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Abstract

Tracking-by-detection methods have demonstrated com-

petitive performance in recent years. In these approaches,

the tracking model heavily relies on the quality of the train-

ing set. Due to the limited amount of labeled training data,

additional samples need to be extracted and labeled by

the tracker itself. This often leads to the inclusion of cor-

rupted training samples, due to occlusions, misalignments

and other perturbations. Existing tracking-by-detection

methods either ignore this problem, or employ a separate

component for managing the training set.

We propose a novel generic approach for alleviating

the problem of corrupted training samples in tracking-by-

detection frameworks. Our approach dynamically manages

the training set by estimating the quality of the samples.

Contrary to existing approaches, we propose a unified for-

mulation by minimizing a single loss over both the target

appearance model and the sample quality weights. The

joint formulation enables corrupted samples to be down-

weighted while increasing the impact of correct ones. Ex-

periments are performed on three benchmarks: OTB-2015

with 100 videos, VOT-2015 with 60 videos, and Temple-

Color with 128 videos. On the OTB-2015, our unified for-

mulation significantly improves the baseline, with a gain

of 3.8% in mean overlap precision. Finally, our method

achieves state-of-the-art results on all three datasets.

1. Introduction

Generic visual tracking is the problem of estimating the

trajectory of a target in an image sequence, given only its

initial location. Tracking methods serve as important com-

ponents in a variety of vision systems. The problem is

particularly challenging due to the limited prior knowledge

about the target. Furthermore, the tracking model must be

flexible to counter rapid target appearance changes, while

being robust to, e.g., occlusions and background clutter.

The above mentioned problems have been addressed
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Figure 1. An illustration of our adaptive decontamination of the

training set. We show the corresponding image patches and track-

ing predictions (red box) for selected training samples. The qual-

ity weights (blue), computed by our learning approach, determine

the impact of the corresponding training samples (numbered in

chronological order). The prior sample weights are plotted in

red. Our approach down-weights samples that are misaligned (no.

119), partially occluded (no. 129) or fully occluded (no. 162-182).

by methods based on the tracking-by-detection paradigm

[2, 11, 13, 29], with promising results in recent years. In this

paradigm, tracking methods employ machine learning tech-

niques to train an appearance model based on samples of the

target and its background. Typically, supervised learning

methods such as Support Vector Machines (SVMs) or ridge

regression are used to construct a discriminative classifier

or regressor. The quality of the tracking model is directly

dependent on the training set. Therefore, a robust approach

for constructing and managing the training set is crucial for

avoiding model drift and tracking failure.

Standard tracking-by-detection approaches struggle

when the training set is contaminated by corrupted sam-

ples. These corrupted samples are included in the training

set in several different scenarios. Firstly, when encountered

with target deformation and out-of-plane rotation, inaccu-

rate tracking predictions lead to misaligned training sam-
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ples (no. 119 in figure 1). Consequently, the model often

drifts, eventually leading to tracking failure. Secondly, oc-

clusions and clutter contaminate the positive training sam-

ples with background information, thereby deteriorating the

discriminative power of the model (no. 162 in figure 1). In

this work, we aim to enhance the robustness of standard

tracking-by-detection approaches by tackling the problem

of decontaminating the training set.

Existing discriminative trackers either ignore the prob-

lem of corrupted samples [2, 11, 26] or employ an explicit

training sample management component [9, 14, 16, 25, 29].

A straightforward approach is to directly discard samples

that do not meet a certain criterion [1]. Other methods

use a combination of experts [16, 29], a separate tracking

model [14, 22] or distance comparisons [9] for managing

the training set. In this paper, we argue that the standard

two-component strategy is suboptimal due to the reliance

on heuristics. Instead, we revisit the standard tracking-by-

detection formulation with the aim of integrating the esti-

mation of the sample quality weights in the learning.

1.1. Contributions

We propose a novel formulation for jointly learning the

tracking model and the training sample weights. Our formu-

lation is generic, and can be integrated into common super-

vised learning methods. In each frame, a joint loss is mini-

mized to update both the model parameters and the impor-

tance weights. Our joint learning approach down-weights

corrupted samples while increasing the importance of cor-

rect ones, as visualized in figure 1. Different from previ-

ous tracking methods, our unified formulation eradicates the

need of an explicit sample management component.

To validate our approach, we perform extensive exper-

iments on three benchmarks: OTB-2015 [27] with 100

videos, VOT-2015 [17] with 60 videos, and Temple-Color

[20] with 128 videos. Our unified approach demonstrates

a significant gain of 3.8% in mean overlap precision on

OTB-2015, compared to the baseline. Further, our tracker

achieves state-of-the-art results on all three datasets.

