a2 Dataset g1 Dataset e1

Figure 7: The application of our method to a variety of scenes. Correspondences found using TERs (green stars) are correct

and those without TERs (red circles) are incorrect. Additional examples may be found in the supplementary materials.

ples of the set of experiments for each size of |Sq|. This

allows to compare the PV for different values of |Sq|. The

results (Fig. 6(b)) show that on average, as in the simulated

data, we see smaller valid regions when the number of cor-

respondences increases. However, in the real data, for more

than four correspondences, we found that over 85% of our

samples had a PV of less than 40%. In general, natural im-

age datasets restricted the search space better than simulated

data, with the exception of when |Sq| = 3.

Test 5: We tested the robustness of our algorithm in find-

ing correspondence and compared the results to the same

matching algorithm without prediction by TERs. Matching

was done by finding the nearest neighboring SIFT to those

in Sq , using the cosine similarity between feature vectors.

When dead ends occurred, or in the case of unreliable

TERs, our method could not be applied; it can do no better

than standard matching. We only present cases in which no

dead-ends or unreliable TERs were detected, as those cases

offer a fair comparison. Statistics relating to dead ends and

unreliable TERs in the supplementary materials.

As TERs are dependent on epipolar geometry, their ef-

fectiveness in restricting the search space dipends on the ge-

ometry between the images captured. Thus, we present the

results of this test per dataset. Fig. 6(c) shows the average

percent of correct matchings using standard matching with

and without our prediction. There are between 9 and 221

experiments in each dataset. The number of experiments

is defined by the number of points to be matched and the

number of combinations of initial correspondences. In all

datasets, we see that our TER-assisted matching equals or

outperforms standard matching on average, with an average

improvement of 7.1% over all datasets.

Test 6: We tested the effectiveness of our method similarly

to test 5 when Sq is not given. Given a point, Sq was initial-

ized by finding its two nearest-neighbors in the image set.

As expected, the results show errors in the initial set. In 294

of the 496 experiments, at least one point in Sq was incor-

rectly matched. Experiments using these incorrect initial-

izations yielded dead ends more often in datasets containing

more images. Datasets with 5 images, yielded 21.1% dead

ends, datasets with 7 images yielded 80.0% dead ends, and

datasets having 10 or more images always resulted in dead

ends. Additional details are provided in the supplementary

materials. This trend demonstrates that with high probabil-

ity errors in correspondence, in particular with the initial

correspondence, can be detected using only 10 images of

the moving feature.

In Fig. 6(d) we present the percent correct matching

when experiments did not reach a dead end. For each

dataset this figure, between 1 and 24 experiments were per-

formed. We see that with or without TERs, the percent of

correct matchings drops significantly due to the lack of cor-

rect initial matches. However, this test highlights that given

any initialization, TERs may still be used to improve match-

ing. The average improvement over all the datasets is 2.7%.

6. Conclusions

In this paper, we introduced a method for utilizing epipo-

lar geometry to predict correspondence of moving points

through CrowdCam images. We demonstrated on both sim-

ulated and real world data that this prediction reduces the

possible locations of a moving feature within an image.

As a result, it may improve the efficiency and accuracy

of matching algorithms. Additionally, we showed how our

method may be used to verify the accuracy of our assump-

tions and correspondence using dead ends. Developing al-

gorithms that utilize dead end detection in order to improve

correspondence, is left for future research. Another possi-

ble extension is to directly determine the optimal TERs for

|Sq| > 3, rather than using intersections of valid regions.

We expect that any state-of-the-art algorithm for matching

dynamic features can be improved using our method.

Acknowledgements

This work was partially supported by the Israel Science

Foundation grant no. 930/12 and by the Israeli Ministry of

Science, Grant 3-8744.

1227



References

[1] A. Arpa, L. Ballan, R. Sukthankar, G. Taubin, M. Polle-

feys, and R. Raskar. Crowdcam: Instantaneous navigation

of crowd images using angled graph. In IEEE International

Conference on 3D Vision, 2013.

[2] H. Averbuch-Elor and D. Cohen-Or. Ringit: Ring-ordering

casual photos of a temporal event. ACM Transactions on

Graphics, 35, 2015.

[3] S. Avidan and A. Shashua. Trajectory triangulation: 3d re-

construction of moving points from a monocular image se-

quence. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 22(4):348–357, 2000.

