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Abstract

Pedestrian detection and semantic segmentation are high

potential tasks for many real-time applications. However

most of the top performing approaches provide state of art

results at high computational costs. In this work we pro-

pose a fast solution for achieving state of art results for both

pedestrian detection and semantic segmentation.

As baseline for pedestrian detection we use sliding win-

dows over cost efficient multiresolution filtered LUV+HOG

channels. We use the same channels for classifying pixels

into eight semantic classes. Using short range and long

range multiresolution channel features we achieve more

robust segmentation results compared to traditional code-

book based approaches at much lower computational costs.

The resulting segmentations are used as additional seman-

tic channels in order to achieve a more powerful pedestrian

detector. To also achieve fast pedestrian detection we em-

ploy a multiscale detection scheme based on a single flex-

ible pedestrian model and a single image scale. The pro-

posed solution provides competitive results on both pedes-

trian detection and semantic segmentation benchmarks at 8

FPS on CPU and at 15 FPS on GPU, being the fastest top

performing approach.

1. Introduction

A good perception and understanding of the surround-

ings is essential for an efficient and safe interaction with the

environment. In this work we focus on traffic scenarios and

in particular on the perception of pedestrians. They are the

most important traffic participants and also the most vul-

nerable ones. Their perception can impose difficulties due

to challenging weather, lighting conditions or difficult oc-

clusion cases. In addition, their behavior can be sometimes

very unpredictable.

Pedestrian detection is of high interest especially for the

automotive industry, in order to design safe driver assistance

systems or autonomous vehicles and represents one of the

most challenging computer vision tasks.

Figure 1. Semantic context provided by the proposed solution

Computer vision based pedestrian detection is one of the

most active research areas. The accuracy and precision of

detectors increases every year, with a significant improve-

ment over the last decade [6]. However, the computational

cost of the top performing approaches still represents a bot-

tleneck. Most of the approaches are impractical for real-

time applications. Our main goal is to obtain a powerful

detector that competes well with the top performing ap-

proaches at significantly lower computational costs.

In this work we propose a sliding window type detec-

tion solution based on multiresolution filtered LUV+HOG

channels [53], focusing on computational cost reduction by

optimizing the feature extraction, multiscale sliding win-

dow and classification schemes. We show that the same

framework can be used to obtain semantic segmentations

by classifying pixels into semantic classes such as sky,

building, road, vehicle. As seen in figure 1, semantic seg-

mentations provide a higher level representation. Back-

ground classes provide semantic context that can be used

for search space reductions for different applications, while

foreground classes can provide an alternative detection ap-

proach for obstacles.

We use the semantic segmentations as context informa-
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tion for pedestrian detection and integrate them as semantic

channels into the proposed solution. Eight semantic chan-

nels are used for six general semantic classes (sky, building,

road, tree, vehicle, pedestrian) and two geometrical classes

(horizontal and vertical structures). Experimental results

showed improvements on detection rates using the addi-

tional semantic channels. The semantic channel for pedes-

trians provides an additional cue for their presence. This

way, pedestrians are detected using two different recogni-

tion principles. The other 7 semantic channels provide the

context.

Finally we achieve a solution that provides both state of

art pedestrian detection and semantic segmentation at 8 FPS

on CPU and 15 FPS on GPU using 640× 480 pixel images.

The main contributions in this work are:

• design of computationally efficient multiresolution fil-

tered channels

• fast multiscale detection scheme based on a single

classifier model, a single feature scale and adaptive

classification feature sampling

• semantic segmentation by classifying pixels using

short range and long range features over multiresolu-

tion filtered channels

• pedestrian detection using multiresolution channels

and semantic channels

2. Related work

Extensive work has been carried out during the last

decades regarding pedestrian detection. The state of art is

rapidly improving and each year multiple approaches ap-

pear that outperform the previous state of art. Without a

doubt, the availability of challenging detection benchmarks,

such as Caltech-USA [18], KITTI [21], KAIST [26] has a

significant impact on this increase.

There are several great surveys that can be considered

for a detailed overview [6], [18] on the state of art. We

mention here only some of the main approaches related to

our work and focus on sliding window based detection from

monocular images. Dalal et al. proposed the HOG descrip-

tor in [13] which became one of the most used descriptors

in pedestrian and object detection for more than 10 years.

HOG descriptors are mostly used together with LUV color

features in the form of image channels proposed by Dollar

et al. in [17].