2. Discriminative Tracking Methods

In recent years, discriminative tracking-by-detection ap-

proaches [2, 11, 13, 25, 29] have shown promising results

on benchmarks, such as OTB [28] and VOT [18]. The ap-

pearance model within a tracking-by-detection framework

is typically based on a discriminatively trained regressor

[2, 11, 13] or classifier [25, 29]. These approaches are

formulated in a supervised learning setting, where labeled

training samples are collected from the sequence. Given

a set of n training examples {(xj , yj)}
n
j=1, the aim is to

find the parameters θ ∈ Ω of the appearance model. Here,

xj ∈ X denotes a feature vector in the sample space X and

yj ∈ Y is the corresponding label in the label set Y . Many

supervised learning methods in tracking [2, 11, 13, 29] find

the parameter values θ by minimizing a loss of the form,

J(θ) =

n
∑

k=1

L(θ;xj , yj) + λR(θ). (1)

Here, L : Ω×X ×Y → R specifies the loss L(θ;xj , yj) for

a training sample (xj , yj) as a function of the parameters θ.

The impact of the regularization function R : Ω → R is

controlled by the constant weight λ ≥ 0.

Eq. (1) covers a variety of learning approaches, including

support vector machines (SVMs) [11, 25, 29] and discrim-

inative correlation filters (DCFs) [3, 4, 5, 13]. A common

approach [16, 25, 29] is to use a two-class learning strategy

to differentiate between the target yj = 1 and background

yj = −1. Alternatively, the DCF based trackers [5, 13],

utilize continuous labels yj ∈ [0, 1] or let yj be the desired

confidence map over an image region. Another strategy [11]

is to let Y be the possible transformations of the target box.

2.1. Training Sample Weighting

In discriminative tracking, the model is learned using

training samples collected from the video frames. Typi-

cally, the training set is updated with new samples in each

frame, to account for changes in the target and background

appearance. We rewrite (1) to highlight this temporal sam-

pling used in many tracking methods. Let (xjk, yjk) denote

the jth training sample in frame number k. Assume that

nk samples from frame k ∈ {1, . . . , t} are included in the

training set, where t denotes the current frame number. Typ-

ically, both positive and negative samples (xjk, yjk) are ex-

tracted in a frame k, based on the estimated target location.

The loss (1) is then expressed in the more general form,

J(θ) =

t
∑

k=1

αk

nk
∑

j=1

L(θ;xjk, yjk) + λR(θ). (2)

Here, the constant weights αk ≥ 0 control the impact of

samples from frame k. By increasing αk, a greater impact

is given to samples {(xjk, yjk)}
nk

j=1 extracted from frame k.

There exist several strategies to control the impact of

training samples in (2). In DCF-based trackers [2, 13], a

learning rate parameter γ ∈ [0, 1] is employed to update the

weights as αk = (1−γ)αk+1. Such a re-weighting strategy

aims to reduce the impact of older samples in the learning.

Trackers based on SVMs typically prune the training set by

e.g. rejecting samples older than a threshold [26] or remov-

ing support vectors with the least impact [11]. However,

these methods do not account for the problem of corrupted

samples (xjk, yjk) in the training set.

2.2. Corrupted Training Samples

Contrary to object detection, the problem of corrupted

training samples is commonly encountered in tracking. The
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problem appears since the samples are not hand-labeled, but

rather labeled by the tracking algorithm itself. Several fac-

tors contribute to the unintentional inclusion of corrupted

training samples in the learning. (a) Inaccurate tracking pre-

dictions, due to e.g. target rotations or deformations, lead to

misaligned samples. This can result in model drift or track-

ing failure. (b) Partial or full occlusions of the target lead

to positive samples being corrupted by the occluding ob-

jects. This is a common source of tracking failure, since the

appearance model is contaminated due to occlusions. (c)

Perturbations, such as motion blur, can lead to a distorted

view of the target. These factors contribute to the inclusion

of corrupted training samples in the learning, thereby dete-

riorating the discriminative power of the model.

State-of-the-Art: Several recent works have investigated

the problem of corrupted training samples in the tracking-

by-detection paradigm [1, 16, 25, 29]. Bolme et al. [1] pro-

pose to reject new samples based on the Peak-to-Sidelobe

Ratio (PSR) criterion. PSR is computed as the ratio between

the maximum confidence score and the standard deviation

of the surrounding scores (outside a specified neighborhood

of the peak). Zhang et al. [29] use an entropy-based mini-

mization to determine the best model in an expert ensemble.

