
Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs

and a Discriminatively Trained Domain Transform

Liang-Chieh Chen∗ Jonathan T. Barron, George Papandreou, Kevin Murphy Alan L. Yuille

lcchen@cs.ucla.edu {barron, gpapan, kpmurphy}@google.com yuille@stat.ucla.edu

alan.yuille@jhu.edu

Abstract

Deep convolutional neural networks (CNNs) are the back-

bone of state-of-art semantic image segmentation systems.

Recent work has shown that complementing CNNs with

fully-connected conditional random fields (CRFs) can signif-

icantly enhance their object localization accuracy, yet dense

CRF inference is computationally expensive. We propose

replacing the fully-connected CRF with domain transform

(DT), a modern edge-preserving filtering method in which

the amount of smoothing is controlled by a reference edge

map. Domain transform filtering is several times faster than

dense CRF inference and we show that it yields comparable

semantic segmentation results, accurately capturing object

boundaries. Importantly, our formulation allows learning

the reference edge map from intermediate CNN features

instead of using the image gradient magnitude as in stan-

dard DT filtering. This produces task-specific edges in an

end-to-end trainable system optimizing the target semantic

segmentation quality.

1. Introduction

Deep convolutional neural networks (CNNs) are very

effective in semantic image segmentation, the task of assign-

ing a semantic label to every pixel in an image. Recently, it

has been demonstrated that post-processing the output of a

CNN with a fully-connected CRF can significantly increase

segmentation accuracy near object boundaries [5].

As explained in [26], mean-field inference in the fully-

connected CRF model amounts to iterated application of the

bilateral filter, a popular technique for edge-aware filtering.

This encourages pixels which are nearby in position and in

color to be assigned the same semantic label. In practice,

this produces semantic segmentation results which are well

aligned with object boundaries in the image.

One key impediment in adopting the fully-connected CRF

is the rather high computational cost of the underlying bi-

lateral filtering step. Bilateral filtering amounts to high-
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Figure 1. A single unified CNN produces both coarse semantic

segmentation scores and an edge map, which respectively serve as

input multi-channel image and reference edge to a domain trans-

form edge-preserving filter. The resulting filtered semantic segmen-

tation scores are well-aligned with the object boundaries. The full

architecture is discriminatively trained by backpropagation (red

dashed arrows) to optimize the target semantic segmentation.

dimensional Gaussian filtering in the 5-D bilateral (2-D po-

sition, 3-D color) space and is expensive in terms of both

memory and CPU time, even when advanced algorithmic

techniques are used.

In this paper, we propose replacing the fully-connected

CRF and its associated bilateral filtering with the domain

transform (DT) [16], an alternative edge-aware filter. The

recursive formulation of the domain transform amounts to

adaptive recursive filtering of a signal, where information

is not allowed to propagate across edges in some reference

signal. This results in an extremely efficient scheme which

is an order of magnitude faster than the fastest algorithms

for a bilateral filter of equivalent quality.

The domain transform can equivalently be seen as a recur-

rent neural network (RNN). In particular, we show that the

domain transform is a special case of the recently proposed

RNN with gated recurrent units. This connection allows us to

share insights, better understanding two seemingly different

methods, as we explain in Section 3.4.

The amount of smoothing in a DT is spatially modulated

by a reference edge map, which in the standard DT corre-

sponds to image gradient magnitude. Instead, we will learn

the reference edge map from intermediate layer features

of the same CNN that produces the semantic segmentation

scores, as illustrated in Fig. 1. Crucially, this allows us to

learn a task-specific edge detector tuned for semantic image
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segmentation in an end-to-end trainable system.

We evaluate the performance of the proposed method on

the challenging PASCAL VOC 2012 semantic segmentation

task. In this task, domain transform filtering is several times

faster than dense CRF inference, while performing almost

as well in terms of the mean intersection-over-union (mIOU)

metric. In addition, although we only trained for semantic

segmentation, the learned edge map performs competitively

on the BSDS500 edge detection benchmark.

2. Related Work

Semantic image segmentation Deep Convolutional Neu-

ral Networks (CNNs) [27] have demonstrated excellent

performance on the task of semantic image segmentation

[10, 28, 30]. However, due to the employment of max-

pooling layers and downsampling, the output of these net-

works tend to have poorly localized object boundaries. Sev-

eral approaches have been adopted to handle this problem.