Over the years several multiscale detection schemes have

been considered in order to achieve multiscale detection.

The integral channel feature based approach [17] used a

single classifier model for a fixed size sliding window and

resized the image multiple times. The features were recom-

puted for each individual image scale. The Fastest Pedes-

trian Detector in the West [16] computed the image fea-

tures only for half-octave scales and used approximations

for the intermediate ones in order to reduce the computa-

tional costs. The VeryFast approach [4] achieved pedestrian

detection at over 50 FPS on GPU using a single image fea-

ture scale and half-octave pedestrian models that relied on

feature approximations for the intermediate scales. In a pre-

vious work we proposed a solution based on a single clas-

sifier model and a single feature scale using Word Channel

features [11]. In [12] we proposed a solution based on 8

classifier models and channel features computed at 3 half-

octave scales enabling competitive detection at over 100

FPS on CPU (over 20 FPS on mobile devices). Traditional

integral channel features were further improved by propos-

ing aggregate channel features (ACF) [14], informed haar

features [52], locally decorrelated channel features [34] and

checkerboard filtered channels [53], all being based on the

same 10 LUV+HOG channels.

Other works focused on the introduction of additional

features such as: LBP [35], [47] color from different color

spaces [25], bag of words [11], covariance [45], [35]. Im-

proved results have also been obtained by using additional

information such as optical flow [36]. Part based ap-

proaches were considered in [19], [3]. Strong performances

have been achieved recently using deep learning techniques

[43], [24].

Another active research area is the one regarding se-

mantic segmentation. One of the baseline approaches is

the Texton-boost approach proposed by Shotton et al. [40].

Texton features, visual codebook based texture features,

were used to generate texton channels. Individual pixels

were classified using boosting over rectangular sums from

different texton channels. The classification results were

integrated as unary potential into a Conditional Random

Field (CRF). Pairwise smoothness potentials were used to

refine final segmentation. More complex CRFs have also

been considered by using higher order Pn Potts models

[27] and robust Pn Potts models [28] , hierarchical pixel

and segment based CRF [38], global potentials based on

co-occurrence statistics [30] or intra-class spatial relation-

ships [23], and dense CRFs [29]. The computational cost

for state of art CRF based approaches is dominated by the

computation of unary potentials [37]. In this work we pro-

pose a fast solution for computing robust pixelwise unary

potentials, that can be integrated into any CRF solution.

Non-parametric semantic segmentation approaches rep-

resent an alternative to the previously described paramet-

ric approaches [41], [44], [49], [39]. These approaches

retrieve visually similar images from large databases, use

label-transfer techniques for predicting class-labels and are

more practical for dynamically changing large datasets with

high number of semantic classes.
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3. Multiresolution Channels

The 10 LUV+HOG image channels have served as base-

line for several top performing approaches. Most of them

used rectangular sums over these channels or variations

of these channels in order to obtain classification features.

Zhang et al. observed in [53] that these approaches can be

generalized by adding a filtering layer to the feature gener-

ation process. Each approach was characterized by a dif-

ferent set of convolution kernels. This way the rectangu-

lar features become simple pixel lookups and there is no

need for integral images. In [53] the best performance was

achieved using 61 checkerboard kernels resulting in 610 im-

age channels. Unfortunately, the convolution with a large

set of kernels can be time consuming especially due to the

large number of memory accesses.

Most of the filter sets that have been used in [53] con-

sist of high pass and low pass filters at multiple scales. The

low pass filters have the role to capture features at different

scales, while the high pass filters capture different struc-

tures such as edges or corners. In order to have a reduced

but still relevant set of filters we use a box filter for low pass

filters and two edge filters for high pass filters and apply

Figure 2. Multiresolution filtering scheme with N scales con-

sisting of N low pass and 2 × N high pass filters over the 10

LUV+HOG. Green and red colors indicate +1 and -1 coefficients.

The first 2× 2 kernel is an aggregation kernel.

them at 5 different scales. We use a 2 × 2 pixel aggrega-

tion and N − 1 smoothings with 3× 3 box filters to obtain

N different channel scales, and apply simple vertical and

horizontal difference kernels over each smoothing to obtain

edges at different scales. We choose only two orientations

for difference filters, because any edge direction can be de-

scribed using them. We obtain a total of N × 3 filterings

using three different filter kernels as illustrated in figure 2.