The ensemble consists of the current tracking model and

snapshots from earlier frames. If a disagreement occurs,

the expert with the minimum entropy criterion is selected

as the new tracker model. Kalal et al. [16] tackle the drift

problem by generating positive and negative samples based

on spatial and temporal constraints. Supančič and Ramanan

[25] propose a strategy for updating the training set by re-

visiting previously rejected samples. Hong et al. [14] use

a key-point based long-term memory component to detect

occlusions and refresh the short-term memory.

Differences to Our Approach: As discussed above, ex-

isting tracking-by-detection approaches tackle the problem

of corrupted samples with a dedicated separate component.

This component is either based on distance comparisons [9],

heuristics [1, 30], a set of experts [16, 29], a separate track-

ing model [14], or model fitting [25]. Our approach differs

from the aforementioned methods in several aspects. To the

best of our knowledge, we are the first to propose a learn-

ing formulation that jointly optimizes the model parame-

ters and the sample weights. Instead of binary decisions

[1, 16, 25, 29], our approach is based on continuous impor-

tance weights. This enables us to down-weight the impact

of corrupted training samples, while up-weighting correct

ones. Further, our method allows mistakes to be corrected

by redetermining the sample weights at each frame.

3. Our Approach

Here, we propose our formulation for jointly learn the

appearance model and the training sample weights in a

tracking-by-detection framework.

3.1. Motivation

To motivate our approach, we first distinguish three de-

sirable characteristics to be considered when designing a

method for decontaminating the training set.

Continuous weights: Most existing discriminative trackers

[1, 16, 25, 29] rely on binary decisions for including or re-

moving potential training samples. This is problematic in

ambiguous scenarios, such as moderate occlusions or slight

misalignments (see figure 1), where the extracted samples

are not entirely corrupted and still contain valuable infor-

mation. Instead, continuous quality weights are expected to

more accurately capture the importance of such samples.

Re-determination of Importance: A common approach

is to determine the importance of a sample based on pre-

vious frames only, e.g. rejecting new samples based on the

current appearance model [1]. Ideally, all available infor-

mation should be considered when updating the importance

of a specific training sample, including more recent frames.

By exploiting information from all observed frames, the im-

portance of older samples can be re-determined more accu-

rately. This will enable previous mistakes to be corrected at

a later stage in the tracking process.

Dynamic Sample Prior: Methods purely based on bottom-

up statistics ignore prior knowledge associated with the

samples. In cases of rapid target deformations and rotations,

the tracker should emphasis recent samples for robustness.

Dynamic prior knowledge is complementary to bottom-up

information, and is expected to improve performance.

3.2. Problem Formulation

Our approach jointly estimates both the model parame-

ters θ and the weights αk. This is achieved by minimizing

a single loss function J(θ, α) to learn both the appearance

model θ and the training sample weights α = (α1, . . . , αt).
To the best of our knowledge, we are the first to cast the

problem of determining the sample quality in a joint opti-

mization framework. We introduce the joint loss J(θ, α),

J(θ, α) =
t

∑

k=1

αk

nk
∑

j=1

L(θ;xjk, yjk) +
1

µ

t
∑

k=1

α2
k

ρk
+ λR(θ)

(3a)

subject to αk ≥ 0 , k = 1, . . . , t (3b)

t
∑

k=1

αk = 1. (3c)

Different from the standard weighted loss (2), our formula-

tion (3a) is a function of both the model parameters θ and

the sample weights αk. As a result, the weights αk are no

longer pre-determined constants. The constrains (3b) and

(3c) ensure that the weights αk are non-negative and sum

up to one. The second term in the joint loss (3a) is a regu-

larization term on the sample weights α. This regularization
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is controlled by the flexibility parameter µ > 0 and the prior

sample weights ρk > 0, satisfying
∑

k ρk = 1. The param-

eter µ controls the adaptiveness of the example weights α.

Increasing µ leads to a higher degree of flexibility in the

weights α. We analyze the effect of µ and ρk by consider-

ing the extreme cases of increasing (µ → ∞) and reducing

(µ → 0) the flexibility parameter.

The case µ → ∞: This corresponds to removing the sec-

ond term in (3a), implying no regularization on α. For a

fixed model parameter θ, the loss (3) is then minimized by

setting αm = 1 for the frame m with the smallest total

loss
∑nm

j=1 L(θ;xjm, yjm) and setting αk = 0 for k 6= m.

