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Abstract

This paper considers the problem of recovering a sub-

space arrangement from noisy samples, potentially cor-

rupted with outliers. Our main result shows that this prob-

lem can be formulated as a convex semi-definite optimiza-

tion problem subject to an additional rank constrain that in-

volves only a very small number of variables. This is estab-

lished by first reducing the problem to a quadratically con-

strained quadratic problem and then using its special struc-

ture to find conditions guaranteeing that a suitably built

convex relaxation is indeed exact. When combined with

the standard nuclear norm relaxation for rank, the results

above lead to computationally efficient algorithms with op-

timality guarantees. A salient feature of the proposed ap-

proach is its ability to incorporate existing a-priori infor-

mation about the noise, co-ocurrences, and percentage of

outliers. These results are illustrated with several examples.

1. Introduction

Many practical problems involve fitting piecewise mod-

els to a given set of sample points. Examples of applications

include image compression [11], face recognition [3], mo-

tion segmentation [21], video segmentation [19] and system

identification [15]. Due to its importance, a substantial re-

search effort has been devoted to this problem, leading to

many algorithms, that can be roughly classified into statis-

tical, algebraic and self-representation based.

RANdom SAmple Consensus (RANSAC) [8] is an iter-

ative approach that proceeds by fitting one subspace at each

iteration to as many points as possible, using a sampling

based approach, removing these inliers from the dataset and

repeating the process, until a given threshold on the percent-

age of inliers has been exceeded. While in principle the al-
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gorithm provides robust estimates of the parameters of the

subspaces, it may require a large number of iterations to do

so. On the other hand, due to its random nature, limiting the

number of iterations may lead to arbitrarily bad solutions.

Algebraic methods such as GPCA [16], exploit the prop-

erties of subspace arrangements by reducing the problem

to estimating the coefficients of a multivariate polynomial

from noisy measurements of its zeros. Once this polynomial

has been found, the parameters of each subspace can be re-

covered via polynomial differentiation. While GPCA works

well with clean data, its performance degrades quickly with

the noise level. This drawback has motivated the approach

in [18], where the original data is “cleaned” via rank min-

imization. Although this approach is shown to be capable

of handling substantial noise level, its main drawback is its

computational complexity. In addition, in the presence of

noise there are no guarantees that the resulting polynomial

can be factored as a product of linear forms (and hence the

parameters of the subspaces are recovered).

Due to these drawbacks, several methods have been re-

cently proposed to handle noisy samples by exploiting the

geometric properties of subspaces to reduce the problem to

that of looking for sparse or low rank solutions to a set

of linear equations that encode the fact that subspaces are

self-expressive (e.g. a point in a subspace can be expressed

as a linear combination of other points in it). These meth-

ods include Sparse Subspace Clustering (SSC) [7], Robust

PCA (RPCA) [5], Low Rank Representation (LRR) [13],

Fixed Rank Representation (FRR) [14] and Robust Sub-

space Clustering (RSC) [19]. All of these methods typically

involve using relaxations (such as nuclear norm for rank and

the ℓ1 norm for sparsity), in order to obtain tractable convex

problems1. While in the noiseless case these relaxations are

exact under suitable conditions on the distribution of the

data, in the presence of noise such guarantees are usually

lost. Further, finding the parameters of the subspaces re-

1FRR uses directly a non-convex formulation, but it is shown that, for

noiseless data, the global optimum has a closed form solution.
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quires performing first a spectral clustering to cluster the

data. Thus, there is no direct control on the fitting error.

Paper contributions:

Motivated by these difficulties, in this paper we propose

an alternative method for recovering a subspace arrange-

ment from noisy samples. Its main idea is to recast the prob-

lem as a rank constrained semi-definite program, which in

turn is relaxed to a sequence of convex optimization prob-

lems by using a reweighted nuclear norm as a surrogate for

rank. We also provide easily testable conditions certifying

that the relaxation is exact. Specifically, the contributions

of the paper are:

• Establishing that the problem of subspace clustering

can be recast into a quadratically constrained quadratic

program (QCQP).

• Exploiting the sparse structure underlying this QCQP

to show that it is equivalent to a convex semi-definite

program subject to an additional (non-convex) rank

constraint that involves only a very small number of

variables (roughly the number of parameters needed to

characterize the subspaces). Notably, the size of this

constraint is independent of the number of data points

to be clustered.

• Using the results above, together with the special

sparse structure of the problem, to obtain convex relax-

ations whose computational complexity scales linearly

with the number of data points, along with conditions

certifying optimality of these relaxations.

• Developing a clustering algorithm that, contrary to

most existing techniques, directly identifies a set of

subspace parameters that guarantees a fitting error

lower than a given bound. Further, this algorithm can

easily accommodate existing co-ocurrence informa-

tion (points known to be in the same or different sub-

spaces), bounds on the number of outliers, and priors

on the relative frequency of each subspace, to improve

clustering performance. To the best of our knowledge,

this ability is not shared by any other existing method.