After computing the initial 10 image channels, we partition

each channel into 2×2 pixel cells and compute the average.

The convolutions are applied over these smaller resolution

channels. For a 640×480 pixel image we obtain 320×240
pixel multiresolution channels.

4. Semantic context

Visual codebook based features were the baseline for

several semantic segmentation approaches [40], [28], [30],

[29]. Local descriptors were computed densely over the in-

put image and were matched to a set of visual words from

a codebook that was obtained using clustering over descrip-

tor samples from a training database. Pixels or superpixels

were classified based on the distribution of the surrounding

visual words. Due to the usual large size of dictionaries and

dense feature computation of more complex features, such

as SIFT, unary potential estimation dominate computational

costs [37] . We achieved full segmentation with 8 classes at

50 FPS in [11] using smaller codebooks, simpler features

and a GPU based implementation. In this work we show

that the multiresolution channels described in the previous

section can be used for even more robust segmentation re-

sults at significantly lower computational costs.

Figure 3. Field of interest for long (blue) and short (orange) fea-

tures at different pixel locations. The short range features capture

local structure, while the long range capture the context.
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Figure 4. Semantic segmentation refinement using dense CRF

Figure 5. Semantic channels

4.1. Semantic Segmentation

In order to achieve multiclass segmentation we train an

individual classifier for each semantic class to classify indi-

vidual pixels. We use a sampling step rate of 4 pixels result-

ing in a 16 fold reduction of necessary classifications and

show that the segmentation is still of good quality. Work-

ing with 320 × 240 pixel size multiresolution channels as

input we need 4800 classifications to obtain full semantic

segmentation for a single class.

As classification features for pixels we use the multires-

olution channel features around them. We define two types

of features sampled in a gridwise manner: short range and

long range features (see figure 3). The short range features

have the role to capture local structures and are sampled pix-

elwisely over a grid of 25× 25 pixels around the superpixel

center. The long range features have the role of capturing

the context and are sampled again over a 25 × 25 grid but

with a step rate of 4 pixels between grid points, as seen in

figure 3. The two grids result in 625 long range and 625

short range features from each filtered channel that describe

a 200× 200 and 50× 50 pixel region in the original image.

The used classification scheme for pixels is very similar

to the one used for classifying sliding windows for pedes-

trians. For each class we train a binary boosting based clas-

sifier using 5 level decision trees. We use 6 bootstrapping

rounds in order to train classifiers with 64, 128, 192, 256,

320 and a final one with 384 decision trees. Contrary to

pedestrian detection datasets, semantic segmentation train-

ing datasets can result in a large number of possible positive
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training samples, even of the order of millions. However,

many training samples are almost identical and thus, redun-

dant. To solve this issue, we use an initial training set with

5000 random positive samples and add 5000 hard positive

samples after each boosting round. We do similarly with

negative samples. For an accelerated classification we em-

ploy threshold based soft-cascading, used by most pedes-

trian detectors.

In order to provide semantic context for pedestrian de-

tectors we train classifiers for the six most relevant seman-

tic classes: sky, building, road/sidewalk, tree, vehicle and

pedestrian. We train two classifiers also for horizontal and

vertical structures, proposed in [22], that have the role to

find foreground objects and their support regions. It is very

important to have a consistent manually labeled training

dataset that covers as many traffic scenarios as possible un-

der different lightning and weather conditions at different

times of the day. An ideal dataset would be the CityScapes

database [9] that contains 5000 images with high quality

pixelwise annotation for 25 semantic classes. Unfortunately

the dataset is still under development and is not yet released,

but will be available by the end of 2015. For our exper-

iments we combine three different semantic segmentation

datasets that cover urban traffic scenarios. We use 701 im-

ages from CamVid [7] , 552 from SiftFlow [32] (only high-

way and street images), and 107 from KITTI [48] datasets.

Example segmentations are illustrated in figure 4. In-

dividual classification of pixels can result in noisy or in-

consistent predictions. Several Conditional Random Fields

(CRFs) have been defined for improving semantic segmen-

tations. Outstanding results were achieved by Krahenbuhl

and Koltun using dense CRFs [29]. Dense CRFs are de-

fined over uniform 2D grids. Figure 4 shows the segmenta-

tion result after applying only 3 rounds of dense CRF itera-

tions over each pixel and each 4th pixel. The best result is

obtained using pixelwise CRF, however we prefer CRF de-

fined over sparser grid-wise sampled pixels, considering the

still relevant segmentation at 16 times lower computational

costs (subsampling with a step rate of 4 pixels).