The model will thus overfit to samples from a single frame

k = m, if the second term in (3a) is removed. Therefore, it

is imperative to use a regularization on the weights α.

The case µ → 0: By introducing Lagrange multipliers, it

can be shown that αk → ρk when µ → 0, for a fixed θ.1

Thus, reducing the parameter µ also reduces the flexibility

of the weights αk about the prior weights ρk. The standard

weighted loss (2) is therefore obtained in the limit µ → 0
by setting αk = ρk. Our approach can be seen as a general-

ization of (2) by introducing flexible sample weights αk.

3.3. Optimization

Here, we propose a strategy for solving the joint learning

problem (3). Our approach iteratively minimizes the loss by

alternating between the model parameters θ and the exam-

ple weights α. This strategy is motivated by the fact that (3)

is convex in the weights α, given any fixed θ. Further, many

existing supervised learning approaches, such as SVM and

DCF, rely on convex optimization problems (1). It can be

directly verified that (3) is biconvex if the weighted loss (2)

is convex. That is, the optimization problem obtained by

fixing either θ or α in (3) is convex. For biconvex prob-

lems, a standard approach is to use Alternate Convex Search

(ACS) [10]. In each frame, we perform N ACS iterations

to minimize our formulation (3). In each iteration, we solve

the two convex subproblems obtained by fixing either α or

θ in (3). We call these steps “Update θ” and “Update α”.

Update θ: We first describe the subproblem of finding the

optimal θ given a fixed α = α(i−1). Here, α(i−1) denotes

the estimate of the weights α in iteration i − 1 of the op-

timization. In the first iteration i = 1, the weights α(0)

are initialized using estimates from the previous frame. The

subproblem obtained by fixing the weights α = α(i−1) in

(3) corresponds to optimizing the weighted loss (2) with re-

spect to θ. This generates an updated model θ(i). The op-

timization (2) is performed by the standard training method

of the applied learning approach.

Update α: The second step of iteration i corresponds to

optimizing (3) with respect to α, while keeping θ = θ(i)

1The proof is provided in the supplementary material.

Algorithm 1 Our approach: tracking in frame t

Input: Current model parameters θ and weights {αk}
t−1
k=1.

Current training set {(xjk, yjk)}
nk,t−1
j=1,k=1.

1: Estimate the target location in frame t using θ.

2: Extract training samples {(xjt, yjt)}
nt

j=1 in frame t.

3: Update the prior weights {ρk}
t
k=1 using, e.g., (5).

4: Initialize weights α
(0)
k = αk for k < t and α

(0)
t = ρt.

5: for i = 1, . . . , N do

6: Update θ: Find θ(i) by optimizing (2) using α(i−1).

7: Update α: Find α(i) by solving (4) given θ(i).

8: end for

fixed. By defining the total loss in frame k by L
(i)
k =

∑nk

j=1 L(θ
(i);xjk, yjk), the resulting subproblem is,

minimize J
(i)
2 (α) =

t
∑

k=1

L
(i)
k αk +

1

µ

t
∑

k=1

α2
k

ρk
(4a)

subject to αk ≥ 0 , k = 1, . . . , t (4b)

t
∑

k=1

αk = 1. (4c)

The above optimization problem can be efficiently solved

with convex quadratic programming methods. We use the

corresponding function in Matlab’s Optimization Toolbox,

which internally employs the interior point method.

3.4. Prior Weights Selection

As discussed in section 3.1, it is desirable to encode prior

knowledge about the sample weights αk in the learning. In

our approach, this prior information is incorporated using

the prior weights ρk, which serve as a regularizer for the

sample weights αk. The impact of the prior weights ρk are

further controlled by the flexibility parameter µ. We pro-

pose a simple, yet effective strategy for setting the sample

weights ρk based on solely temporal information. In our

strategy, recent samples are given larger prior weights to

account for fast appearance changes. In general, additional

information about the sampling process, such as the number

of training samples nk in frame k, can be integrated into ρk.