The above contributions are illustrated with several ex-

amples, including both synthetic and real data, where the

ability to incorporate priors is key to obtaining the correct

segmentation.

2. Preliminaries

2.1. Notation

R, N set of real number and non-negative integers

I Identity matrix

M � N the matrix M−N is positive semidefinite

σi(A) the i-th largest singular value of matrix A

Tr(A) trace of the square matrix A

2.2. Some properties of QCQP

In this paper we will reduce the subspace clustering

problem to a QCQP of the form:

p∗ = min
v∈Rn

f0(v)

s.t. fi(v) ≤ 0, ∀qi=1

Av ≤ b,

(1)

where fi(v) = vTQiv + cTi v + di and Qi ∈ R
n×n is a

symmetric matrix, for ∀i = 0, 1, . . . , q, A ∈ R
m×n and

b ∈ R
m. In the case where Qi � 0 for each i, the QCQP

(1) is a convex programming problem that can be solved in

polynomial time [2]. On the other hand, it is well known

that, in the general case the problem is NP-hard. Neverthe-

less, since these problems are ubiquitous in a wide range

of areas, extensive efforts have been devoted to developing

tractable relaxations and associated optimality certificates

(see for instance [6, 4, 2] and references therein). In partic-

ular, a relaxation of interest in this paper can be obtained by

introducing a new variable V ∈ R
n×n and rewriting (1) as:

p∗ = min
v,V

Tr(Q0V) + cT0 v + d0

s.t. Tr(QiV) + cTi v + di ≤ 0, ∀qi=1

Av ≤ b

V = vvT ,

(2)

where the non-convexity appears now only in the last equal-

ity constraint. A convex relaxation of this problem that

provides a lower bound of the cost can now be obtained

by replacing V = vvT with the convex positive semi-

definiteness constraint V − vvT � 0, leading to the semi-

definite program (SDP) [22]:

p̃∗ = min
v,V

Tr(Q0V) + cT0 v + d0

s.t. Tr(QiV) + cTi v + di ≤ 0, ∀qi=1

Av ≤ b
[

1 vT

v V

]

� 0

(3)

We will refer to this as the SDP relaxation of (1).

Remark 1. Since (3) is a relaxation of (1), then p̃∗ ≤ p∗.

A trivial sufficient condition for p̃∗ = p∗ is V∗ = v∗v∗T ,

that is, rank of

[

1 v∗T

v∗ V∗

]

is 1.

2.3. A reduced QCQP relaxation

While the relaxation (3) is convex, it has relatively poor

scaling properties, due to the semi-definite constraint (re-

call that for n × n matrices, the computational complexity

of these constraints scales as n6). However, the problem

often (as in this paper) has an underlying sparse structure

that can be exploited to mitigate this growth. For notational
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simplicity and without loss of generality (by absorbing lin-

ear terms into quadratic ones), rewrite the problem as

p∗ = min
v∈Rn

f0(v) s.t. fi(v) ≤ 0, ∀qi=1 (4)

where fi(v) = vTQiv + cTi v + di.

Assume that {vk}
l
k=1 are subsets of v, satisfying

∪l
k=1vk = v, each constraint fi(v) for i = 1, . . . , q, de-

pends only on a subsets of variables vk, and that the ob-

jective function f0(v) can be partitioned into a sum of the

form f0(v) =
∑l

k=1 pk(vk). Problem (1) is said to sat-

isfy the running intersection property [12] if there exists a

reordering vk′ of vk such that for every k′ = 1, . . . , l − 1:

vk′+1 ∩ (∪k′

j=1vj) ⊆ vs for some s ≤ k′. (5)

Then a convex relaxation of (1) can be obtained by replac-

ing the condition M
.
=

[

1 vT

v V

]

� 0 with positive semi-

definiteness of a collection of smaller matrices as follows:

p̃∗sparse = min
Mk

∑l
k=1 Tr(Q̄k,0Mk)

s.t. Tr(Q̄iMi) ≤ 0, ∀qi=1

Mk � 0, ∀lk=1

Mi(Iij , Iij) = Mj(Iij , Iij), ∀
l
i,j=1, i 6= j

(6)

where Q̄k,0 and Q̄i are symmetric matrices built from

{Qi, ci, di}. Mi(Iij , Iij) denotes the block of Mi with

rows and columns corresponding to
[

1 vT
i ∩ vT

j

]T
.

In the sequel, we will refer to the relaxation above as the

“reduced SDP” relaxation. Clearly, p̃∗sparse ≤ p̃∗ ≤ p∗,

since the relaxation (6) is looser than (3). However, under

certain conditions, the equality holds.