[4] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International Journal of Computer Vision,

56(3):221–255, 2004.

[5] L. Ballan, G. J. Brostow, J. Puwein, and M. Pollefeys. Un-

structured video-based rendering: Interactive exploration of

casually captured videos. ACM Transactions on Graphics,

29(4):87, 2010.

[6] K. Briechle and U. D. Hanebeck. Template matching us-

ing fast normalized cross correlation. In Aerospace/Defense

Sensing, Simulation, and Controls. International Society for

Optics and Photonics, 2001.

[7] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Bi-

nary robust independent elementary features. In European

Conference on Computer Vision. 2010.

[8] L. Cehovin, M. Kristan, and A. Leonardis. An adaptive

coupled-layer visual model for robust visual tracking. In In-

ternational Conference on Computer Vision, 2011.

[9] T. Dekel, Y. Moses, and S. Avidan. Space-time tradeoffs in

photo sequencing. In International Conference on Computer

Vision, 2013.

[10] T. Dekel (Basha), Y. Moses, and S. Avidan. Photo sequenc-

ing. International Journal of Computer Vision, pages 1–15,

2014.

[11] L. Goshen and I. Shimshoni. Balanced exploration and ex-

ploitation model search for efficient epipolar geometry esti-

mation. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 30(7):1230–1242, 2008.

[12] M. J. Hannah. Computer matching of areas in stereo images.

Technical report, DTIC Document, 1974.

[13] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured out-

put tracking with kernels. In International Conference on

Computer Vision, 2011.

[14] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge University Press, 2003.

[15] J. Y. Kaminski and M. Teicher. A general framework for

trajectory triangulation. Journal of Mathematical Imaging

and Vision, 21(1-2):27–41, 2004.

[16] G. Kanojia, S. R. Malireddi, S. C. Gullapally, and S. Raman.

Who shot the picture and when? In Advances in Visual Com-

puting, pages 438–447. Springer, 2014.

[17] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary

robust invariant scalable keypoints. In International Confer-

ence on Computer Vision, 2011.

[18] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004.

[19] J. Maciel and J. P. Costeira. A global solution to sparse cor-

respondence problems. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 25(2):187–199, 2003.

[20] X. Mei and H. Ling. Robust visual tracking using ℓ1 mini-

mization. In International Conference on Computer Vision,

2009.

[21] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai. Minimum

error bounded efficient ℓ1 tracker with occlusion detection.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, 2011.

[22] M. Muja and D. Lowe. Scalable nearest neighbour algo-

rithms for high dimensional data. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 36(11):2227–2240,

2014.

[23] M. Muja and D. G. Lowe. Fast approximate nearest neigh-

bors with automatic algorithm configuration. International

Conference on Computer Vision Theory and Applications,

2009.

[24] H. T. Nguyen and A. W. Smeulders. Fast occluded object

tracking by a robust appearance filter. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 26(8):1099–1104,

2004.

[25] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally or-

derless tracking. In IEEE Conference on Computer Vision

and Pattern Recognition, 2012.

[26] H. S. Park, T. Shiratori, I. Matthews, and Y. Sheikh. 3d re-

construction of a moving point from a series of 2d projec-

tions. In European Conference on Computer Vision. 2010.

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an

efficient alternative to sift or surf. In International Confer-

ence on Computer Vision, 2011.

[28] D. Scharstein and R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. Interna-

tional Journal of Computer Vision, 47(1-3):7–42, 2002.

[29] R. Shah, V. Srivastava, and P. Narayanan. Geometry-aware

feature matching for structure from motion applications. In

IEEE Winter Conference on Applications of Computer Vi-

sion, pages 278–285, 2015.

[30] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual tracking: An experimen-

tal survey. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 36(7):1442–1468, 2014.

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world

from internet photo collections. International Journal of

Computer Vision, 80(2):189–210, 2008.

[32] R. Szeliski. Computer vision: algorithms and applications.

Springer Science & Business Media, 2010.

[33] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel track-

ing. In International Conference on Computer Vision, 2011.

[34] C. Wu. Towards linear-time incremental structure from mo-

tion. In IEEE International Conference on 3D Vision, 2013.

[35] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong.

A robust technique for matching two uncalibrated images

through the recovery of the unknown epipolar geometry. Ar-

tificial Intelligence, 78(1):87–119, 1995.

1228