[31, 19, 5] proposed to extract features from the interme-

diate layers of a deep network to better estimate the object

boundaries. Networks employing deconvolutional layers and

unpooling layers to recover the “spatial invariance” effect of

max-pooling layers have been proposed by [45, 33]. [14, 32]

used super-pixel representation, which essentially appeals

to low-level segmentation methods for the task of localiza-

tion. The fully connected Conditional Random Field (CRF)

[26] has been applied to capture long range dependencies

between pixels in [5, 28, 30, 34]. Further improvements

have been shown in [46, 38] when backpropagating through

the CRF to refine the segmentation CNN. In contrary, we

adopt another approach based on the domain transform [16]

and show that beyond refining the segmentation CNN, we

can also jointly learn to detect object boundaries, embedding

task-specific edge detection into the proposed model.

Edge detection The edge/contour detection task has a

long history [25, 1, 11], which we will only briefly re-

view. Recently, several works have achieved outstanding

performance on the edge detection task by employing CNNs

[2, 3, 15, 21, 39, 44]. Our work is most related to the ones

by [44, 3, 24]. While Xie and Tu [44] also exploited fea-

tures from the intermediate layers of a deep network [40]

for edge detection, they did not apply the learned edges for

high-level tasks, such as semantic image segmentation. On

the other hand, Bertasius et al. [3] and Kokkinos [24] made

use of their learned boundaries to improve the performance

of semantic image segmentation. However, the boundary

detection and semantic image segmentation are considered

as two separate tasks. They optimized the performance of

boundary detection instead of the performance of high level

tasks. On the contrary, we learn object boundaries in or-

der to directly optimize the performance of semantic image

segmentation.

Long range dependency Recurrent neural networks

(RNNs) [12] with long short-term memory (LSTM) units

[20] or gated recurrent units (GRUs) [8, 9] have proven

successful to model the long term dependencies in sequen-

tial data (e.g., text and speech). Sainath et al. [37] have

combined CNNs and RNNs into one unified architecture

for speech recognition. Some recent work has attempted

to model spatial long range dependency with recurrent net-

works for computer vision tasks [17, 41, 35, 4, 43]. Our

work, integrating CNNs and Domain Transform (DT) with

recursive filtering [16], bears a similarity to ReNet [43],

which also performs recursive operations both horizontally

and vertically to capture long range dependency within

whole image. In this work, we show the relationship between

DT and GRU, and we also demonstrate the effectiveness of

exploiting long range dependency by DT for semantic image

segmentation. While [42] has previously employed the DT

(for joint object-stereo labeling), we propose to backpropa-

gate through both of the DT inputs to jointly learn segmenta-

tion scores and edge maps in an end-to-end trainable system.

We show that these learned edge maps bring significant im-

provements compared to standard image gradient magnitude

used by [42] or earlier DT literature [16].

3. Proposed Model

3.1. Model overview

Our proposed model consists of three components, il-

lustrated in Fig. 2. They are jointly trained end-to-end to

optimize the output semantic segmentation quality.

The first component that produces coarse semantic seg-

mentation score predictions is based on the publicly available

DeepLab model, [5], which modifies VGG-16 net [40] to

be FCN [31]. The model is initialized from the VGG-16

ImageNet [36] pretrained model. We employ the DeepLab-

LargeFOV variant of [5], which introduces zeros into the

filters to enlarge its Field-Of-View, which we will simply

denote by DeepLab in the sequel.

We add a second component, which we refer to as Ed-

geNet. The EdgeNet predicts edges by exploiting features

from intermediate layers of DeepLab. The features are re-

sized to have the same spatial resolution by bilinear inter-

polation before concatenation. A convolutional layer with

kernel size 1×1 and one output channel is applied to yield

edge prediction. ReLU is used so that the edge prediction is

in the range of zero to infinity.

The third component in our system is the domain trans-

form (DT), which is is an edge-preserving filter that lends

itself to very efficient implementation by separable 1-D re-

cursive filtering across rows and columns. Though DT is

traditionally used for graphics applications [16], we use it to

filter the raw CNN semantic segmentation scores to be bet-

ter aligned with object boundaries, guided by the EdgeNet

produced edge map.
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Figure 2. Our proposed model has three components: (1) DeepLab for semantic segmentation prediction, (2) EdgeNet for edge prediction,

and (3) Domain Transform to accurately align segmentation scores with object boundaries. EdgeNet reuses features from intermediate

DeepLab layers, resized and concatenated before edge prediction. Domain transform takes as input the raw segmentation scores and edge

map, and recursively filters across rows and columns to produce the final filtered segmentation scores.

