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Abstract

We present a global and convex formulation for

template-less 3D reconstruction of a deforming object with

the perspective camera. We show for the first time how

to construct a Second-Order Cone Programming (SOCP)

problem for Non-Rigid Shape-from-Motion (NRSfM) using

the Maximum-Depth Heuristic (MDH). In this regard, we

deviate strongly from the general trend of using affine cam-

eras and factorization-based methods to solve NRSfM. In

MDH, the points’ depths are maximized so that the distance

between neighbouring points in camera space are upper

bounded by the geodesic distance. In NRSfM both geodesic

and camera space distances are unknown. We show that,

nonetheless, given point correspondences and the camera’s

intrinsics the whole problem is convex and solvable with

SOCP. We show with extensive experiments that our method

accurately reconstructs quasi-isometric surfaces from par-

tial views under articulated and strong deformations. It nat-

urally handles missing correspondences, non-smooth ob-

jects and is very simple to implement compared to previous

methods, with only one free parameter (the neighbourhood

size).

1. Introduction

Non-Rigid Shape-from-Motion (NRSfM) is the problem

of finding the 3D shape of a deforming object given a set

of monocular images. This problem is naturally under-

constrained because there can be many different deforma-

tions that produce the same images. By including defor-

mation constraints one limits the set of solutions. Several

methods have been proposed in the last decade to tackle

NRSfM with a variety of deformation constraints. There

are two main categories of methods based on the defor-

mation constraints: statistics-based [27, 14, 5, 10, 12] and
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physics-based [26, 30, 7, 29, 2] methods. In the former

group one assumes that the space of deformations is low-

dimensional. These methods are accurate for deformations

such as body gestures, facial expressions and simple smooth

deformations. However they tend to perform poorly for ob-

jects with high-dimensional deformation spaces or atypical

deformations. They can also be difficult to use when there is

missing data due to e.g. occlusions. In the latter group one

finds deformation models based on isometry [7, 26, 30, 29],

elasticity [1] or particle-interaction models [2]. The isomet-

ric model is especially interesting and is an accurate model

for a great variety of real objects. In the related problem

of template-based reconstruction (also referred to as Shape-

from-Template [4]) it has been proven to make the problem

well-posed [23, 18, 4, 8]. However in NRSfM, approaches

based on isometry still lack in several aspects. For example

solutions tend to be complex and often require very good

initialization.

To address the shortcomings of state-of-the-art ap-

proaches we propose a method with the following prop-

erties: 1) a perspective camera model is used (unlike in

low-rank models and few others), 2) the isometry constraint

is used, 3) a global solution is guaranteed with a convex

problem and no initialization (unlike in the recent meth-

ods which use gradient-based energy minimization) 4) we

can handle non-smooth surfaces and do not require tempo-

ral continuity 5) we handle missing correspondences and 6)

the complete set of constraints are tied together in a single

problem.

We use the inextensibility constraint for approximating

isometry. Inextensibility is a relaxation of isometry where

one assumes that the Euclidean distances between points on

the surface do not exceed their geodesic distances. Inexten-

sibility alone is insufficient because the reconstruction can

arbitrarily shrink to the camera’s center. In template-based

reconstruction inextensibility has been combined with the

so-called Maximum-Depth Heuristic (MDH), where one
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maximizes the average depth of the surface subject to in-

extensibility constraints. This approach has been success-

fully applied in [23], providing very accurate results for iso-

metrically deforming objects. The main feature of MDH in

template-based scenarios is that it can be efficiently solved

with convex optimization. However, in NRSfM, the tem-

plate is unknown and thus MDH cannot be used out-of-the-

box. Our main contribution is to show how to solve NRSfM

using MDH for isometric deformations. The problem is

solved globally with convex optimization, and handles per-

spective projection and difficult cases such as non-smooth

objects and/or deformations, difficult surface topology and

large amounts of missing data (e.g. 50% or more due to self-

occlusions). Furthermore, our solution is far easier to im-

plement than all state-of-the-art methods and has only one

free parameter. It can be implemented in MATLAB using

only 25 lines of code1. We provide extensive experiments

where we show that we outperform existing work by a large

margin in most cases.