Theorem 1. If (4) satisfies the running intersection, then

a sufficient condition for p̃∗sparse = p̃∗ = p∗ is that

rank(Mk) = 1, k = 1, . . . , l.

Proof. This is a special case of Theorem 3.7 in [12].

3. Problem Statement

The goal of this paper is to estimate a set of subspaces

from noisy samples such that certain priors are satisfied, or

show that none exists. Formally, this can be stated as:

Problem 1. Given:

• A set of noisy samples X = {xj ∈ R
n : xj =

x̂j +ηj}
Np

j=1, drawn from Ns distinct linear subspaces

{Si ⊂ R
n}Ns

i=1 of dimension n − 1 of the form Si =
{x̂ ∈ R

n : rTi x̂ = 0, ri ∈ R
n, ‖ri‖2 = 1}.

• A-priori information consisting of (i) a bound ǫ on the

distance from the noisy sample to the subspace it is

drawn from, (ii) a bound No on the number of outliers,

(iii) Nfi , the relative frequency of each subspace, and

(iv) point wise co-occurrence information.

Establish whether the data is consistent with the a-priori

assumptions and, if so, find a set of subspaces compatible

with the a-priori information and assign the (inlier) sam-

ples to each subspace. That is, find {ri ∈ R
n}Ns

i=1 and a

partition of the samples in Ns + 1 sets {Xi}
Ns

i=1,Xo such

that card(Xo) ≤ No and card(Xi) = NfiNp for each

i = 1, . . . , Ns,and

|rTi x| ≤ ǫ holds for ∀x ∈ Xi. (7)

4. A Convex Approach to Clustering

In this section we present the main result of this paper,

a convex optimization approach to solving Problem 1. The

main idea is to first recast the problem into an equivalent

non-convex QCQP, which in turn can be reduced to an SDP

subject to a non-convex rank constraint by exploiting the re-

sults outlined in section 2.2. Next, by exploiting the struc-

ture of the problem, we show that this non-convex rank con-

straint needs to be enforced only on a single matrix of a

small size (substantially smaller than those involved in the

reduced SDP relaxation). Finally, combining these results

with standard nuclear norm surrogates for rank leads to the

desired algorithm. For simplicity we will consider first the

case with no outliers (No = 0), and without constraints on

the relative frequency and co-ocurrences. The handling of

these cases will be covered in sections 4.4 and 4.5 after pre-

senting the basic algorithm and supporting theory.

4.1. Clustering as a Nonconvex QCQP

It can be easily shown that by introducing a set of binary

variables {si,j} that indicate whether xj is drawn from Si

or not, Problem 1 is equivalent to:

Problem 2. Determine the feasibility of the following set of

quadratic inequalities:



































|si,jr
T
i xj | ≤ ǫsi,j , ∀

Ns

i=1∀
Np

j=1 (8a)

s2i,j = si,j , si,j ≥ 0, ∀Ns

i=1∀
Np

j=1 (8b)

ΣNs

i=1si,j = 1, ∀
Np

j=1 (8c)

rTi ri = 1, ∀Ns

i=1 (8d)

r1(1) ≥ r2(1) ≥ · · · ≥ rNs
(1) ≥ 0 (8e)

Here, (8a) is equivalent to |rTi xj | ≤ ǫ if si,j 6= 0 (hence

xj ∈ Xj) and trivially satisfied otherwise; (8b) imposes

that si,j ∈ {0, 1}; (8c) forces each sample xi to be assigned

to exactly one subspace; and (8e) eliminates the symmetry

of the solutions. Thus, if (8) is feasible, then the subspaces

recovered are characterized by their normals {ri}. On the

other hand, infeasibility of (8) invalidates the a-priori infor-

mation given in Problem 1.

Clearly, Problem 2 is a QCQP of the form (1), albeit non-

convex due to the constraints (8a), (8b) and (8d). Applying
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the SDP relaxation outlined in Section 2.2 leads to the fol-

lowing result.

Theorem 2. Problem 2 is equivalent to establishing feasi-

bility of











Tr(QkM) ≤ 0, ∀Kk=1 (9a)

M � 0, M(1, 1) = 1 (9b)

rank(M) = 1 (9c)

where (9a) denotes the linear (in)equalities,and M(i, j) de-

notes the (i,j) entry of M.

Proof. It follows from Remark 1 by collecting all variables

in (8) in a vector v ∈ R
Ns(n+Np), that is,

v
.
= [rT1 , · · · , r

T
Ns

, s1,1, · · · , sNs,1, · · · , s1,j , · · · , sNs,j ,

· · · , s1,Np
, · · · , sNs,Np

]T ,

and defining the rank 1 matrix M =

[

1 vT

v vvT

]

.

Corollary 1. Consider the convex SDP problem

{

Tr(QkM) ≤ 0, ∀Kk=1

M � 0, M(1, 1) = 1
(10)

If (10) is infeasible, then Problem 2 is also infeasible. On

the other hand, if this problem admits a rank 1 solution M∗,

then M∗(2 : (n+Np)Ns + 1, 1) is also a feasible solution

to Problem 2.

