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Abstract

This paper presents a novel scene text detection algo-

rithm, Canny Text Detector, which takes advantage of the

similarity between image edge and text for effective text lo-

calization with improved recall rate. As closely related edge

pixels construct the structural information of an object,

we observe that cohesive characters compose a meaning-

ful word/sentence sharing similar properties such as spa-

tial location, size, color, and stroke width regardless of lan-

guage. However, prevalent scene text detection approaches

have not fully utilized such similarity, but mostly rely on the

characters classified with high confidence, leading to low

recall rate. By exploiting the similarity, our approach can

quickly and robustly localize a variety of texts. Inspired by

the original Canny edge detector, our algorithm makes use

of double threshold and hysteresis tracking to detect texts

of low confidence. Experimental results on public datasets

demonstrate that our algorithm outperforms the state-of-

the-art scene text detection methods in terms of detection

rate.

1. Introduction

Text in scene images usually conveys valuable informa-

tion, hence detecting and recognizing scene text has been

considered important for a variety of advanced computer

vision applications such as image and video retrieval, mul-

tilingual translation, and automotive assistance. Especially,

as most text recognition applications require texts in images

to be localized in advance, there is a significant demand

for text detection algorithms that can robustly localize texts

from a given scene image.

Previous works for scene text detection have utilized the

sliding window method [6, 16, 11, 18] and connected com-

ponent analysis [8, 5, 35, 37, 38, 12, 21, 22, 23, 28, 41]. The

sliding window based methods detect texts of a given scene

image by shifting a window onto all locations in multiple

scales. This is an exhaustive search, so these methods can

achieve high recall rates. However, heavy computations are

(a) Input (b) MSERs [20]

(c) ERs after NMS (d) Our localization result

Figure 1. Canny text detector. Compared to the character can-

didates of MSERs or ERs, our method localizes characters more

robustly with less false positives.

unavoidable due to the thorough scanning of windows and a

large number of candidates can result in a great deal of false

positives.

On the other hand, connected component based meth-

ods first extract character candidates from an input image,

and then refine the candidates to suppress non-text candi-

dates. Stroke width transform (SWT) and maximally sta-

ble extremal region (MSER) are two representative tech-

niques for connected component analysis, and these meth-

ods have achieved outstanding performance in scene text

detection. But, common constraints used for refining candi-

dates are considered somewhat restrictive to preserve vari-

ous true characters, leading to low recall rate in practice.

In this paper, we propose a novel scene text detection

algorithm, Canny Text Detector, which takes advantage of

the similarity between image edge and text to provide sig-

nificantly improved detection rate. As edge pixels construct

the structural information (i.e., contour) of an object, we

observe that cohesive characters compose a word or sen-

tence sharing similar properties such as spatial location,

size, color, and stroke width regardless of language. In the

original Canny edge detector [4], each edge pixel is first

classified as strong edge, weak edge, or non-edge. Then the

algorithm employs edge tracking by hysteresis to find con-
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nected edges, based on the fact that usually the weak edge

pixel coming from true edges are connected to strong edge

pixels. Similar to the Canny procedure, we classify texts us-

ing double threshold and track them by hysteresis to make

the best use of plausible text candidates, even if they have

low confidence.

Specifically, the proposed Canny text detector is a multi-

stage algorithm. We first extract character candidates using

a variant of MSER. Then, each candidate is evaluated using

an AdaBoost classifier trained with a sort of local binary

patterns. The classification step utilizes double threshold

to determine strong and weak candidates, and after apply-

ing tracking by hysteresis, credible characters are finally se-

lected. The surviving characters are grouped into words or

sentences. Experimental results on public datasets demon-

strate that our algorithm outperforms the state-of-the-art

scene text detection methods in terms of detection rate.

2. Related work

There are a variety of text localization techniques in the

literature. The most common approach involves three key

components [36]: character candidate extraction, charac-

ter classification, and text grouping. Grouping text as a

set of words or sentences depends on the objective of the

algorithm and may involve text line estimation and valida-

tion. Existing scene text detection algorithms can be di-

vided into two types based on their character candidate ex-

traction method: (1) sliding window based methods that ex-

haustively scan windows at all possible locations and scales,

and (2) connected component based methods that utilizes

character candidates extracted with particular constraints,

e.g., consistent stroke width or extremal region.