We review the standard DT in Sec. 3.2, we extend it to a

fully trainable system with learned edge detection in Sec. 3.3,

and we discuss connections with the recently proposed gated

recurrent unit networks in Sec. 3.4.

3.2. Domain transform with recursive filtering

The domain transform takes two inputs: (1) The raw

input signal x to be filtered, which in our case corresponds

to the coarse DCNN semantic segmentation scores, and (2) a

positive “domain transform density” signal d, whose choice

we discuss in detail in the following section. The output

of the DT is a filtered signal y. We will use the recursive

formulation of the DT due to its speed and efficiency, though

the filter can be applied via other techniques [16].

For 1-D signals of length N , the output is computed by

setting y1 = x1 and then recursively for i = 2, . . . , N

yi = (1− wi)xi + wiyi−1 . (1)

The weight wi depends on the domain transform density di

wi = exp
(

−
√
2di/σs

)

, (2)

where σs is the standard deviation of the filter kernel over

the input’s spatial domain.

Intuitively, the strength of the domain transform density

di ≥ 0 determines the amount of diffusion/smoothing by

controlling the relative contribution of the raw input signal

xi to the filtered signal value at the previous position yi−1

when computing the filtered signal at the current position

yi. The value of wi ∈ (0, 1) acts like a gate, which controls

how much information is propagated from pixel i − 1 to i.
We have full diffusion when di is very small, resulting into

wi = 1 and yi = yi−1. On the other extreme, if di is very

large, then wi = 0 and diffusion stops, resulting in yi = xi.

Filtering by Eq. (1) is asymmetric, since the current out-

put only depends on previous outputs. To overcome this

asymmetry, we filter 1-D signals twice, first left-to-right,

then right-to-left on the output of the left-to-right pass.

Domain transform filtering for 2-D signals works in a

separable fashion, employing 1-D filtering sequentially along

each signal dimension. That is, a horizontal pass (left-to-

right and right-to-left) is performed along each row, followed

by a vertical pass (top-to-bottom and bottom-to-top) along

each column. In practice, K > 1 iterations of the two-pass 1-

D filtering process can suppress “striping” artifacts resulting

from 1-D filtering on 2-D signals [16, Fig. 4]. We reduce the

standard deviation of the DT filtering kernel at each iteration,

requiring that the sum of total variances equals the desired

variance σ2
s , following [16, Eq. 14]

σk = σs

√
3

2K−k

√
4K − 1

, k = 1, . . . ,K , (3)

plugging σk in place of σs to compute the weights wi by

Eq. (2) at the k-th iteration.

The domain transform density values di are defined as

di = 1 + gi
σs

σr

, (4)

where gi ≥ 0 is the “reference edge”, and σr is the standard

deviation of the filter kernel over the reference edge map’s

range. Note that the larger the value of gi is, the more

confident the model thinks there is a strong edge at pixel i,
thus inhibiting diffusion (i.e., di → ∞ and wi = 0). The

standard DT [16] usually employs the color image gradient

gi =

3
∑

c=1

‖∇I(c)i ‖ (5)
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(a) (b)
Figure 3. Computation tree for domain transform recursive filtering:

(a) Forward pass. Upward arrows from yi nodes denote feeds to

subsequent layers. (b) Backward pass, including contributions ∂L
∂yi

from subsequent layers.

but we show next that better results can be obtained by

computing the reference edge map by a learned DCNN.

3.3. Trainable domain transform filtering

One novel aspect of our proposed approach is to back-

propagate the segmentation errors at the DT output y through

the DT onto its two inputs. This allows us to use the DT as a

layer in a CNN, thereby allowing us to jointly learn DCNNs

that compute the coarse segmentation score maps in x and

the reference edge map in g.

We demonstrate how DT backpropagation works for the

1-D filtering process of Eq. (1), whose forward pass is il-

lustrated as computation tree in Fig. 3(a). We assume that

each node yi not only influences the following node yi+1 but

also feeds a subsequent layer, thus also receiving gradient

contributions ∂L
∂yi

from that layer during back-propagation.