In principle, from the results above, one could attempt

to solve Problem 2 by solving (10) or (9) where the

rank constraint is relaxed to one involving minimizing the

reweighted nuclear norm. Note however, that both (10) and

(9) require solving SDPs whose computational complexity

scales as [Ns(n + Np) + 1]6, limiting the use of the algo-

rithm to relatively few points.As shown next, these difficul-

ties can be circumvented by exploiting the sparse structure

of the problem.

4.2. Exploiting the Sparse Structure

To exploit the sparse structure of the problem, parti-

tion the constraints in (8) into the Np + 1 sets Pj , j =
0, 1, . . . , Np:

P0 :

{

rTi ri = 1, ∀Ns

i=1

r1(1) ≥ r2(1) ≥ · · · ≥ rNs
(1) ≥ 0,

∀
Np

j=1, Pj :











|si,jr
T
i xj | ≤ ǫsi,j , ∀

Ns

i=1

s2i,j = si,j , si,j ≥ 0, ∀Ns

i=1
∑Ns

i=1 si,j = 1.

It is easily seen that P0 is only associated with vari-

ables v0 = [rT1 , . . . , r
T
Ns

]T ∈ R
nNs , for j =

1, . . . , Np, Pj is only associated with variables vj =
[vT

0 , s1,j , . . . , sNs,j ]
T ∈ R

(n+1)Ns , and that each Pj can

be reformulated as a set of quadratic constraints of the form

vT
j Qk,jvj + cTk,jvj + dk,j ≤ 0, ∀

Kj

k=1, (11)

where Kj is the number of constraints in Pj .

Notice that vj ∩
(

∪j−1
k=0vk

)

= v0 holds for ∀j =

1, . . . , Np and that ∪
Np

j=0vj = v. Thus, (8) exhibits the run-

ning intersection property and the results in Section 2.3 al-

low to reformulate (9) involving positive semi-definiteness

of matrices of substantially smaller size than that of M in

(9). To this effect, introduce positive semi-definite matri-

ces of the form Mj =

[

1 mj(v
T
j )

mj(vj) mj(vjv
T
j )

]

for j =

0, 1, . . . , Np, where mj(•) is a variable locating in the same

position as • in

[

1 vT
j

vj vjv
T
j

]

, and consider the following

rank constrained SDP problem:

Problem 3. Determine the feasibility of



























Tr(Q̄k,jMj) ≤ 0, ∀
Kj

k=1, ∀
Np

j=0 (12a)

Mj � 0,Mj(1, 1) = 1, ∀
Np

j=0 (12b)

Mj(1 : nNs + 1, 1 : nNs + 1) = M0, ∀
Np

j=1 (12c)

rank(Mj) = 1, ∀
Np

j=0 (12d)

where Q̄k,j
.
=

[

dk,j 0.5cTk,j
0.5ck,j Qk,j

]

and M(1:j,1:j) denotes

the sub matrix formed by the first j rows and columns of M.

From Theorem 2 it follows that the problem above is

equivalent to Problem 2. However, contrary to (10), it in-

volves Np + 1 matrices of dimension around [(n+ 1)Ns +
1]× [(n+ 1)Ns + 1]. Hence its computational complexity

grows as Np[(n+ 1)Ns]
6, that is, linearly with the number

of data points. However, this formulation requires enforc-

ing (Np +1) rank constraints, a very challenging task. Sur-

prisingly, as shown next, the special structure of the prob-

lem makes Np of these constraints redundant, allowing for

developing an equivalent of Problem 2 with a single rank

constraint imposed on a (nNs + 1)× (nNs + 1) matrix.

Theorem 3. Problem 2 is equivalent to checking the feasi-

bility of
{

(12a) − (12c)

rank(M0) = 1.
(13)

Proof. Given in the Appendix.

4.3. A Convex Optimization Based Algorithm

Theorem 3 suggests that a convex algorithm whose com-

plexity scales linearly with the number of data points can
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be obtained by seeking rank-1 solutions to (13) via itera-

tive minimization of a re-weighted nuclear norm of M0 [17]

subject to (12a)-(12c). This idea leads to Algorithm 1.

Algorithm 1 Subspace Clustering via QCQP

1: Initialize: k = 0, W(0) = I, 0 < δ ≪ 1, kmax

2: repeat

3: solve

{M
(k)
j } = argmin Tr(W(k)M0)

s.t. (12a) − (12c)

4: update W(k+1) = [M
(k)
0 +σ2(M

(k)
0 )]−1, k = k+1;

5: until σ2(M
(k)
0 ) < δσ1(M

(k)
0 ) or k > kmax.