The sliding window based methods detect text of a given

scene image by shifting a window onto all locations in mul-

tiple scales [6, 16, 11, 18, 32]. Then for each window,

whether the location contains text or not is determined by

a classifier that is usually trained with low level features

such as image gradients, intensity histogram, and variants

of Wavelet coefficients. Although these methods can de-

tect text effectively with high recall rate, their classification

can be sensitive to false positives due to the large number

of candidates. To suppress false positives, more advanced

text/non-text classifiers such as support vector machine and

random forest [22, 26, 26] and convolutional neural net-

works [34, 3, 13, 14] have been also proposed. But due to

the heavy computations for intensive window scanning and

advanced classification, these approaches are unsatisfactory

to real-time applications.

Recent works on scene text detection tend to utilize con-

nected component analysis [8, 5, 35, 37, 38, 12, 21, 22, 23,

28, 41, 40, 39]. In these works, character candidates are first

extracted from an input image, where each candidate is a

set of pixels sharing similar text properties. The candidates

are then refined to suppress non-texts and grouped into final

text. Popular techniques for connected component analysis

are stroke width transform (SWT) [8, 12] and maximally

stable extremal region (MSER) [19, 24], and such methods

provide a basis to achieve the notable performance in scene

text detection [27, 15].

Recently, Yin et al. [40, 39] proposed several techniques

to refine MSERs and improve the robustness for oriented

text. Shi et al. [28] utilized geometric information of

MSERs for text refinement and grouping. Neumann and

Matas [21] used pruning techniques on MSERs to exhaus-

tively search the space of all character sequences. They

later included text recognition for end-to-end text read-

ing [22, 23].

Despite the success of connected component analysis

methods, we observe that constraints commonly used in

previous approaches are not enough to preserve various true

characters, leading to low recall rate in practice. Thus, this

paper aims to address such limitations.

3. Canny Text Detector

3.1. Criteria for text detection

Given that the prevalent scene text detection procedure is

insufficient to achieve high recall rate, we first identify the

general criteria that should be considered in text detection,

as listed below:

Recall Text detection should localize as many text regions

as possible.

Precision The detected results should not contain non-text

regions if possible.

Uniqueness Each character detected from the operator

should only be marked once.

Compactness The detected region should accurately local-

ize its corresponding character without extra margin.

Similar to the original Canny edge detector [4], we de-

velop a multi-stage algorithm that incorporates the above

criteria for effective scene text detection.

3.2. Process overview

Fig. 2 shows the overall process of our text detection al-

gorithm, which is capable of fast and robust localization of

scene text. To extract character candidates with better recall

rate, we utilize extremal regions (ERs) that are extracted

with relatively weak constraints compared to those of the

original MSER [20]. Overlapped candidates are reduced

to a unique candidate by non-maximum suppression. We

then classify the candidates with double threshold as one

of strong text, weak text, and non-text. Strong text candi-

dates are included in the final result, and weak text candi-

dates that are connected to the strong texts are only selected
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Figure 2. Overall process of Canny text detector.

by hysteresis. The surviving text candidates are grouped to

compose sentence(s).

4. Algorithm Details

In this section, we describe each algorithmic component

of Fig. 2 with specific examples as illustrated in Fig. 3.

4.1. Character Candidate Extraction

Many of the previous approaches have adopted

MSER [19, 7, 24] to extract character candidates and

achieved remarkable performance [27, 15]. However, the

constraint for maximum stability is often too strong to em-

brace various kinds of scene text in practice [40, 31, 30]. So

we mitigate the maximum stability constraint and employ

only extremal regions (ERs) for better recall to satisfy the

Recall criterion.

An ER is a set of connected pixels in an image whose

intensity values are higher than its outer boundary pixels.

Mathematically it is defined as

Rt = {x|I(x) > I(y) ∀x ∈ Rt, ∀y ∈ B(Rt)}, (1)

where x and y are pixel indices of a given single channel

image I , t is a threshold value used for extracting the re-

gion, and B(Rt) is the set of boundary pixels of Rt. We

can easily obtain ERs of an image by thresholding it and

building an ER tree using an inclusion relationship between

the extracted ERs as described in [7]. The resulting tree is a

rooted and directional graph where each node corresponds

to one connected component, i.e., extremal region Rt.

Fig. 4 shows an example of an ER tree extracted using

the intensity channel of the image shown in Fig. 3a. In this

paper, we used six color channels separately to extract ERs,

i.e., YCrCb color channels and their inverted channels.