Similar to standard back-propagation in time, we unroll the

recursion of Eq. (1) in reverse for i = N, . . . , 2 as illustrated

in Fig. 3(b) to update the derivatives with respect to y, and

to also compute derivatives with respect to x and w,

∂L

∂xi

← (1− wi)
∂L

∂yi
(6)

∂L

∂wi

← ∂L

∂wi

+ (yi−1 − xi)
∂L

∂yi
(7)

∂L

∂yi−1
← ∂L

∂yi−1
+ wi

∂L

∂yi
, (8)

where ∂L
∂xi

and ∂L
∂wi

are initialized to 0 and ∂L
∂yi

is ini-

tially set to the value sent by the subsequent layer. Note

that the weight wi is shared across all filtering stages (i.e.,

left-to-right/right-to-left within horizontal pass and top-to-

bottom/bottom-to-top within vertical pass) and K iterations,

with each pass contributing to the partial derivative.

With these partial derivatives we can produce derivatives

with respect to the reference edge gi. Plugging Eq. (4) into

Eq. (2) yields

wi = exp

(

−
√
2

σk

(

1 + gi
σs

σr

)

)

. (9)

Then, by the chain rule, the derivative with respect to gi is

∂L

∂gi
= −
√
2

σk

σs

σr

wi

∂L

∂wi

. (10)

This gradient is then further propagated onto the deep convo-

lutional neural network that generated the edge predictions

that were used as input to the DT.

3.4. Relation to gated recurrent unit networks

Equation 1 defines DT filtering as a recursive operation.

It is interesting to draw connections with other recent RNN

formulations. Here we establish a precise connection with

the gated recurrent unit (GRU) RNN architecture [8] recently

proposed for modeling sequential text data. The GRU em-

ploys the update rule

yi = ziỹi + (1− zi)yi−1 . (11)

Comparing with Eq. (1), we can relate the GRU’s “update

gate” zi and “candidate activation” ỹi with DT’s weight and

raw input signal as follows: zi = 1− wi and ỹi = xi.

The GRU update gate zi is defined as zi = σ(fi), where

fi is an activation signal and σ(t) = 1/(1+e−t). Comparing

with Eq. (9) yields a direct correspondence between the DT

reference edge map gi and the GRU activation fi:

gi =
σr

σs

(

σk√
2
log(1 + efi)− 1

)

. (12)

4. Experimental Evaluation

4.1. Experimental Protocol

Dataset We evaluate the proposed method on the PASCAL

VOC 2012 segmentation benchmark [13], consisting of 20

foreground object classes and one background class. We

augment the training set from the annotations by [18]. The

performance is measured in terms of pixel intersection-over-

union (IOU) averaged across the 21 classes.

Training A two-step training process is employed. We

first train the DeepLab component and then we jointly fine-

tune the whole model. Specifically, we employ exactly the

same setting as [5] to train DeepLab in the first stage. In

the second stage, we employ a small learning rate of 10−8

for fine-tuning. The added convolutional layer of EdgeNet

is initialized with Gaussian variables with zero mean and

standard deviation of 10−5 so that in the beginning the Ed-

geNet predicts no edges and it starts to gradually learn edges

for semantic segmentation. Total training time is 11.5 hours

(10.5 and 1 hours for each stage).
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Method mIOU (%)

Baseline: DeepLab 62.25

conv3 3 65.64

conv2 2 + conv3 3 65.75

conv2 2 + conv3 3 + conv4 3 66.03

conv2 2 + conv3 3 + conv4 3 + conv5 3 65.94

conv1 2 + conv2 2 + conv3 3 + conv4 3 65.89

Table 1. VOC 2012 val set. Effect of using features from different

convolutinal layers for EdgeNet (σs = 100 and σr = 1 for DT).

Reproducibility The proposed methods are implemented

by extending the Caffe framework [22]. The code and mod-

els are available at http://liangchiehchen.com/

projects/DeepLab.html.