We use a learning rate parameter η ∈ [0, 1] to determine

the prior weights for the K most recent frames, such that

ρk = (1 − η)ρk+1 for k = t − K, . . . , t − 1. The prior

weights for all frames older than t −K are set to constant,

i.e. ρk = ρk+1 for k < t −K. The above recursive defini-

tion implies the formula

ρk =

{

a , k = 1, . . . , t−K − 1

a(1− η)t−K−k , k = t−K, . . . , t.
(5)

Here, the constant a =
(

t−K + (1−η)−K
−1

η

)

−1

is deter-

mined by the condition
∑

k ρk = 1. The prior weights ρk
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Figure 2. The training sample impact weights computed by our joint learning formulation on the Skating sequence. The computed weights

αk (blue curve) and corresponding prior weights ρk (red curve) are plotted for two different time instances during the tracking process: in

frame 100 (left) and frame 250 (right). Image patches and corresponding target estimations (red box) are shown for example frames. The

parameters are set as described in section 5.1. A few training examples (e.g. no. 82 and 93) that are corrupted by an occluding object (the

male skater) are initially assigned large weights (left). By efficiently redetermining all impact weights αk in each frame, previous mistakes

are corrected. In this example, the corrupted samples (no. 82 and 93) are down-weighted at a later stage (right). On the other hand, accurate

training samples (no. 1 and 58) are consistently assigned large impact weights.

in (5) put a larger emphasis on recent frames to alleviate the

problem of rapid appearance changes, caused by e.g. target

deformations and out-of-plane rotations. Instead of letting

the prior weights decrease towards zero for older samples,

we assign all samples older than K frames equal prior im-

portance. This allows a significant influence of old training

samples in the learning. Algorithm 1 provides an overview

of our method in a generic setting.

4. The Tracking Framework

Here, we describe a tracking-by-detection framework us-

ing the unified learning formulation proposed in section 3.

4.1. Baseline Tracker

In recent years, the Discriminative Correlation Filter

(DCF) based trackers have shown excellent performance on

several benchmark datasets [2, 5, 13, 18]. These trackers

apply Fourier transforms to efficiently train a discrimina-

tive regressor on sample feature maps extracted from the

video frames. We employ the recent SRDCF [5] as our base

supervised learning approach. Unlike other DCF methods,

SRDCF employs a spatial regularization in the learning to

alleviate the periodic effects induced by circular correlation.

The appearance model of the SRDCF tracker consists of

a discriminatively trained convolution filter. In each new

frame, a confidence map is first computed by applying the

filter around the predicted target location. This confidence

map is then maximized to estimate the target location. A

single training example (xk, yk) is added in each frame k.

The sample xk is a d-dimensional feature map, extracted

around the target, that also includes the surrounding back-

ground information. The Gaussian label function yk con-

tains the desired confidence map, when applying the sought

convolution filter fθ on xk. In the SRDCF, the model pa-

rameters θ thus consist of the filter coefficients in fθ. The

standard SRDCF employs the weighted learning formula-

tion (2), with a per-sample loss L given by,

L(θ;xk, yk) =

∥

∥

∥

∥

yk −

d
∑

l=1

f l
θ ∗ x

l
k

∥

∥

∥

∥

2

. (6)

Here, ∗ denotes circular convolution and the superscript xl
k

and f l
θ denotes the lth channel of xk and fθ respectively.

The loss (6) consists of the total squared error between the

desired confidence map yk and the confidence scores ob-

tained by applying the filter fθ to the sample xk.

The regularization R(θ) is determined by the spatial

penalty function w, consisting of a positive penalization fac-

tor at each spatial location in the filter,

R(θ) =
d

∑

l=1

∥

∥w · f l
θ

∥

∥

2
. (7)

Here, · denotes pointwise multiplication. The regularization

ensures a limited spatial extent of the filter by penalizing

coefficients outside the target region. The filter fθ is trained

by transforming the loss (2) to a real-valued Fourier basis

and solving the resulting normal equations. For more details

about the SRDCF tracker, we refer to [5].

4.2. Proposed Tracker

Here, we apply our unified learning formulation to the

baseline tracker. To learn the appearance model, the base-

line tracker minimizes the weighted loss (2), using exponen-

tially decaying sample weights αk. Instead, we minimize

the proposed unified formulation (3) to jointly estimate both

the model θ and the sample weights αk, in each frame.

The proposed tracker follows the outline in algorithm 1.

In a new frame t, we first estimate the target location as in
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the baseline tracking approach. The training set is then aug-

mented with the new sample (xt, yt). The prior weights ρk
are then updated as in (5). The importance weight of the

new sample is initialized with its prior weight α
(0)
t = ρt.

The weights α
(0)
1 , . . . , α

(0)
t−1 of earlier samples are initial-

ized with their estimates from the previous frame and then

normalized such that
∑

k α
(0)
k = 1. To minimize the joint

loss (3), we then perform an “Update θ” step followed by

an “Update α” step in each iteration i of the optimiza-

tion, as described in section 3.3. As mentioned in sec-

tion 3.3, our joint learning formulation (3) is biconvex since

the weighted loss (2) is convex.