We discuss the state-of-the-art in section 2, and present

our problem modeling in section 3, our MDH-based inex-

tensible NRSfM method in section 4, experimental results

in section 5 and finally conclusions in section 6.

2. Previous Work

Among the two broad classes of existing methods,

factorization-based approaches using the low-rank defor-

mation model have been the focus of research in NRSfM

for a long time. Starting from the work of Bregler et al. [5],

many works have been proposed to include priors in resolv-

ing the ambiguities of factorization-based NRSfM. Priors

are important here even after applying the low-rank con-

straint because some shape ambiguities remain in affine pro-

jections [9, 20]. These include the shape basis priors [11],

spatial smoothness prior [27] or spatio-temporal smooth-

ness prior and non-linear modeling [14] to name a few. [10]

proposed a method to complete NRSfM factorization with

only the low-rank prior by improving on the way low rank

is imposed in affine projections. Some works have also

been done on shape recovery with factorization and per-

spective camera [15]. Low-rank based factorization meth-

ods are global methods that use all available constraints,

i.e. the image points are concatenated in a matrix which

is decomposed to recover all shapes at once. These meth-

ods work well with small linear deformations but require

learning [25] or prior knowledge to set the number of shape

basis, kernel and its parameters [14]. Some improvements

have been made for obtaining the basis size automatically

but there is no guarantee that a given collection of shapes

can be represented by a low number of shape basis accu-

rately. Additionally, in many cases the affine camera has

1Optimized code is available at http://isit.u-clermont1.fr/∼ab/Research/

the problem of local two-fold ambiguity [9].

Physical model-based approaches have been explored in

the literature to avoid the difficulties and problems with sta-

tistical priors. Primarily, efforts have been made on using

isometry or its relaxation to inextensibility to constrain the

problem in NRSfM [29, 26, 30, 7], which should allow one

to handle larger or more complex deformations. Unlike sta-

tistical priors, the isometric prior can be fairly accurate for

a large variety of deformations. The isometric prior can

be used in NRSfM problem locally (point-wise) or semi-

locally (patch-wise) or even globally by considering the

whole set of surfaces and image points together. A semi-

local method using a perspective camera and homographies

is proposed in [29]. It can reconstruct surfaces that are com-

posed of large planar patches where it disambiguates sur-

face normals obtained from homography decomposition us-

ing smoothness. [7] is a local method that gives point-wise

ambiguous solutions for normals which are disambiguated

using other views rather than smoothness. However, it re-

quires a smooth surface and very accurate registration rep-

resented by splines for computing second-order derivatives

of the registration. [26, 9] solved NRSfM locally using

the orthographic camera. [26] did this using sets of three

points and four or more images with a convex relaxation.

[9] did this without a convex relaxation. It used automat-

ically clustered point sets and solved the general case of

three or more images. These methods assume a local rigid-

ity prior, which is similar to an isometric prior. [30] uses

an orthographic camera and uses the isometric constraints.

The method also provides a way to include the perspective

camera. It uses discrete non-convex optimization, however,

the solutions are not globally optimal and the optimization

requires initialization. Furthermore, it is a complex method

to implement and test.

Apart from the low rank statistical prior based methods

and the isometric prior based methods, some other meth-

ods exist. For example, [2] uses a shape basis as well as an

isometry-like prior but the method requires an initialization,

obtained from rigid factorization on the first set of frames.

In that regard, it could be argued that the core of the method

is rather like a template-based approach. [21] proposes an

interesting local solution based on local fundamental matri-

ces computed from local point sets. However this is a local

method that does not use all available constraints and is very

complicated to implement. Compared to existing work, our

method is the first to formulate a convex problem by relax-

ing isometry to inextensibility in NRSfM, from which we

obtain a globally optimal solution using SOCP.

Notation. We use small-case Latin or Greek alphabets to

denote scalars. Bold and small Latin letters denote 2-D

vectors and bold and capital Latin letters denote 3-D vec-

tors. Matrices are denoted by capital Latin letters. We use
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‖.‖2 to denote the L2 norm of a vector and ‖.‖fro to de-

note the Frobenius norm of a matrix. We index points with

i ∈ {1 . . . n} where n is the number of scene points, and

we index images with k ∈ {1 . . .m} where m is the num-

ber of images. We use a subscript to index the points and a

superscript to index the images.