4.2. Experimental Results

We first explore on the validation set the hyper-parameters

in the proposed model, including (1) features for EdgeNet,

(2) hyper-parameters for domain transform (i.e., number of

iterations, σs, and σr). We also experiment with different

methods to generate edge prediction. After that, we analyze

our models and evaluate on the official test set.
Features for EdgeNet The EdgeNet we employ exploits

intermediate features from DeepLab. We first investigate

which VGG-16 [40] layers give better performance with the

DT hyper-parameters fixed. As shown in Tab. 1, baseline

DeepLab attains 62.25% mIOU on PASCAL VOC 2012 val-

idation set. We start to exploit the features from conv3 3,

which has receptive field size 40. The size is similar to

the patch size typically used for edge detection [11]. The

resulting model achieves performance of 65.64%, 3.4% bet-

ter than the baseline. When using features from conv2 2,

conv3 3, and conv4 3, the performance can be further im-

proved to 66.03%. However, we do not observe any sig-

nificant improvement if we also exploit the features from

conv1 2 or conv5 3. We use features from conv2 2, conv3 3,

and conv4 3 in remaining experiments involving EdgeNet.
Number of domain transform iterations Domain trans-

form requires multiple iterations of the two-pass 1-D filtering

process to avoid the “striping” effect [16, Fig. 4]. We train

the proposed model with K iterations for the domain trans-

form, and perform the same K iterations during test. Since

there are two more hyper-parameters σs and σr (see Eq. (9)),

we also vary their values to investigate the effect of varying

the K iterations for domain transform. As shown in Fig. 4,

employing K = 3 iterations for domain transform in our

proposed model is sufficient to reap most of the gains for

several different values of σs and σr.
Varying domain transform σs, σr and comparison with

other edge detectors We investigate the effect of varying

σs and σr for domain transform. We also compare alterna-

tive methods to generate edge prediction for domain trans-
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Figure 4. VOC 2012 val set. Effect of varying number of iterations

for domain transform: (a) Fix σs and vary both σr and K iterations.

(b) Fix σr and vary both σs and K iterations.

form: (1) DT-Oracle, where groundtruth object boundaries

are used, which serves as an upper bound on our method. (2)

The proposed DT-EdgeNet, where the edges are produced

by EdgeNet. (3) DT-SE, where the edges are found by Struc-

tured Edges (SE) [11]. (4) DT-Gradient, where the image

(color) gradient magnitude of Eq. (5) is used as in standard

domain transform [16]. We search for optimal σs and σr

for those methods. First, we fix σs = 100 and vary σr in

Fig. 5(a). We found that the performance of DT-Oracle, DT-

SE, and DT-Gradient are affected a lot by different values of

σr, since they are generated by other “plugged-in” modules

(i.e., not jointly fine-tuned). We also show the performance

of baseline DeepLab and DeepLab-CRF which employs

dense CRF. We then fix the found optimal value of σr and

vary σs in Fig. 5 (b). We found that as long as σs ≥ 90, the

performance of DT-EdgeNet, DT-SE, and DT-Gradient do

not vary significantly. After finding optimal values of σr and

σs for each setting, we use them for remaining experiments.

We further visualize the edges learned by our DT-

EdgeNet in Fig. 6. As shown in the first row, when σr

increases, the learned edges start to include not only object

boundaries but also background textures, which degrades the

performance for semantic segmentation in our method (i.e.,

noisy edges make it hard to propagate information between

neighboring pixels). As shown in the second row, varying σs

does not change the learned edges a lot, as long as its value

is large enough (i.e., ≥ 90).

We show val set performance (with the best values of σs

and σr) for each method in Tab. 2. The method DT-Gradient

improves over the baseline DeepLab by 1.7%. While DT-

SE is 0.9% better than DT-Gradient, DT-EdgeNet further

enhances performance (4.1% over baseline). Even though

DT-EdgeNet is 1.2% lower than DeepLab-CRF, it is several

times faster, as we discuss later. Moreover, we have found

that combining DT-EdgeNet and dense CRF yields the best

performance (0.8% better than DeepLab-CRF). In this hy-

brid DT-EdgeNet+DenseCRF scheme we post-process the

DT filtered score maps in an extra fully-connected CRF step.
Trimap Similar to [23, 26, 5], we quantify the accuracy

of the proposed model near object boundaries. We use the

“void” label annotated on PASCAL VOC 2012 validation
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(a) Image (b) σs = 100, σr = 0.1 (c) σs = 100, σr = 0.5 (d) σs = 100, σr = 2 (e) σs = 100, σr = 10

(f) Groundtruth (g) σs = 50, σr = 0.1 (h) σs = 90, σr = 0.1 (i) σs = 130, σr = 0.1 (j) σs = 170, σr = 0.1
Figure 6. Effect of varying domain transform’s σs and σr . First row: when σs is fixed and σr increases, the EdgeNet starts to include more

background edges. Second row: when σr is fixed, varying σs has little effect on learned edges.
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Figure 5. VOC 2012 val set. Effect of varying σs and σr . (a) Fix

σs = 100 and vary σr . (b) Use the best σr from (a) and vary σs.