Update θ: The updated filter f
(i)
θ is computed using the

training procedure in [5], given the weights α
(i−1)
k . Instead

of the incremental update, we use the general formula in

[5] to compute the normal equations. This enables arbitrary

weights to be used. A fixed number of Gauss-Seidel itera-

tions are then performed, with the current filter f
(i−1)
θ as an

initial solution, to obtain the new filter f
(i)
θ .

Update α: The new filter f
(i)
θ is then used to redeter-

mine sample weights α(i). Since each frame only con-

tains a single sample, the total loss in frame k is given by

L
(i)
k = L(θ(i);xk, yk). This is efficiently computed using

the Fast Fourier Transform (FFT), by applying Parseval’s

formula to (6). The new weights α(i) are then computed by

solving the quadratic programming problem (4).

To achieve an upper bound on the memory consumption,

we store a maximum number T of training samples. If the

number of samples exceeds T , we simply remove the sam-

ple k ≤ K that has the smallest weight αk. Figure 2 shows

the estimated quality weights αk for an example sequence.

5. Experiments

To evaluate our approach, we perform comprehensive

experiments on three benchmark datasets: OTB-2015 [27],

VOT-2015 [17] and Temple-Color [20].2

5.1. Parameter Settings

The prior sample weights are set as described in sec-

tion 3.4, using K = 50 and η = 0.035. In general, the

flexibility parameter µ depends on the scale of the loss func-

tion L(θ;x, y) for different discriminative methods. This

dependency can however be mitigated by appropriate nor-

malization of L with, e.g., respect to the average number of

samples nk per frame. We use µ = 5 in our experiments,

which enables a large degree of adaptiveness in the weights

(see figure 1 and 2). The maximum number of stored train-

ing samples is set to T = 300. In the tracking scenario, the

joint loss (3) is modified marginally in each frame by adding

the new training samples for frame t. Therefore, we found

2Detailed results are presented in the supplementary material.

Baseline [5] Baseline-Entropy Baseline-PSR Ours

Mean OP 72.9 72.2 74.4 76.7

Table 1. A comparison of our approach, using mean OP (%),

with the baseline methods on the OTB-2015 dataset. The baseline

tracker does not account for corrupted samples. We also compare

our approach by incorporating the entropy and PSR strategies in

the baseline tracker. The best result is displayed in red font. Our

approach achieves a significant performance gain of 3.8% in mean

OP, compared to the baseline tracker.

a single (N = 1) ACS iteration to be sufficient to refine the

estimate of θ and α from the previous frame. This further

ensures a minimal increase in computations compared to the

original learning approach. Our joint learning is started at

t = 10 frames into the sequence. This ensures a sufficient

number training samples for our learning procedure.

For the baseline tracker [5], we use the Matlab imple-

mentation provided by the authors. For a fair comparison,

we use the same parameter settings for both our tracker and

the compared baseline SRDCF. For the OTB-2015, we use

HOG features for both our and the baseline tracker, as in

[5]. For VOT-2015 and Temple-Color, we employ the same

combination of HOG and Color Names for both trackers

and use µ = 3 and T = 200 in our method. Furthermore,

we fix the parameter settings for all videos in each dataset.

In our approach, solving the quadratic programming prob-

lem (4) in the “Update α” step, is highly efficient. It takes

around 5 milliseconds on a standard desktop computer. The

computational cost of our tracker is completely dominated

by the baseline training procedure used in the “Update θ”

step. We obtain a slightly reduced frame rate (around 3

frames per second) compared to the baseline tracker.

5.2. Baseline Experiments

We first compare our approach with the baseline SRDCF

tracker, which does not account for corrupted training sam-

ples. We also integrate two existing training sample man-

agement strategies into the baseline tracker, for additional

comparisons. The first strategy [1] is based on the Peak to

Sidelobe ratio (PSR) of the tracking confidence scores. It is

computed as the ratio gmax−mr

σr

, where gmax is the maximum

confidence, mr is the mean confidence and σr is the stan-

dard deviation of the confidence scores outside the peak.

The second strategy [29] is based on an expert ensemble of

previous snapshots of the tracking model. In each frame,

the confidence scores are first computed for all experts. If

the target location estimates differ, an entropy based score is

used to rank the experts in the ensemble. The current track-

ing state is then set to the expert with the highest score. This

corresponds to resetting the tracker model to the best previ-

ous state. New snapshots are stored periodically, while dis-

carding the oldest one. For a fair comparison, we optimize

the parameters for the PSR and entropy based strategies.