4.2. Semantic Channels

After training all classifiers, a classification cost can be

determined for each pixel for each semantic class. Classi-

fication cost images are shown in figure 5 for each class.

We intend to integrate the semantic context for pedestrian

detection as semantic channels next to the multiresolution

channels. We consider two alternatives:

• raw semantic channels: using classification cost values

• CRF semantic channels: using discrete predictions

from dense CRF inference

An advantage of the pedestrian channel is, that it pro-

vides an additional pixel based detection scheme for pedes-

trians. Even if it can not be used as a full pedestrian detec-

tor, considering that it represents only a very small fraction

of training samples, it can still recognize specific parts of

pedestrians and indicate their potential presence. Another

advantage is the full scale invariance of semantic channels

which is useful for the multiscale detection scheme that we

describe in the following section.

5. Multiscale Detection

Several multiscale schemes have been presented in sec-

tion 2. Traditional approaches used a single classifier for a

fixed size pedestrian model and relied on the recomputation

or approximation of image features at multiple scales. We

showed in [11], that it is possible to robustly detect pedes-

trians using a single classifier for variable pedestrian sizes

and a single image scale, based on Word Channel features,

achieving detection at 16 FPS on GPU. In this work we

show that detection with a single classifier and single image

scale can be also achieved with multiresolution LUV+HOG

channels, which are computationally much simpler than

codebook based Word Channels.

To detect pedestrians at multiple scales, we compute the

filtered channels for the original scale and apply sliding

windows at multiple scales using a scale factor of 1.07 (ap-

proximately 10 scales per half octave). We extract classi-

fication features by sampling from the filtered channels in

a gridwise manner. The grid is adapted to the size of the

detection window. This way, the same number of features

is obtained for a pedestrian of any size, using different grid

spacings. In the case of classifier training, the image fea-

tures are computed only at the original scale and the pedes-

trian images are not resized. Feature sampling is illustrated

in figure 6.

Based on the described classification features a single

Figure 6. Multiscale detection. Grid of sampled features is adapted

to the pedestrian window.
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Table 1. CamVid segmentation benchmark results

real-boost classifier is learned using 5 level decision trees

and 5 bootstrapping rounds. We use 32, 512, 1024, 2048

and 4096 5-level decision trees during these rounds. We

start with 10000 random negative samples and add 10000

hard negative samples after each bootstrapping round. A

similar setup was used also in [53]. For the sliding win-

dow we use the following adaptive step rates: 1/16 of the

window width horizontally and 1/16 of the window height

vertically. The search space is reduced by 35 % by condi-

tioning the window centers to be between the rows 140 and

300 (valid for over 99 % percent of the pedestrians in the

Caltech database [46]).

The filtered channel features are not scale invariant and

pedestrians at different scales will have different represen-

tations. The pedestrians have significantly different repre-

sentations also for different illumination, orientation or oc-

clusions cases, and a single boosting classifier consisting of

thousands of weak learners is still able to provide consistent

results. Our intuition is that a powerful boosting classifier

together with a large training dataset with pedestrians at var-

ious sizes is able to learn the relevant classification features

independently for the different pedestrian representations.

6. Experimental results

In the following we evaluate the semantic segmentation

and the pedestrian detection component of the proposed so-

lution. In the case of pedestrian detection we also show

the impact on detection performance when using semantic

channels.

6.1. Semantic segmentation evaluation

Considering that we focus on traffic scenarios we eval-

uate the proposed semantic segmentation approach on the

CamVid benchmark [7]. It is currently the largest traffic

scene dataset with high quality pixelwise annotations for

32 semantic classes and consists of color video sequences

captured by a camera mounted on a car. For evaluation we

train an individual classifier for the classes Building, Tree,

Sky, Car, Sign-Symbol, Road, Pedestrian, Fence, Column-

Pole, Sidewalk and Bicyclist. We evaluate our semantic seg-

mentation approach using pixelwise and sub-sampled dense

CRF. For the sub-sampled dense CRF we use a step rate of

4 pixels for rows and columns.