4.4. Handling Outliers

Outliers, defined as points x that lie beyond a given dis-
tance ǫ from every subspace in the arrangement, (e.g. such
that mini |r

T
i x| > ǫ) can be handled by simply relaxing the

requirement that each point must be assigned to a certain
subspace, leading to the following QCQP:

p∗ = max
∑Np

j=1

∑Ns

i=1
si,j

s.t. |si,jr
T
i xj | ≤ ǫsi,j , s

2

i,j = si,j ∀
Ns
i=1

∀
Np

j=1
∑Ns

i=1
si,j ≤ 1, ∀

Np

j=1

rTi ri = 1, ∀Ns
i=1

r1(1) ≥ r2(1) ≥ · · · ≥ rNs(1) ≥ 0

(14)

which seeks to maximize the number of inliers.

Since (14) exhibits a sparsity pattern similar to that in

(8), it can be solved by a modified version of Algorithm 1,

where the equality constraint
∑Ns

i=1 si,j = 1 is replaced by
∑Ns

i=1 si,j ≤ 1 (to accommodate the case where xj is an

outlier), and the objective function is replaced by

p̃ = ΣNs

i=1Σ
Np

j=1(1−mj(si,j)) + λTr(W(k)M0), (15)

where λ > 0 is a parameter. Thus, this objective function

penalizes both the number of outliers and the rank of M0.

Remark 2. A bound No on the number of outliers can be

handled via a constraint of the form
∑Ns

i=1

∑Np

j=1 si,j ≥
Np −No. However, since this constraint subverts the spar-

sity of the problem, the formulation (14) is preferable.

4.5. Handling Additional A-Priori Information

In many scenarios of practical interest, a-priori informa-

tion on the labels of some sample points is available. For

instance, in surveillance videos, it is easy to identify points

lying on buildings, and hence background, and often points

belonging to moving targets. Similarly, in many situations,

information is available about the size of the target, and thus

on the relative frequency of points in the corresponding sub-

space. As shown below, this additional information can be

incorporated into our formulation by simply adding suitable

quadratic constraints on the variables si,j . Specifically:

(i) f% of X belongs to Si ⇐⇒
∑Np

j=1 si,j = 0.01fNp;

(ii) xm,xn belong to the same subspace ⇐⇒ si,m =
si,n, ∀i = 1, · · · , Ns;

(iii) xm,xn belong to different subspaces ⇐⇒ si,msi,n =
0, ∀i = 1, · · · , Ns.

The advantages of being able to exploit this information will

be illustrated in Section 6.2.

4.6. Recovery Properties

A salient feature of the proposed approach is its ability

to certify optimality of the solution provided by Algorithm

1. Specifically, from Theorem 3 it follows that, in the case

of data corrupted by outliers, rank(M0) = 1 certifies that

the correct clustering has been found. Similarly, in the pres-

ence of noise, this condition guarantees that the recovered

subspaces fit the inliers within the given noise bound ǫ, and

are consistent with the given a-priori information.

5. Further Complexity Reduction

As discussed in section 4.2, exploiting the sparse struc-

ture of the problem leads to Algorithm 1 which only re-

quires imposing positive semi-definiteness on Np + 1 ma-

trices of dimension at most [(n+1)Ns+1]×[(n+1)Ns+1].
Hence, its complexity scales as (nNs)

6. Further computa-

tional complexity reduction can be achieved by proceeding

in a greedy fashion where subspaces are determined step by

step rather than simultaneously as in Section 4.3. At each

step, samples drawn from a specific subspace are consid-

ered as inliers while all other points are considered outliers.

Thus, instead of introducing Ns binary variables {si,j}
Ns

i=1

for each sample as in Section 4.2, here only one binary vari-

able sj is needed to indicate whether xj is an inlier. At each

step the resulting problem reduces to a QCQP of the form:

p∗ = max
sj ,r

∑Np

j=1 sj

s.t. |sjr
Txj | ≤ ǫsj , s

2
j = sj , ∀

Np

j=1

rT r = 1, r(1) ≥ 0

(16)

Proceeding as in section 4.2 it can be shown that this prob-

lem also exhibits the running intersection property. Com-

bining this observation with a reasoning similar to the one

used in the proof of Theorem 3 leads to the following result:

Theorem 4. The problem (16) is equivalent to

p̃∗ = max
Mj

∑Np

j=1
mj(sj)

s.t. Tr(Q̄k,jMj) ≤ 0, ∀
Kj

k=1
, ∀

Np

j=0

Mj � 0,Mj(1, 1) = 1, ∀
Np

j=0

Mj(1 : n+ 1, 1 : n+ 1) = M0, ∀
Np

j=1

rank(M0) = 1.

(17)
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Remark 3. Compared to the nongreedy formulation (12),

the number of variables and the size of the positive semi-

definite matrix in (17) are reduced to O(n2) and O(n) re-

spectively, independent of the number of subspaces Ns.