3. Modeling

In figure 1 we illustrate the problem and the associated

geometric terms described in this section.

Image 1 Image 2 ImageIntrinsic template

Figure 1: The NRSfM problem and its associated geometric terms.

We use O to represent the camera center from which we draw the

sight lines. We show only three points for clarity. In practice there

can be virtually any number of points and each point can have

many neighbours.

3.1. Pointbased Reconstruction

We define image measurements as a set of n normalized

point correspondences in m images denoted by C , {qk
i }.

The 2D vector qk
i ,

(

uk
i vki

)⊤
denotes the ith point seen

in the kth image. We define the unknown set of 3D points

by R , {Qk
i }, where Qk

i ,
(

xk
i yki zki

)⊤
denotes the

unknown 3D position of qk
i in camera coordinates. Because

we are using the perspective camera, Qk
i and qk

i are related

by

Qk
i = zki

(

qk⊤

i 1
)⊤

+ ǫki (1)

where ǫki is measurement noise. The NRSfM problem is

solved by determining the unknown set Z , {zki }.

3.2. The Intrinsic Template

We solve Z using what we call an intrinsic template.

We use the term intrinsic because it models properties of

the surface that are invariant to isometric deformations.

The intrinsic template is an undirected graph that links the

n scene points through its edges. This is defined by a

nearest-neighbourhood graph (NNG) whose edges store the

geodesic distances between pairs of points. The NNG is de-

noted as N with n points (or nodes) and K edges per node.

We denote N (i) as the set of K-neighbours of the ith point.

Each edge eij , (i, [N (i)]j) of the graph has an associated

geodesic distance dij . Because we assume the surface de-

forms isometrically, we can assume dij is constant for any

deformation. We denote the intrinsic template as the pair

T , {N ,D}, with D , {dij}.

3.3. TemplateBased Reconstruction

In template-based reconstruction (i.e. Shape-from-

Template), T is known from the object’s reference shape,

which is usually built from a geometric mesh. We now de-

scribe the MDH for reconstructing an object from a single

image. Without loss of generality we assume this is image

1, so the goal is to solve for {z1i }. A solution was first pro-

posed in [19], then solved with convex optimization in [22].

In MDH the deformation model is based on surface inexten-

sibility, which says that the Euclidean distance between any

two points Qk
i and Qk

j is upper bounded by the geodesic

distance dij . For simplicity we neglect the effect of the mea-

surement noise ǫki as in [22]. The problem formulation is as

follows:

argmax
{z1

i
}

n
∑

i=1

z1i ,

s.t. ∀i ∈ {1 . . . n}, j ∈ N (i)

z1i ≥ 0
∥

∥

∥

∥

z1i

[

q1
i

1

]

− z1j

[

q1
j

1

]∥

∥

∥

∥

2

≤ dij .

(2)

The main properties of problem (2) are the following. 1)

It is a Second Order Cone Program (SOCP) that can be

solved efficiently and globally with modern optimization

tools such as MOSEK and SeDuMi. 2) The neighbour order

K in the intrinsic template can be any. A larger K intro-

duces more cone constraints, however it also significantly

increases the computational time. Keeping a lower K is

thus important for efficiency purposes.

4. MDH-based NRSfM

4.1. Initial Formulation

The MDH for NRSfM can be expressed as the maxi-

mization of the sum of all depths {zki } under the inextensi-

bility constraint and the condition that each depth and each

distance are positive. Unlike in template-based reconstruc-

tion, we require multiple images and in general point cor-

respondences will not be found in all images due to occlu-

sions, missed tracks in optical flow, etc. We therefore intro-

duce the visibility set V , {vki }, where vki = 1 if the ith
point is visible in the kth image and vki = 0 otherwise. We
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formulate the problem as follows:

argmax
{zk

i
},{dij}

m
∑

k=1

n
∑

i=1

vki z
k
i ,

s.t. ∀k ∈ {1 . . .m}, i ∈ {1 . . . n}, j ∈ N (i)

zki ≥ 0, dij ≥ 0,

vki v
k
j

∥

∥

∥

∥

zki

[

qk
i

1

]

− zkj

[

qk
j

1

]∥

∥

∥

∥

2

≤ vki v
k
j dij .