4.2. Nonmaximum Suppression

It is well known that MSERs have a large number of re-

peating components [40]. Since ER is a superset of MSER,

(a) Input image

(b) ERs after non-maximum suppression

(c) Texts classified with high threshold

(d) Texts classified with low threshold

(e) Hysteresis based tracked texts

(f) Results

Figure 3. Intermediate results of the Canny text detection process.
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Figure 4. Parts of an ER tree. The input image is shown in the left

of Fig. 3a. For each node, the left half shows the cropped image

of an ER, and the right half shows its corresponding binary mask

of which pixels of the ER are marked as white.

the initial ERs also suffer from the same problem. To guar-

antee the Uniqueness criterion, we suppress the repeating

ERs and allow only one ER that has the maximum stability.

Note that this process is similar to the subpath partitioning

and pruning of Sung et al. [31], but we first find overlapping

ERs and then suppress non-maximum ERs with a slightly

different stability measure.

We observe that the repeating component problem

mainly occurs because some ERs (i.e., character compo-

nents) have high contrast and thus are extracted over multi-

ple threshold values (see Fig. 4). To identify the repeating

ERs, we use the following measure that estimates overlap

between ERs based on the hierarchy of the ER tree:

O(Rt−k, Rt) =
|Rt|

|Rt−k|
, (2)

where Rt−k is the parent of Rt in the ER tree, and |R| de-

notes the bounding box area of R. Note that we do not

use Rt+k because the ER tree can have multiple children

and computing Rt+k would be ambiguous. For each node

Rt, we count the number of overlaps, no, with Rt−k for all

k such that O(Rt−k, Rt) > 0.7. Among the overlapping

ERs, we remove ERs such that no < 3 and select the one

with the highest stability where the stability is defined as

S(Rt) =
(|Rt−t′ | − |Rt|)

|Rt|
. (3)

We used t′ = 2 in our implementation. If there exist two or

more ERs with the same stability, we choose the one having

the smallest area. To further reduce the number of non-

texts, we intuitively remove candidates that have too large

167 32 123

23 192 10

32 226 197

mean = 101.25

1 0 1

0 - 0

0 1 1
> mean?

MLBP = 00110101(2) = 53(10)

3×3 image patch
centered at 192

Clockwise
MLBP encoding

Figure 5. Mean local binary pattern (MLBP) [2].

or too small aspect ratio. After this step, we have char-

acter candidates which comply with both Uniqueness and

Compactness criteria. The selected characters through non-

maximum suppression are shown in Fig. 3b.

4.3. Double Threshold Classification

The surviving character candidates are classified into

three classes: strong text, weak text, and non-text. For the

classification, we train our classifier using AdaBoost [10]

and multiple cascades [33] to accelerate the classification

speed. The overall structure consists of two blocks of cas-

caded classifiers, each with a threshold value that satisfies

precision of 99.0% and 90.0% in the training set, respec-

tively, corresponding to the high and low threshold values

of the original Canny edge detector. Note that the relatively

lower precision of 90.0% was intended for finding as many

weak texts as possible (i.e., high recall).

Since selection of features has a crucial impact on the

classification performance, we use the mean local binary

pattern (MLBP) which is known to be robust to illumina-

tion and rotation variations [2]. The MLBP is a variant of

the local binary pattern [25]. Given a pixel, the average in-

tensity value of 8-connected neighbors in a 3 × 3 patch is

first calculated, and then compared with the intensity value

of each pixel excluding the center pixel. If the pixel value

is larger then the average value, then the pixel gets ‘1’, oth-

erwise ‘0’. Then, starting from the left-top pixel and going

clockwise, the values are encoded into an 8-bit number, as

illustrated in Fig. 5.

For training the English and Chinese classifiers, we gath-

ered about 53,000 and 20,000 positive samples, respec-

tively, together with about 50,000 negative samples (i.e.,

non-text) for each cascade using a bootstrap process. These

samples were normalized to a size of 24× 24 in gray-scale.

In our double threshold classification, all candidates goes

through the first cascade block, and are classified as strong

text or non-strong text. Non-strong text candidates goes

through the second cascade block, which in turn classifies

them as weak text or non-text. Figs. 3c and d show the clas-

sification results with double threshold, i.e., strong texts and
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weak texts, respectively.

4.4. Text Tracking by Hysteresis

We include the strong text in the final result, as they are

classified with high confidence. However, the weak text can

be either true text or non-text (e.g., window, leaf, and fence).

So they are included if and only if they have similar proper-

ties to strong text candidates.

To meet the Recall criterion with a high recall rate, we

start from each strong text Rs and track its neighborhood

text candidates classified as weak text, Rw. Whenever Rw

satisfies the similar text properties against Rs, we change

the status of Rw to Rs and investigate its neighbors recur-

sively. The properties we used are as follows:

1. The spatial location of Rs and Rw is close enough to

be considered as part of the same text. The distance

between them is less than twice of the maximum of

height and width of Rs.