This result leads to Algorithm 2 for subspace clustering.

Algorithm 2 Greedy Subspace Clustering by QCQP

1: Initialize: ns = 0, no = Np, Xo = X, N =
{1, . . . , No};

2: while no > n− 1 do

3: ns = ns + 1;

4: solve (17) by re-weighted nuclear norm relaxation of

rank with samples Xo;

5: J ⊂ N is the union of j with sj = 1, then xj ∈ Sns
,

Xo = Xo \ {xj , j ∈ J}, N = N \ J , and no =
no − cardinality(J);

6: end while

6. Experiments

In this section, we demonstrate the advantage of the pro-

posed method using both synthetic data and a non-trivial

application: planar segmentation by homography learning.

6.1. Synthetic Data

We first investigate the performance of the QCQP-based

subspace clustering algorithm on synthetic data as the num-

ber of subspaces, their dimensions and noise levels changed.

For each set of experiments, we randomly generated 20 in-

stances with sample points lying on a union of multiple

linear subspaces corrupted by noise, normal to the corre-

sponding subspace, and with uniform random magnitudes

in [0.8ǫ, ǫ]. A comparison of the performance of Algorithm

1, implemented in Matlab using CVX [9], against exist-

ing state-of-the-art methods is summarized in Table 12. As

shown there, in all cases the proposed method outperformed

the others in terms of the worst-case fitting error of the iden-

tified subspaces, given by:

errf = max
j∈{1,··· ,Np}

min
i∈{1,··· ,Ns}

|rTi xj |

s.t. ||ri||2 = 1, ∀Ns

i=1

where ri’s are the normals to the subspaces found by each

algorithm. For algorithms that cannot obtain ri directly, like

SSC and LRR, we calculated ri by fitting a subspace to each

cluster of points produced by the algorithm.

Next, the effect of outliers was investigated, by randomly

corrupting 4 to 6 points with noise of magnitude 3ǫ (the dis-

tribution of the data is shown in Fig. 1). Using Algorithm 1

2In order to provide a meaningful comparison, for each set of exper-

iments, the adjustable parameters of each of the algorithms listed in the

table were experimentally tuned to minimize the misclassification rate.
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Figure 1: Fitting inliers vs. Fitting both Inliers and Outliers

modified to solve (14) instead of (8) led to the results shown

in the last row of Table 1. As shown there, the proposed al-

gorithm could detect the outliers (black dots) precisely and

fit the inliers to subspaces within the given error bound.

6.2. Planar Segmentation

In this section we illustrate the advantages of taking into

account prior information in subspace clustering by apply-

ing our algorithm to planar segmentation by homography

estimation, which is an important problem in image reg-

istration and computation of camera motion [10]. Given

the homogeneous coordinates of Np correspondences from

two images {(pj ,p
′
j)}

Np

j=1 ∈ R
3, assuming that these Np

points are on the same plane, let pj =
[

xj yj 1
]T

and

p′
j =

[

x′
j y′j 1

]T
, and let H ∈ R

3×3 denote the homog-

raphy. Then h
.
= vectorize(HT ) satisfies

[

xT
j

xT
j+Np

]

h = 0, with

{

xT
j =

[

pT
j 01×3 −x′

jp
T
j

]

xT
j+Np

=
[

01×3 pT
j −y′

jp
T
j

] (18)

meaning h lies in the null space of the matrix X =
[

x1 x2 · · · x2Np

]T
.

Now assume that {(pj ,p
′
j)}

Np

j=1 are distributed on Ns

different planes (shown as the purple dots in Figure 2 ). In

this case (18) no longer holds for all j = 1, · · · , Np with

a single h. Instead the planes can be segmented by cluster-

ing {xj}
2Np

j=1 to Ns subspaces Si, characterized by different

normal vectors hi, i = 1, · · · , Ns (shown as the blue dots

and red dots in Fig. 2). Thus subspace clustering techniques

can be applied to planar segmentation. Specifically, we can

formulate this problem as seeking a feasible solution to:



























||hi||
2
2 = 1, ∀Ns

i=1 (19a)

|si,jh
T
i xj | ≤ ǫsi,j , s

2
i,j = si,j , ∀

Ns

i=1∀
2Np

j=1 (19b)

ΣNs

i=1si,j = 1, ∀
2Np

j=1 (19c)

si,j = si,j+Np
, ∀Ns

i=1∀
Np

j=1 (19d)

where (19a)-(19c) define a subspace clustering problem

similar to Problem 2, and (19d) represents the prior in-

formation that xj and xj+Np
should be in the same sub-

space since they are derived from a single correspondence

(pj ,p
′
j) as in (18), which cannot be enforced by the exist-

ing subspace clustering methods.
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Table 1: Performance comparison for different synthetic data scenarios, n: dimension of data, di: Dimension of each subspace, Ni:

Number of samples on each subspace, ǫ: error bound, µ and σ: mean and standard deviation of errf, (*): experiments with outliers.
n di Ni ǫ Algorithm 1 Denoised GPCA[18] GPCA SSC LRR

3 [2 2] [50 50] 0.10
µ = 0.0992
σ = 0.0003

µ = 0.1015
σ = 0.0034

µ = 0.1234
σ = 0.0230

µ = 0.2465
σ = 0.0705

µ = 0.3349
σ = 0.1565

3 [2 2] [50 50] 0.15
µ = 0.1485
σ = 0.0008

µ = 0.1608
σ = 0.0140

µ = 0.2980
σ = 0.1696

µ = 0.3224
σ = 0.0831

µ = 0.4054
σ = 0.1417

3 [2 2] [50 50] 0.20
µ = 0.1978
σ = 0.0010

µ = 0.2020
σ = 0.0143

µ = 0.4495
σ = 0.1459

µ = 0.3793
σ = 0.1112

µ = 0.4635
σ = 0.1083

4 [3 3] [50 50] 0.15
µ = 0.1481
σ = 0.0013

µ = 0.2058
σ = 0.1029

µ = 0.3229
σ = 0.1430

µ = 0.3495
σ = 0.0588

µ = 0.3622
σ = 0.0885

2 [1 1 1] [40 40 40] 0.10
µ = 0.0993
σ = 0.0003

µ = 0.2190
σ = 0.0212

µ = 0.4943
σ = 0.0173

µ = 0.1649
σ = 0.0452

µ = 0.1021
σ = 0.0071

2(∗) [1 1 1] [40 40 40] 0.10
µ = 0.0996
σ = 0.0003

µ = 0.4601
σ = 0.1355

µ = 0.6362
σ = 0.1219

µ = 0.2986
σ = 0.1086

µ = 0.2223
σ = 0.0461

Figure 2: Images for Planar Segmentation: Merton I

We tested on three pairs of real images Merton I, Mer-
ton II, and Wadham, given by VGG, University of Oxford.
Given each pair of images, firstly VLfeat toolbox [23] was
used to obtain the SIFT features of two images, and corre-
spondences were defined by those pairs of points whose ℓ2
norm are less than 5. Among these correspondences, we
randomly generated 20 instances with 30 correspondences
on each plane and Ns = 2. ǫ was determined by calculating
a ground truth homography matrix for each plane, H1, H2

and ǫ = max{erf1, erf2}, erfi = maxj∈Si
|xT

j vec(HT
i )|,

i = 1, 2. Performance was evaluated by the misclassifica-
tion rate err1 among 2Np samples, with

errl =

(

Number of Points with Different

Labels from the Ground Truth

)

Total Number of Sample Points 2Np

× 100%. (20)

Analysis. As reported in Table 2, our proposed approach
outperformed GPCA and the denoised GPCA proposed in
[18]. For LRR and SSC given by

(LRR):min ||Z||∗ + λ||E||2,1, s.t. X = XZ+E

(SSC):min ||C||1 + 0.5τ ||E||2F , s.t. X = XC+E, diag(C) = 0,

we plotted the performance for λ ∈ [10−4, 1] and τ ∈
[10−3, 10] in Fig. 3, from which we can see that the range

of λ (τ ) for LRR (SSC) to be competitive with the proposed

approach in terms of classification accuracy, is quite small,

roughly λ∗ ∈ [0.003, 0.01], τ∗ ∈ [0.4, 0.7]. Thus, in this

case, LRR and SSC were quite sensitive to the parameters,

as shown in Fig. 3 and Fig. 4. In addition, such small val-

ues of λ∗ (or τ∗) placed virtually no penalty on the noise
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Figure 3: Average Performance of LRR and SSC over 20 Instances
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Figure 4: Variance of LRR and SSC over 20 Instances

terms. As a result, they yielded solutions where the de-

noised data X−E fitted poorly the actual data. For example,

for λ = 0.01, the misclassification rate of LRR for Merton I

was 3.33%. However, as shown in Fig. 5, LRR produced a

solution where where X and E had roughly the same scale.

A similar situation (also shown in Fig. 5) arised with SSC

when τ = 0.55, the value yielding the lowest misclassifi-

cation rate (5%). In contrast, the proposed method did not
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have to be tuned and yielded an accurate estimate of the

homography parameters.