(3)

To handle missing correspondences, we fix zki = 0 if vki =
0 and therefore we do not reconstruct the points that are not

visible. The visibility variables are used in problem (2) to

disconnect the inextensibility conditions when any of the

points involved is not visible. In contrast to the template-

based problem (2), in the template-less problem (3) we do

not know the intrinsic template T . It is clear that solving

problem (3) directly is not possible for two reasons: 1) the

optimization is not well posed because dij is unbounded

(one can keep increasing dij and the constraints will still

be satisfied), 2) the NNG is an unknown. We now give the

solutions to both issues.

4.2. Bounding the Distances

In order to bound the problem, our idea is to fix the scale

of the intrinsic template, by fixing the sum of the geodesic

distances to a positive scalar (1 in our case). Formally we

include in problem (3) the following linear constraint:

n
∑

i=1

∑

j∈N (i)

dij = 1. (4)

By including equation (4), {zki } cannot increase indefinitely

without violating equation (4), yet the problem is still an

SOCP. We illustrate this in figure 2. The effect of equation

(4) is to fix the scale of the reconstruction. In NRSfM we are

free to fix the scale of the reconstruction arbitrarily, because

just like in rigid SfM, it is never recoverable. Having fixed

the scale, the reconstructed depths cannot increase arbitrar-

ily, because with a perspective camera as the depths increase

so do Euclidean distances between pairs of points. At some

point, the Euclidean distances will exceed the geodesic dis-

tances and the inextensibility constraints (last line of prob-

lem (3)) will be violated.

4.3. The NearestNeighbour Graph

The function of the NNG is to constrain the depths be-

tween pairs of points on the object’s surface (problem (3),

last line). These pairs can be any pairs of points, however

they give the strongest constraints when the points are close

together on the surface. This is because for closer points

the inextensibility inequalities become tighter. Of course,

we do not know exactly which points are close together a

Image 1 Bounds on      set by
equation (4) on problem (3)

Intrinsic template with
three points

Figure 2: Illustration of the bounds set by equation (4) for NRSfM

using three points and one image.

priori. A good estimate can be made from the distance of

the correspondences in the images, because nearby points

on the surface tend to be close in the images. We denote the

Euclidean distance between two points qk
i and qk

j in image

k by δkij , and we use these to build the NNG. The specific

algorithm we propose is as follows:

1. Compute distances {δkij} ∀i ∈ {1 . . . n},
j ∈ {1 . . . n}, k ∈ {1 . . .m}, and i 6= j.

2. If the ith or jth point is not visible in image k, set:

δkij = −∞.

3. Take the maximum distance over the images.

δ̂ij = maxk{δ
k
ij} ∀i ∈ {1 . . . n}, j ∈ {1 . . . n}.

4. For each point i put into N (i) the points j with the K

smallest values of δ̂ij (j 6= i).

The only parameter that needs to be selected here is the

neighbourhood size K. Our method is not very sensitive

to this parameter but a reasonable value (e.g., 20) should

be chosen depending on the density of the correspondences

and required speed of optimization.

4.4. Implementation Details

We have implemented two versions of our method

in MATLAB which uses the MOSEK [3] SOCP solver.

MOSEK is faster than many other SOCP solvers, especially

for large scale problems. The first version is only 25 lines

and uses YALMIP to translate symbolic variables. The sec-

ond version is longer and does not involve the translation,

which can be expensive for large problems. In practice we

use the second version because it is significantly faster. For

example, we can solve with 50 images, 1000 points and

K = 20 in about 1 minute in a standard desktop PC. This

computation time is the fastest among the compared meth-

ods for the number of images and points considered.