2. The size (i.e., width and height) of Rs and Rw is sim-

ilar enough to be considered as part of the same text.

In each size dimension, the difference is less than the

minimum value between Rs and Rw.

3. The color in the YCrCb color space of Rs and Rw is

similar enough to be considered as part of the same

text. The difference between them in each channel is

less than 25.

4. The ratio between large and small stroke widths of Rs

and Rw is less than 1.5.

In our experiments, a variety of text is well tracked in

diverse scenes. However, some characters may overlap be-

cause of the candidate extraction from different color chan-

nels and partial detection (e.g., detecting “l” from “T”) that

are not filtered by non-maximum suppression. To address

this, we merge overlapping characters after text tracking

if their intersection-over-union measure is greater than 0.5.

Fig. 3e shows the tracked texts via hysteresis.

4.5. Text Grouping

With double threshold classification and text tracking

by hysteresis, we can robustly obtain credible characters.

However, some applications require word- or sentence-level

localization results in practice. For instance, the robust

reading competition (RRC) of the international conference

on document analysis and recognition (ICDAR) takes such

grouped localization results for evaluation since words can

provide more valuable information than individual charac-

ters in text reading.

Fortunately, the main advantage of our method is easy

grouping. First of all, our method has extracted as many

characters as possible, even if they have low confidence. So

there is less chance to miss characters in a word, compared

Method No. of candidates Recall (%)

All ERs 6,051,331 96.6

MSERs [20] 39,762 53.9

Sung et al. [31]

Initial ERs 1,729,833 89.6

Refined ERs 93,357 87.7

Our method

ERs after NMS 629,932 95.1

Final characters 8,121 87.4

Table 1. Evaluation of character-level recall on the ICDAR 2011

test set.

to other approaches. Second, as we have tracked charac-

ter candidates by hysteresis, we can apply almost the same

rules for grouping. Specifically, we compare two candidates

on spatial location, size, color and aspect ratio using the

same threshold values in Sec. 4.4. If they satisfy the prop-

erties, then we group them into the same word.

To provide compact bounding boxes as output, we com-

pute the minimum-area encasing rectangle [9]. Unlike the

previous approaches [35, 17, 39], we do not estimate the

bottom or center line of characters. Instead, we estimate the

smallest rectangle that encloses grouped characters in the

2D image space using the 2D coordinates of character pix-

els. The final grouping results of the proposed method are

shown in Fig. 3f.

5. Experimental Results

We implemented our method using C/C++. Our testing

environment is a PC running MS Windows 7 64bit version

with Intel Core i7 CPU of 4.00GHz. In this section, we

quantitatively evaluate the proposed algorithm in terms of

character-level recall rate and text-level localization perfor-

mance on the most widely used public datasets: ICDAR

2011 RRC [27], ICDAR 2013 RRC [15], and a multilingual

dataset [26] that contains both English and Chinese. Partic-

ularly, we use the images of “Challenge 2: Reading Text in

Scene Images” in the ICDAR RRC.

Table 1 shows a quantitative comparison of character-

level recall on the ICDAR 2011 dataset [27] with the state-

of-the-art candidate extraction method proposed by Sung et

al. [31]. We obtained the ground truth data from the author

that contains manually specified character-level bounding

boxes for each image. The total number of images and char-

acters in the test set are 255 and 6,309, respectively. Given

ground truth bounding boxes, we determine the localized

result as a correct detection if the intersection-over-union

measure between a detected region and the ground truth re-

gion is over 0.5. Our method quickly reduces the number of

candidates using non-maximum suppression in the ER tree
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Figure 6. Sample results on scene text detection. We take the input images from publicly available datasets: the ICDAR 2013 RRC, the

multilingual dataset proposed by [26], MSRA-TD500, and HUST-TR400. Our results are marked in green bounding boxes.

and results in almost one third of the initial ERs compared

to [31]. It is worth mentioning that our final localization re-

sults have reduced more than 90% of irrelevant candidates

while preserving a comparable recall rate to the refined ERs

of Sung et al. [31] that still require further processing such

as classification.

We also estimated the running time of our method with

the ICDAR 2011 test set. The average image size of the

dataset is about 1,145 by 886 pixels. On average, our

method took 0.13 seconds to process one image (i.e., char-

acter candidate extraction, non-maximum suppression, dou-

ble threshold classification, and text tracking by hysteresis).