Indices of Samples: j
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Figure 5: Denoised Data vs. Noise. (Left: LRR with λ = 0.01;

Right: SSC with τ = 0.55)
The specific reason why the existing methods per-

formed worse is the structure of the samples for (19). It

is easy to show that [ x1 x2 . . . xNp ] =

[

∗
03×Np

∗

]

,

and [ xNp+1 xNp+2 . . . x2Np ] =

[

03×Np

∗
∗

]

,where ∗

denotes the nonzero entries. Thus, without any prior infor-

mation, the existing methods are likely to cluster {xj}
Np

j=1

to a subspace, and {xj}
2Np

j=Np+1 to the second subspace. On

the other hand, by enforcing the prior information that xj

and xNp+j , for j = 1, . . . , Np, belong to the same sub-

space, the proposed approach has an extremely low misclas-

sification rate. The running time of each method, averaged

over 60 instances, is summarized in Table 3.
Table 2: Average Performance for Planar Segmentation: (%)

Dataset Alg. 1 [18] GPCA

Merton I 4.29 (±3.45) 49.12 (±3.91) 50.00 (±0)

Merton II 2.33 (±2.85) 49.58 (±0.66) 46.04 (±10.99)

Wadham 1.33 (±2.19) 49.74 (±0.92) 45.69 (±7.02)

Table 3: Running Time (sec)
Alg. 1 [18] GPCA SSC LRR

683.74 730.94 0.1421 0.1904 0.3553

7. Conclusions

In this paper we propose a new approach to the prob-

lem of identifying an arrangement of subspaces from noisy

samples, potentially corrupted by outliers. The main idea

is to recast the problem into a QCQP, which in turn can

be solved by solving convex semi-definite programs. A

salient feature of the proposed approach is its ability to ex-

ploit available a-priori information on the percentage of out-

liers, relative number of points in each subspace and par-

tial labelings. These advantages were illustrated with sev-

eral examples comparing the performance of the proposed

method vis-à-vis existing ones. The main drawback of the

proposed method stems from the need to solve semi-definite

programs. However, exploiting the underlying sparse struc-

ture of the problem allows for imposing the semi-definite

constraints only on a collection of smaller matrices, lead-

ing to an algorithm whose complexity scales linearly with

the number of data points. Research is currently underway

seeking to further reduce the computational burden.

A. Proof of Theorem 3

(Necessity) Suppose v∗ is a feasible solution to (8), then

the rank-1 matrices M∗
j =

[

1 v∗T
j

v∗
j v∗

jv
∗T
j

]

, j = 0, .., Np,

are a feasible solution to (12).

(Sufficiency) Suppose M∗
j , j = 0, . . . , Np, is a feasible

solution to (12). Then from rank(M∗
0) = 1, we know

m0(ri(k)
2)∗ = m0(ri(k))

∗2, ∀Ns

i=1∀
n
k=1. (21)

Combining (21) and mj(s
2
i,j)

∗ = mj(si,j)
∗, from

M∗
j � 0, for j = 1, . . . , Np, it follows that its principal

minor Mj,i,k � 0, k = 1, .., n, i = 1, . . . , Ns,

Mj,i,k =





1 mj(ri(k))
∗ mj(si,j)

∗

mj(ri(k))
∗ mj(ri(k))

∗2 mj(ri(k)si,j)
∗

mj(si,j)
∗ mj(ri(k)si,j)

∗ mj(si,j)
∗



 ,

and its Schur complement of the first block is also positive
semi-definite, that is,

[

mj(ri(k))
∗2 mj(ri(k)si,j)

∗

mj(ri(k)si,j)
∗ mj(si,j)

∗

]

−

[

mj(ri(k))
∗

mj(si,j)
∗

]

[

mj(ri(k))
∗ mj(si,j)

∗
]

=

[

0 ∆
∆ mj(si,j)

∗ −mj(si,j)
∗2

]

� 0

(22)

where ∆ = mj(ri(k)si,j)
∗−mj(ri(k))

∗mj(si,j)
∗, which

implies

∆ = 0, or mj(ri(k)si,j)
∗ = mj(ri(k))

∗mj(si,j)
∗. (23)

Substituting (23) into the linear inequality constraints (12a)

associated with (8a):

{

mj(si,jri)
∗Txj ≤ ǫmj(si,j)

∗

mj(si,jri)
∗Txj ≥ −ǫmj(si,j)

∗
,

leads to:

{

mj(si,j)mj(ri)
∗Txj ≤ ǫmj(si,j)

∗

mj(si,j)mj(ri)
∗Txj ≥ −ǫmj(si,j)

∗
, which

is equivalent to

|mj(ri)
∗Txj | ≤ ǫ, (24)

for any mj(si,j)
∗ > 0. Thus, xj belongs to the subspace

normal to mj(ri)
∗. Finally, the conditions mj(si,j)

∗ ≥ 0

and
∑Ns

i=1 mj(si,j)
∗ = 1 guarantee that for each j =

1, . . . , Np, there exists at least one i0 ∈ {1, . . . , Ns}, such

that mj(si0,j)
∗ > 0. Hence each point xj belongs to at least

one of the subspaces characterized by the normals m0(ri)
∗,

i = 1, . . . , Ns, which establishes feasibility of (8).
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