5. Experimental Results

5.1. Method Comparison and Error Metrics

We compare our results against five other methods whose

source code is provided by the authors. We name our
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method as tlmdh. We name the non-convex soft inexten-

sibility based method for orthographic camera [30] as o-

sinext and the local homography method for perspective

camera [7] as p-isolh. We name the prior free factorization

method of [10] as o-spfac and the kernel based factorization

method [13] as o-kfac. We name the locally rigid method

based on 3-point SfM [26] as o-lrigid. Each method re-

quires one or more parameters to be tuned. We fix these pa-

rameters to optimal values for each dataset and keep them

constant for all experiments.

We measure a method’s accuracy with two metrics: 3D

Root Mean Square Error (RMSE) and the normal error. The

3D RMSE is computed from the ground truth 3D point po-

sitions. Because NRSfM has a scale ambiguity no method

can reconstruct the absolute scale of the object. For methods

which use perspective camera (tlmdh and p-isolh) we scale

their reconstructions to best align the with the ground truth.

For the methods which use affine cameras (o-sinext, o-

lrigid and o-spfac), we transform their reconstructions with

a similarity transform to best align them with the ground

truth. The normal error is computed by measuring the dif-

ference between the ground truth surface normal at each

point and the reconstructed normals. We compute the nor-

mals by fitting a B-spline and measuring the normals from

the B-spline coefficients.

5.2. Developable Surfaces

Most non-rigid reconstruction methods focus on devel-

opable surfaces for experiments. A developable surface can

be flattened into a planar surface without tearing or stretch-

ing, such as a piece of paper. Obtaining continuous tracks

of correspondences without partial images is relatively easy

for such surfaces. While the surfaces often appear simple,

they sometimes have high frequency and non-linear defor-

mations. We experiment with 4 different public datasets

representing such surfaces.

The Flag dataset. We use the cloth capture data (mocap)

[31] to generate semi-synthetic data. Even though the ob-

ject is real, the input data for all the methods are gener-

ated from a virtual camera with perspective projection. The

data shows a flag waving with wind with some changes

in the camera viewpoint, making it perhaps the simplest

of all datasets. The images are generated with dimensions

640 px×480 px using a camera focal length of 640 px. The

data has altogether 450 frames. We use this data to test the

performance of our method and the competitive methods in

several practical scenarios: with changing number of im-

ages, changing number of corresponding points and miss-

ing correspondences. For changing the number of images,

we randomly draw a subset of m images from the 450 im-

ages with m varying from 5 to 60. For varying the number

of points, we randomly select a subset of n points varying
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Figure 3: Plots for synthetic Flag dataset. The 3D errors shown in

the left column and the normal errors in the right column. Legends

are shown on the top.

from 50 to 300. Finally, for varying the amount of miss-

ing correspondences for each image we randomly remove

a percentage of correspondences ranging from 5 to 60. For

the default conditions, we use 40 images, 300 points and no

missing data. In order to fill the missing correspondences

required by some methods we follow [16] for matrix com-

pletion. Note that our method tlmdh works with incom-

plete data and therefore we do not complete missing corre-

spondences for our method. p-isolh computes registration

functions with B-splines and so we use them to fill in the

missing correspondences for that method. Figure 3 shows

the plots for the dataset. The results show that our method

tlmdh performs very well with just 5 images and consider-

ably better than all other methods. The factorization-based

method o-spfac and the local homography based method

p-isolh also does better compared to other methods. We

obtain an RMSE 3D error of 6.3 mm using 40 images. Sim-

ilarly, it can be seen that our method is able to reconstruct

the surface with as many as 60% random missing data.
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The KINECT Paper dataset. We use the KINECT Pa-

per dataset [28] as one of our real datasets for evaluation,

originally used for template-based reconstruction [18]. The

dataset shows a VGA resolution sequence of a large piece

of textured paper undergoing smooth deformations.We gen-

erate correspondences by tracking points in the sequence

using an optical flow-based method [12] designed for non-

rigid surfaces. The tracks are outlier free and semi-dense.

Due to the large number of frames we again subsample them

for all methods except o-kfac, which requires temporal con-

tinuity. Figure 4 shows the plots against the number of im-

ages for the rest of the methods. We obtain very accurate

reconstructions that in fact compares with template-based

reconstructions [18, 8].
K
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a
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u
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Figure 4: Mean 3D errors for the real developable surfaces.