Table 1 provides the classification accuracy for each in-

dividual class, average accuracy for all classes, global ac-

curacy and execution time. We also provide a comparison

with several state of art approaches [8] [10] [42] [51] [20]

[31] [44] and show that our results are competitive at sig-

nificantly lower computational costs. The low accuracy for

sign class is due to the small number of training samples

(only 0.07 % of the training data) and can be solved using

class weight balancing. The most confused classes were

road and sidewalk.

6.2. Pedestrian detection evaluation

We use the Caltech-USA pedestrian detection bench-

mark [18] for evaluating the performance of the proposed

pedestrian detector. It is one of the mostly used pedestrian

benchmarks and enables comparison between more then

50 state of art approaches. We use the extended training

dataset for pedestrians by using each 3rd frame and the cor-

responding pedestrian annotations from the training videos

sequences (the standard training set uses each 30th).

Training the 8 semantic pixel classifiers took around one

hour using 24 Intel Xeon X5570 CPUs, part of the UTC-N

GRID Center (POS CCE nr. 195) computing grid. The final

pedestrian classifier was trained in less than an hour on the

same grid.

As main detection performance metric we use the log-

average miss rate for [10−2, 100] false positives per image

(FPPI) precision range, which is the standard evaluation

metric on the Caltech benchmark. As testing setup we use
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Figure 7. Detection performance on Caltech - reasonable test setup using different a) number of multiresolution scales, b) classification

feature types, c) bootstrapping rounds and d) decision tree depths.

the reasonable setup. First we evaluate the detection per-

formance using only the multiresolution filtered channels

with different number of scales. As seen in figure 7a, the

best performance is achieved using 7 scales (210 multires-

olution filtered channels). In figure 7b we show the effect

of adding raw semantic channels and semantic channels ob-

tained from dense CRF inference. Figure 7c shows the per-

formance of the boosting classifier after each bootrapping

round. Using a 5th bootsrapping round (also with 4096

weak learners) provided worse results, most probably due

to overfiting. A similar effect was observed also when us-

ing deeper decision trees (7d). In all our experiments we

used a 20 × 10 grid for sampling classification features for

detection windows, resulting in 200 features for each indi-

vidual channel. Denser grids did not provide performance

improvements. Figure 8 provides a comparison, based on

ROC curves, of the proposed solution with the current top

approaches [53] [43] [50] [35] [6] [24] [34] [2]. The ap-

proaches are ordered by log-average miss rates. The best

performance is achieved using multiresolution channels to-

gether with semantic channels (raw and CRF).

6.3. Computational costs

Table 2 provides an overview of execution times and the

achieved log-average miss rates on the Caltech - reason-

able test setup for approaches that provided details regard-

ing computational costs [16] [17] [15] [5] [14] [11] [33] [1]

[52] [35] [2]. The proposed solution provides competitive

results at significantly lower computational costs. In the fol-

Figure 8. Benchmark results: Caltech - reasonable

lowing we provide the average execution times for different

steps of the solution using GPU (Nvidia GTX 980 Ti) / CPU

(Intel Core i7 3.0 GHz) implementation.

• 210 filtered channel computation: 2 ms / 21 ms

• 8 semmantic channel prediction: 22 ms / 45 ms

• dense CRF inference: - / 28 ms

• sliding window classifications: 14 ms / 29 ms
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Table 2. Miss rate vs. frame rate

The pedestrian detection for a 640 x 480 pixel image is

achieved at an average rate of:

• 60 FPS on GPU and 20 FPS on CPU with 210 filtered

channels

• 15 FPS on GPU and 8 FPS on CPU also with semantic

channels

7. Conclusion

The main goal of this work was to provide a tool that can

be used for visual perception in real-time applications and

that can keep up with the robustness of current state of art

approaches. We proposed a solution for pedestrian detec-

tion for validation purposes, however the approach can be

also used for the detection of other object or obstacle types.

The semantic segmentation is also an important visual cue

and can help for a better higher-level understanding of the

environment.

In this work we propose multiresolution channels for

detection and semantic segmentation obtained from a com-

putationally efficient filtering scheme. For fast detection

we use a multiscale detection based on a single classifier

model, a single features scale and adaptive classification

features sampling. To obtain a more powerful detector, we

integrate semantic segmentation as raw and CRF semantic

channels next to the multiresolution channels. We focused

also on keeping computational costs low and achieved a

detection rate of 8 FPS on CPU and 15 FPS on GPU.
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