1435



EDFT[7] LSHT[12] DFT[24] ASLA[15] TLD[16] Struck[11] CFLB[8] ACT[6] TGPR[9] KCF[13] DSST[2] SAMF[19] DAT[23] MEEM[29] LCT[22] HCF[21] SRDCF[5] Ours

OTB-2015 41.4 40.0 35.9 49.0 46.5 52.9 44.9 49.6 54.0 54.9 60.6 64.7 36.4 63.4 70.1 65.5 72.9 76.7

Temple-Color 41.2 29.0 34.0 38.8 38.4 40.9 37.8 42.1 51.6 46.5 47.5 56.1 48.2 62.2 52.8 58.2 62.2 65.8

Table 2. A comparison of our approach, using mean OP (%), with state-of-the-art trackers on the OTB-2015 and Temple-Color datasets.

The best two results are shown in red and blue font respectively. On the OTB-2015 dataset, the best existing tracker provides a mean OP of

72.9%. On the Temple-Color dataset, both SRDCF and MEEM obtains a mean OP score of 62.2%. Our approach obtains state-of-the-art

results, outperforming the best existing trackers by 3.8% and 3.6%, on the OTB-2015 and Temple-Color datasets, respectively.
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Figure 3. Success plots for the OTB-2015 (a) and Temple-Color

(b) datasets. For clarity, we only show the top 10 trackers in

the legend. On the OTB-2015 and Temple-Color, our approach

achieves state-of-the-art results with a gain of 2.9% and 2.5% in

AUC respectively, compared to the best previous method.

We report the results using mean overlap precision (OP).

The OP is computed as the percentage of frames where

the intersection-over-union (IOU) overlap with the ground-

truth exceeds a threshold of 0.5. Table 1 shows the mean

OP results over all the 100 videos of OTB-2015 dataset. The

baseline SRDCF tracker obtains a mean OP score of 72.9%.

The PSR strategy improves the results with a mean OP score

of 74.4%. Our approach significantly improves the perfor-

mance by providing a gain of 3.8% in mean OP, compared

to the baseline tracker. The substantial improvement over

the baseline demonstrates the importance of decontaminat-

ing the training sample set. It is worth to mention that our

approach is generic, and can be incorporated into other dis-

criminative tracking frameworks.

We also validate the generality of our approach by ap-

plying the proposed joint learning formulation to an SVM-

based discriminative model. SVMs have been successfully

applied for tracking-by-detection in recent years [11, 25,

29]. We use a binary linear SVM, where L(θ;x, y) is the

standard hinge-loss. As in the SRDCF case, we use the out-

line described in algorithm 1 and set the prior weights ρk as

in (5). In each frame k, we collect 1 positive and about 20

negative samples (xjk, yjk) from the estimated target neigh-

borhood, using the color-based feature representation [29].

For the baseline SVM tracker, we fix the sample weights

as αk = ρk. For our SVM tracker, we minimize the loss

(3) as described in section 3.3. The same parameter settings

is used for both the baseline and our version of the SVM-

based tracker. On OTB-2015, the baseline SVM tracker

provides a mean OP of 58.2%. Our SVM tracker achieves

a significant gain of 3.2%, with a mean OP of 61.4%.

#103 #151 #217 #293

#053 #093 #157 #271

Ours SRDCF LCT HCF

Figure 4. A qualitative comparison of our approach with state-of-

the-art methods on the Box (top row) and Girl (bottom row) videos.

Our approach accurately re-detects the target in the Girl video due

to a decontaminated training set (last frame).
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Figure 5. Robustness to initialization comparison on the OTB-

2015 dataset. Success plots are shown for both spatial (SRE) and

temporal (TRE) robustness. Our tracker provides consistent im-

provements in both cases, compared previous approaches.

5.3. OTB­2015 Dataset

We perform a comprehensive comparison with 17 recent

state-of-the-art trackers: EDFT [7], LSHT [12], DFT [24],

ASLA [15], TLD [16], Struck [11], CFLB [8], ACT [6],

TGPR [9], KCF [13], DSST [2], SAMF [19], DAT [23],

MEEM [29], LCT [22], HCF [21] and SRDCF [5].

5.3.1 State-of-the-art Comparison

A comparison with state-of-the-art trackers on the OTB-

2015 is shown in Table 2 (first row). We report the mean

OP over all the 100 videos. The MEEM tracker, with an

entropy minimization based sample management, obtains

a mean OP of 63.4%. The hierarchical convolutional fea-

tures (HCF) tracker provides a mean OP of 65.5%. Our ap-

proach significantly outperforms the best compared tracker,

by achieving a mean OP of 76.7%.