We also evaluated our method on the ICDAR 2013

dataset [15]. Table 2 shows the quantitative results provided

by the online competition website. The winning algorithm

of the ICDAR 2013 RRC (Challenge 2), proposed by Yin

et al. [40], achieved a harmonic mean of 75.89% while our

approach obtains 82.17%. The increased recall of ours is

mainly due to the double threshold classification and text

tracking by hysteresis.

To validate our method on another language, we use the

multilingual dataset proposed by Pan et al. [26]. The train-

Method Recall Precision Hmean

Shi et al. [29] 62.85 84.70 72.16

Bai et al. [1] 68.24 78.89 73.18

Yin et al. [39] 65.11 83.98 73.35

Neumann and Matas [22] 64.84 87.51 74.49

Yin et al. [40] 66.45 88.47 75.89

Zamberletti et al. [41] 70.– 86.– 77.–

Tian et al. [32] 75.89 85.15 80.25

Sung et al. [31] 74.23 88.65 80.80

Our method 78.45 86.26 82.17

Table 2. Evaluation on the ICDAR 2013 competition on robust

reading test set.

ing set contains 248 images and the testing set contains 239

images. Given the ground-truth text region set GT and the

detected text region set DT , the precision rate p of each

detected region rectangle dt and the recall rate r of each
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Method Recall Precision Hmean

Pan et al. [26] 65.9 64.5 65.5

Baseline 67.2 78.6 72.4

Yin et al. [40] 68.5 82.6 74.6

Tian et al. [32] 78.4 84.7 81.4

Our method 93.5 93.1 93.3

Table 3. Evaluation on the multilingual test set.

ground-truth text region rectangle gt are defined as

p(dt) = max
gt∈GT

[m(dt, gt)], (4)

r(gt) = max
dt∈DT

[m(dt, gt)], (5)

where m(dt, gt) is the intersection-over-union measure be-

tween dt and gt [26]. The final precision and recall rates

are the average of p and r for all dt and gt, respectively.

As shown in Table 3, the proposed algorithm has dramati-

cally improved recall, precision, and their harmonic mean.

The average running time of our method was 0.08 seconds

on our PC. Although previous works have provided timing

results for this dataset, computing environments are all dif-

ferent so fair comparison is not possible. We provide our

running time for future reference.

Fig. 6 shows several sample results taken from MSRA-

TD500 and HUST-TR400 public datasets as well as the

datasets used in this paper. Regardless of the language, the

Canny text detector works robustly for localizing a wide

range of texts, even if there exist noise, blur, and disturb-

ing textures such as windows, tree leaves, and so on. One

of the merits of our algorithm is the fast speed and this is

demonstrated on our demo website1. More text detection

examples are provided in the supplementary material.

6. Discussion and Future Work

Our Canny text detector delivers a fast and robust algo-

rithm for scene text detection. The proposed approach is

intuitive and easy to implement since we do not involve

complex operations such as image optimization. Instead,

the overall process is similar to the famous Canny operator

that has been proven to be effective in the edge detection

literature. Despite the simplicity of our algorithm, exper-

iments on widely used datasets demonstrate that the pro-

posed method can effectively localize texts in practice. The

key to Canny text detector is double threshold classification

and text tracking by hysteresis. We expect such effective

detection framework can be adopted for other detection ap-

plications. In the following, we discuss some issues related

to our approach.

1http://stradvision.com/demo.html

Effect of dataset When compared to the state-of-the-art

text detection methods, our method performs well in terms

of recall score. This is not because we simply used more

training images than others. To clarify this, we examined

existing approaches [22, 40, 31] with the same classifier we

trained with our training images. However, whatever candi-

date extraction method is used, using character candidates

classified with only a single threshold performed poorly

(i.e., low recall if a high threshold value is used, and low

precision if a low one is used). We do believe that our new

framework can improve the detection rate as well as inter-

operate with existing methods. For follow-up researchers,

we will provide our training dataset upon request by email.

Interoperability with existing localization methods As

prevalent text detection approaches already use character

classification, the essence of the proposed method (i.e., dou-

ble threshold classification and text tracking) can be incor-

porated for interoperability to other methods without much

difficulty.

Future work The fast speed and accurate localization of

the Canny text detector lowers the barrier to develop a real-

time end-to-end text reading system. Although there ex-

ist a bunch of text recognition algorithms available in prac-

tice [36], recent techniques employs a large amount of con-

volution operations for accuracy. Thus, we first need to op-

timize the running speed or develop an efficient recognition

algorithm. In future, we will also explore along this direc-

tion to develop video algorithms.
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