Method mIOU (%)

DeepLab 62.25

DeepLab-CRF 67.64

DT-Gradient 63.96

DT-SE 64.89

DT-EdgeNet 66.35

DT-EdgeNet + DenseCRF 68.44

DT-Oracle 70.88

Table 2. Performance on PASCAL VOC 2012 val set.

set. The annotations usually correspond to object boundaries.

We compute the mean IOU for the pixels that lie within a

narrow band (called trimap) of “void” labels, and vary the

width of the band, as shown in Fig. 7.
Qualitative results We show some semantic segmentation

results on PASCAL VOC 2012 val set in Fig. 9. DT-EdgeNet

visually improves over the baseline DeepLab and DT-SE.

Besides, when comparing the edges learned by Structured

Edges and our EdgeNet, we found that EdgeNet better cap-

tures the object exterior boundaries and responds less than

SE to interior edges. We also show failure cases in the

bottom two rows of Fig. 9. The first is due to the wrong pre-

dictions from DeepLab, and the second due to the difficulty

in localizing object boundaries with cluttered background.
Test set results After finding the best hyper-parameters,

we evaluate our models on the test set. As shown in the top

of Tab. 4, DT-SE improves 2.7% over the baseline DeepLab,

and DT-EdgeNet can further enhance the performance to

69.0% (3.9% better than baseline), which is 1.3% behind
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Figure 7. (a) Some trimap examples (top-left: image. top-right:

ground-truth. bottom-left: trimap of 2 pixels. bottom-right: trimap

of 10 pixels). (b) Segmentation result within a band around the

object boundaries for the proposed methods (mean IOU).

employing a fully-connected CRF as post-processing (i.e.,

DeepLab-CRF) to smooth the results. However, if we also

incorporate a fully-connected CRF as post-processing to our

model, we can further increase performance to 71.2%.

Models pretrained with MS-COCO We perform an-

other experiment with the stronger baseline of [34], where

DeepLab is pretrained with the MS-COCO 2014 dataset

[29]. Our goal is to test if we can still obtain improvements

with the proposed methods over that stronger baseline. We

use the same optimal values of hyper-parameters as before,

and report the results on validation set in Tab. 3. We still

observe 1.6% and 2.7% improvement over the baseline by

DT-SE and DT-EdgeNet, respectively. Besides, adding a

fully-connected CRF to DT-EdgeNet can bring another 1.8%
improvement. We then evaluate the models on test set in the

bottom of Tab. 4. Our best model, DT-EdgeNet, improves

the baseline DeepLab by 2.8%, while it is 1.0% lower than

DeepLab-CRF. When combining DT-EdgeNet and a fully-

connected CRF, we achieve 73.6% on the test set. Note

the gap between DT-EdgeNet and DeepLab-CRF becomes

smaller when stronger baseline is used.

Incorporating multi-scale inputs State-of-art models on

the PASCAL VOC 2012 leaderboard usually employ multi-

scale features (either multi-scale inputs [10, 28, 7] or features

from intermediate layers of DCNN [31, 19, 5]). Motivated

by this, we further combine our proposed discriminatively

trained domain transform and the model of [7], yielding

76.3% performance on test set, 1.5% behind current best

models [28] which jointly train CRF and DCNN [6]
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Method mIOU (%)

DeepLab 67.31

DeepLab-CRF 71.01

DT-SE 68.94

DT-EdgeNet 69.96

DT-EdgeNet + DenseCRF 71.77

Table 3. Performance on PASCAL VOC 2012 val set. The models

have been pretrained on MS-COCO 2014 dataset.

EdgeNet on BSDS500 We further evaluate the edge detec-

tion performance of our learned EdgeNet on the test set of

BSDS500 [1]. We employ the standard metrics to evaluate

edge detection accuracy: fixed contour threshold (ODS F-

score), per-image best threshold (OIS F-score), and average

precision (AP). We also apply a standard non-maximal sup-

pression technique to the edge maps produced by EdgeNet

for evaluation. Our method attains ODS=0.718, OIS=0.731,

and AP=0.685. As shown in Fig. 8, interestingly, our Ed-

geNet yields a reasonably good performance (only 3% worse

than Structured Edges [11] in terms of ODS F-score), while

our EdgeNet is not trained on BSDS500 and there is no edge

supervision during training on PASCAL VOC 2012.