Figure 3 contains the success plot, showing the mean OP

over the range of overlap thresholds [27], on the OTB-2015

dataset. For each tracker, area-under-the-curve (AUC) score

is displayed in the legend. Among the compared tracking
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Figure 6. Attribute-based analysis of our approach on the OTB-2015 dataset. Success plots are shown for four attributes where corrupted

samples are a common problem. For clarity, we only show the top 10 trackers in the legends. The title of each plot indicates the number of

videos labelled with the respective attribute. Our approach provides consistent improvements compared to state-of-the-art methods.

methods, SRDCF, LCT and HCF provide the best results

with AUC scores of 60.5%, 56.7% and 56.6% respectively.

Our approach achieves the best results with an AUC score

of 63.4%. Figure 4 shows a qualitative comparison with

state-of-the-art methods on the Box and Girl videos. Our

approach down-weights corrupted training samples, leading

to accurate target re-detection (frame 271 in Girl).

5.3.2 Robustness to Initialization

To evaluate the robustness of our tracker, we follow the

protocol proposed by [27]. The robustness is evaluated us-

ing two different initialization strategies: spatial robustness

(SRE) and temporal robustness (TRE). The first criteria,

SRE, is based on initializing the tracker at different pertur-

bations of the initial ground-truth location. In case of TRE,

the tracker is initialized at 20 different frames with the cor-

responding ground-truth. We present the success plots for

SRE and TRE, on the OTB-2015, in Figure 5. We compare

with the top 5 trackers. Our approach achieves robustness

in both cases, leading to a consistent performance gain.

5.3.3 Attribute Based Analysis

In the OTB-2015, all videos are annotated with 11 differ-

ent attributes. Our tracker outperforms previous approaches

on all 11 attributes.2 Figure 6 shows success plots for four

attributes where corrupted samples are commonly included

in the training set. In scenarios with challenging scale vari-

ations and out-of-plane rotations, inaccurate target estima-

tions often lead to the inclusion of misaligned training sam-

ples. Our joint learning approach is capable of reducing or

removing the impact of such samples, thereby lowering the

risk of drift and tracking failure. In videos with significant

background clutter or occlusions, positive training samples

are often corrupted by background information. This a com-

mon cause for tracking failure in discriminative methods.

By re-determining the sample weights in every frame using

our joint formulation (3), the effect of corrupted training

samples is mitigated by the learning process itself. The ef-

fectiveness of our approach is demonstrated by the superior

results achieved in the aforementioned scenarios.

Ours SRDCF MEEM SAMF ACT DSST KCF CFLB Struck DFT EDFT

AEO 0.299 0.288 0.221 0.202 0.186 0.172 0.171 0.152 0.141 0.140 0.139

Table 3. Comparison with state-of-the-art, based on expected aver-

age overlap (EAO), on the VOT-2015 dataset. Our approach pro-

vides improved performance compared to the best existing tracker.

5.4. VOT­2015 Dataset

In VOT-2015 [17], consisting of 60 challenging videos,

trackers are evaluated in terms of expected average over-

lap. This measure is based on empirically estimating the

average overlap (as a function of sequence length) and the

typical-sequence-length distribution (cutting-off both lopes

at a threshold such that the mass is 0.5). The measure itself

is then obtained as the inner product of the two functions.

Table 3 shows the average expected overlap (AEO) on VOT-

2015 for methods with publicly available implementations.

5.5. Temple­Color Dataset

Finally, we perform experiments on the Temple-Color

dataset with 128 videos. A comparison with state-of-the-art

trackers is shown in Table 2 (second row). Among the com-

pared methods, both MEEM and SRDCF obtains a mean

OP of 62.2%. Our approach improves the state-of-the-art

on this dataset with a mean OP of 65.8%. Figure 3 shows

the success plot over all the 128 videos in the Temple-Color

dataset. MEEM and SRDCF provide AUC scores of 50.6%
and 51.6% respectively. Our tracker outperforms state-of-

the-art approaches an AUC score of 54.1%.

6. Conclusions

We propose a unified learning formulation to counter

the problem of corrupted training samples in the tracking-

by-detection paradigm. Our approach efficiently down-

weights the impact of corrupted training samples, while

up-weighting accurate samples. The proposed approach

is generic and can be integrated into other discriminative

tracking frameworks. Experiments demonstrate that our ap-

proach achieves state-of-the-art tracking performance.
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