The Hulk and the T-Shirt dataset. The Hulk dataset [7]

consists of a comic cover printed on a piece of paper in 21

different deformations. Similarly, the T-Shirt dataset [7]

consists of a textured T-Shirt with 10 different deforma-

tions. These datasets provide images with wide-baseline

matches. We do not test the factorization-based methods

on these datasets as they have very few images and also

do not form a temporal sequence. Large number of images

(m > 3/2L), where L is the number of shape basis here,

are required by o-spfac and a continuous video sequence is

required by o-kfac. We show the results of different meth-

ods in the bar plot of figure 4. We obtain a mean depth

error of 3.5 mm in the Hulk dataset and 4.9 mm in the T-

shirt dataset. The next best performing method is p-isolh

that gives a mean depth error of 14.53 mm and 8.94 mm

for the Hulk and T-shirt datasets respectively. Similarly we

obtain a mean depth error of 22.98 mm for o-spfac in the

Hulk dataset. We do not obtain good results with o-lrigid

and o-sinext in these datasets.

Failure cases. Failure cases occur in NRSfM due to the

problem being ill-posed due to lack of motion and defor-

mation. Naturally any method would fail when the problem

is ill-posed. However, a method can also fail to give good

results with a well-posed problem. We found one such ex-

ample for our method from [24]. The dataset is a bending

piece of paper imaged from a fixed camera viewpoint with

a relatively longer focal length, and it contains no ground

truth. We use optical flow [6] to obtain correspondences.

The qualitative reconstructions for three frames are shown

in figure 5. The general shape of the paper looks reasonable

but in the first image it is bent when it should be flat and

the degree of bending is not properly captured in the second

image. We know that better reconstructions are possible

on this dataset [30], so the problem is not itself ill-posed.

The imperfect reconstruction from our method is probably

caused by the lack of change in camera viewpoint.

Figure 5: Failure cases: Images (top row) and their respective re-

constructions (bottom row). The first two shapes appear largely

incorrect.

5.3. NonDevelopable Objects

We use two different datasets to perform NRSfM on

non-developable surfaces. They are complex objects where

some of the compared methods are not even applicable, for

example, p-isolh requires registration warps, which is non-

trivial to implement in volumetric objects. We perform ex-

periments here to show what we can obtain in highly dif-

ficult non-rigid reconstruction applications. Below we de-

scribe the datasets and the experiments performed.

The Stepping Trousers dataset. The dataset [31] is con-

structed from motion capture ground truth data with per-

spective projection. The data shows a pair of trousers step-

ping around with considerable rapid deformations of the

cloth. The images are obtained at a resolution of 640 px ×
480 px with a perspective camera of focal length 320 px.

The dataset is semi-synthetic but due to articulations, vol-

ume/partial views and rapid nonlinear deformations, it is

arguably the most complex data used for NRSfM to date.

Unlike the flag dataset, missing correspondences are signif-

icant due to self-occlusions. The missing correspondences

are handled by filling in the correspondences using [16] for

all methods except ours. Figure 6 shows three reconstructed

frames. From top to bottom, it shows our best reconstruc-
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tion, a reconstruction with medium accuracy and our worst

reconstruction. Alongside we show the reconstructions for

the compared method o-spfac. Note that it is non-trivial to

implement the compared methods in the missing data sce-

nario without using a low-rank prior. Thus we only test the

best performing low-rank method o-spfac. The plots of 3D

error for each image for these two methods are shown in

figure 7. Because this is a large object, the 3D RMSE error

can be large, yet the reconstructions can appear reasonable.

We therefore also measure accuracy with a relative 3D re-

construction error, which is defined as follows:

% 3D error =
‖PGT −PREC‖fro

‖PGT ‖fro

(5)

where PGT represents the ground truth 3D shape (3 × n
matrix) and PREC represents the reconstructed 3D shape.

We obtain a mean 3D error of 22.54 mm and % 3D error of

2.37% for our method while for o-spfac those are 51.5 mm

and 11.56% respectively. Our results indeed show that large

objects with complex deformations in small scale can be re-

constructed with our method, although some difficulties can

be seen primarily due to high surface curvature. The recon-

structions and the plot show that our method can capture a

large portion of the deformations correctly even though the

parts of the object undergoing deformation are very small in

the image, making the projections almost affine. In certain

cases, however, it estimates the shapes incorrectly on those

parts as shown in the third reconstruction of the sequence in

figure 6.