Comparison with dense CRF Employing a fully-

connected CRF is an effective method to improve the seg-

mentation performance. Our best model (DT-EdgeNet) is

1.3% and 1.0% lower than DeepLab-CRF on PASCAL VOC

2012 test set when the models are pretrained with Ima-

geNet or MS-COCO, respectively. However, our method is

many times faster in terms of computation time. To quan-

tify this, we time the inference computation on 50 PAS-

CAL VOC 2012 validation images. As shown in Tab. 5,

for CPU timing, on a machine with Intel i7-4790K CPU,

the well-optimized dense CRF implementation [26] with 10

mean-field iterations takes 830 ms/image, while our imple-

mentation of domain transform with K = 3 iterations (each

iteration consists of separable two-pass filterings across rows

and columns) takes 180 ms/image (4.6 times faster). On a

NVIDIA Tesla K40 GPU, our GPU implementation of do-

main transform further reduces the average computation time

to 25 ms/image. In our GPU implementation, the total com-

putational cost of the proposed method (EdgeNet+DT) is

26.2 ms/image, which amounts to a modest overhead (about

18%) compared to the 145 ms/image required by DeepLab.

Note there is no publicly available GPU implementation of

dense CRF inference yet.

5. Conclusions

We have presented an approach to learn edge maps useful

for semantic image segmentation in a unified system that

is trained discriminatively in an end-to-end fashion. The

proposed method builds on the domain transform, an edge-

Method ImageNet COCO

DeepLab [5, 34] 65.1 68.9

DeepLab-CRF [5, 34] 70.3 72.7

DT-SE 67.8 70.7

DT-EdgeNet 69.0 71.7

DT-EdgeNet + DenseCRF 71.2 73.6

DeepLab-CRF-Attention [7] - 75.7

DeepLab-CRF-Attention-DT - 76.3

CRF-RNN [46] 72.0 74.7

BoxSup [10] - 75.2

CentraleSuperBoundaries++ [24] - 76.0

DPN [30] 74.1 77.5

Adelaide Context [28] 75.3 77.8

Table 4. mIOU (%) on PASCAL VOC 2012 test set. We evaluate

our models with two settings: the models are (1) pretrained with

ImageNet, and (2) further pretrained with MS-COCO.
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Figure 8. Evaluation of our learned EdgeNet on the test set of

BSDS500. Note that our EdgeNet is only trained on PASCAL

VOC 2012 semantic segmentation task without edge supervision.

Method CPU time GPU time

DeepLab 5240 145

EdgeNet 20 (0.4%) 1.2 (0.8%)

Dense CRF (10 iterations) 830 (15.8%) -

DT (3 iterations) 180 (3.4%) 25 (17.2%)

CRF-RNN (CRF part) [46] 1482 -

Table 5. Average inference time (ms/image). Number in parenthe-

ses is the percentage w.r.t. the DeepLab computation. Note that

EdgeNet computation time is improved by performing convolution

first and then upsampling.

preserving filter traditionally used for graphics applications.

We show that backpropagating through the domain transform

allows us to learn an task-specific edge map optimized for

semantic segmentation. Filtering the raw semantic segmen-

tation maps produced by deep fully convolutional networks

with our learned domain transform leads to improved lo-

calization accuracy near object boundaries. The resulting

4551



(a) Image (b) Baseline (c) SE (d) DT-SE (e) EdgeNet (f) DT-EdgeNet
Figure 9. Visualizing results on VOC 2012 val set. For each row, we show (a) Image, (b) Baseline DeepLab segmentation result, (c) edges

produced by Structured Edges, (d) segmentation result with Structured Edges, (e) edges generated by EdgeNet, and (f) segmentation result

with EdgeNet. Note that our EdgeNet better captures the object boundaries and responds less to the background or object interior edges. For

example, see the legs of left second person in the first image or the dog shapes in the second image. Two failure examples in the bottom.

scheme is several times faster than fully-connected CRFs

that have been previously used for this purpose.
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