The hand dataset. In tasks such as gesture recognition,

several applications require reconstructing a moving hand.

When such a task is done, usually a specialized modeling

of hand motion and its articulations is used. We show that

an accurate reconstruction of a deforming hand can be done

solely with the inextensibility prior using our method. We

test with two sequences of a deforming hand recorded by

an endoscopic camera. The camera images are of dimen-

sions 960× 540 px, taken with a focal length of 462 px and

capture detailed texture. We obtain ground truth reconstruc-

tions of the first and last frame using stereo and post pro-

cessing. We compute correspondences by densely tracking

the hand’s texture using [6]. Note that the correspondences

are not perfect due to image noise and weak texture. Be-

cause most methods cannot handle a huge number of points,

we uniformly subsample to 1000 points. Figure 8 shows

reconstructions of the hand compared to ground truth for

our method, o-spfac and p-isolh (which were the best per-

forming state-of-the-art methods). The results show that our

method can handle complex deformations of a hand. Both

the compared methods were unable to capture the second

deformation where they gave rather planar or smooth sur-

faces with 3D error of over 60 mm. On the other hand we

Color code for 3D error in mm

3D RMSE = 10.87 mm

3D RMSE = 24.59 mm

3D RMSE = 44.21 mm

3D RMSE = 56.30 mm

3D RMSE = 80.50 mm

3D RMSE = 63.50 mm

tlmdh o-spfac

Figure 6: Reconstructions of the stepping trousers dataset for our

method and o-spfac. Top row shows the reconstructed meshes

overlaid on top of the ground truth. Bottom row shows the recon-

structed mesh texture mapped with 3D error for each face in the

color code shown. Note that we show our best result in the first

column and the worst in the last column with a medium accuracy

result in the middle.
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Figure 7: Plot of the depth error in trousers for each sampled image

(legend in figure 3).

obtain a slightly higher 3D error of 7.38 mm in the third

column.

5.4. NRSfM with Rigid Objects

All rigid objects are isometric, therefore our NRSfM

method can be used to reconstruct rigid scenes. However

isometry is weaker than rigidity, so it can be expected to per-

form slightly worse. Nonetheless it is interesting to study

such cases for two reasons. First our method gives a convex
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Figure 8: Results on the hand dataset. We use the best performing methods in other datasets for comparison: o-spfac and p-isolh. Ground

truth is shown for three images, overlaid on top of the reconstructions. We texture map the meshes and show qualitative results for the two

other images where ground truth 3D is not available.

solution to the problem with a general number of images,

which has not been seen before in rigid SfM with perspec-

tive cameras. It may therefore find uses for initialising rigid

bundle adjustment. The second reason is for a theoretical

understanding of our method using rigid scenes, which may

be simpler to analyse than for deformable scenes. For ex-

ample, it may be interesting to study the critical motions as-

sociated with the inextensibility relaxation. We show some

results from the public dataset [17] on the house sequence

using SIFT correspondences. We plot the average % 3D er-

ror for each of the 49 images for our method and compare

this to a state-of-the-art rigid SfM method (VisualSfM [32]).

We see that a reasonable error is obtained for the majority

of the images.
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Figure 9: Results on rigid scenes. VisualSfM results are shown in

cyan dots.

6. Conclusions

We have brought forward the MDH-based formulation,

which has enjoyed great success in inextensible template-

based reconstruction, to the more general problem of tem-

plateless non-rigid reconstruction known as NRSfM. We

have shown that this leads to a convex formulation, which

can be solved globally and optimally as an SOCP problem.

This forms the first convex, global and optimal NRSfM for-

mulation based on physical constraints. Results on syn-

thetic and real images have shown a great promise and

our method outperforms existing ones by a large margin in

many cases. In future work, we plan to study the inclusion

of outliers in our formulation using slack variables and a

theoretical study of the problem’s conditioning.
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