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Abstract

Attention based automatic image cropping aims at pre-

serving the most visually important region in an image. A

common task in this kind of method is to search for the

smallest rectangle inside which the summed attention is

maximized. We demonstrate that under appropriate formu-

lations, this task can be achieved using efficient algorithms

with low computational complexity. In a practically useful

scenario where the aspect ratio of the cropping rectangle

is given, the problem can be solved with a computational

complexity linear to the number of image pixels. We also

study the possibility of multiple rectangle cropping and a

new model facilitating fully automated image cropping.

1. Introduction

With the rapid development of imaging and storage tech-

nologies, pixel resolution of digital images captured by

modern imaging devices such as the digital camera, web-

cam or mobile phone has increased dramatically. Images

containing over millions of pixels has become more and

more common even in mobile devices. This has brought

difficulties to the transmission and sharing of the images

especially through the mobile Internet. Considering both

the time and the cost, images are usually excessively down

sampled or compressed before transmission, leading to se-

rious degradation of image quality on the receiver’s side.

Visual importances vary a log across different regions in

real life images. Examples are shown in Figure 1. Actu-

ally, with the continuous increasing of pixel resolution of

capturing devices, people tends to include a unnecessary

amount of less important background or unrelated scenery

in the image when taking pictures. In addition to causing

difficulties to image transmission, these relatively less im-

portant image pixels may also harm the visual effectiveness

of important image parts, especially after image retargeting

for mobile devices equipped with small sized displays. To

solve this problem, previous researchers have proposed a

number of context aware image cropping/resizing methods

which can be generally divided into two categories, atten-

tion based methods and aesthetics oriented methods [24].

1.1. Previous works

The fundamental idea of attention based methods is

trying to preserve visually important area of an image

after cropping or resizing. Pixel importances for vi-

sual attention are usually estimated using their saliency

scores [5] [20] [18] [16], objectness [27] [7], or empirically

defined energy functions [15] [1]. Chen et al. were among

the first to study the image cropping problem in order to

facilitate viewing large images on small sized displays [5].

Pixel saliency values calculated using Itti’s model [9] was

combined with face and text detection results for generating

the attention map. Suh et al. extended this work by using

summed saliency values within cropping rectangles for de-

termining the best cropping position [20]. Santella et al. ac-

quired image saliency values by means of human-computer

interaction [18]. User fixation data were captured and uti-

lized together with image segmentation results to identify

important image contents and compute the best crop. By

assuming that images sharing similar global visual appear-

ances are likely to share similar salience, Marchesotti et al.

Figure 1. Examples of automatic image cropping. Images are se-

lected from the MSRA Salient Object Database [13]. 1st column:

cropping results using the graph cut based method [16]. 2nd col-

umn: cropping results R̈(τ∗) using the proposed method. 3rd col-

umn: cropped images using the proposed method. 4th column:

retargeted images using the shortest path base method [1].
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trained a simple classifier on an annotated image database

for generating attention maps based on which image thumb-

nailing were achieved [16]. Zhang et al. focused on faces

in the image by selecting regions of interest according to

face detection results. Images were then cropped by align-

ing faces according to predefined image composition tem-

plates [27]. Ciocca et al. combined visual saliency informa-

tion with face and skin color detection results for placing

bounding box in image cropping [7]. Ma et al. proposed

an comprehensive energy function based on image entropy,

area size and position for measuring the visual importance

before cropping [15]. Avidan et al. simply used the ampli-

tude of image gradient as the energy function for describing

pixel importance [1]. Instead of preserving pixels with high

importances, Avidan et al. removed 8-connected paths of

minimum summed energy values consecutively.

The aesthetics oriented method aims at maximizing the

visual attractiveness of the cropped images. Although the

visual aesthetics obeys certain general principles, it is also

known to be influenced by subjective factors such as the

culture, personal experiences, education level, or even the

psychological state [4]. Therefore, most existing aesthet-

ics oriented image cropping approaches are based on photo

quality assessment studies [11] [3] [22] using certain ob-

jective aspects of images, such as low level image features

and empirical photographic composition rules. Nishiyama

et al. statistically built a image quality classifier using low

level image features such as color histogram and Fourier co-

efficients. The image cropping candidate with the highest

quality score was then selected [17]. Cheng et al. studied

the spatial correlation distributions of two arbitrary patches

in an image for generating an omni-context prior which

was combined with visual words to form a posterior prob-

ability model for measuring image quality [6]. Zhang et

al. introduced small connected subgrpahs, or graphlets, ex-

tracted from the region adjacency graph, for representing

image aesthetic features. A probabilistic model based on the

graphlet was then used for transfer aesthetic features from

the training images onto the cropped images [26]. In a more

recent work, Yan et al. proposed features for modeling what

is changed after image cropping. The influence of these

features on cropping learned from manually marked image

pairs was then used for generating effective crops [24].

1.2. Motivation

In this work, we focus on a specific aspect which

has to some extend been overlooked in previous stud-

ies. In most existing attention based image cropping ap-

proaches [20] [7] [14] [19] [15], a common task after gen-

erating the attention map is to search for an optimum crop-

ping rectangle. Usually, this optimum rectangle search pro-

cess aims at achieving a tradeoff between minimizing the

cropping area and maximizing the total pixel attention val-

ues inside it. Considering the huge number of possible can-

didate rectangles, brute force search could be prohibitively

slow. To solve this problem, Luo et al. adopted the integral

image [23] to speed up the global search [14]; Suh et al.

used a greedy algorithm to incrementally including salient

peak points outside the current rectangle [20]; Stentiford et

al. reduced the search space by setting a series of fixed sizes

for the rectangles [19]; Ciocca et al. binarized the attention

map and considered only the connectivity of pixels [7]; Ma

et al. introduced human interaction to facilitate the search-

ing process [15]. These methods are either heuristic or of

nearly the same complexity as the brute force search. In this

work, we propose several practical formulations of the opti-

mum rectangle search problem and design algorithms with

essentially low computational complexity to solve them.

The rest of this paper is organized as follows. Section 2

presents our problem formulations. Section 3 elaborates the

proposed algorithms and corresponding complexity analy-

sis. Experimental results are demonstrated in Section 4.

The last section concludes our work.

2. Problem formulations

As we have stated above, the target of optimum cropping

rectangle search on a given attention map is twofold. Firstly,

the area of the rectangle should be minimized so as to crop

out as much visually unimportant image regions as possible.

Secondly, the sum of attention value inside the rectangle

should be maximized so as to preserve as much visually

important image regions as possible. These two objectives

are dual and the problem can be defined either way.

Suppose G is a non-negative valued attention map ex-

tracted from an image I . Larger attention values in G indi-

cate higher visual importance of corresponding pixels in I .

Without loosing generality, we formulate the optimum crop-

ping rectangle search problem as Problem 1, in which τ is

the minimum percentage of total attention to be preserved

and R̈ is the smallest rectangle satisfying this requirement.

Problem 1 [Minimum Rectangle Search] : Given a per-

centile ratio τ , find a rectangle R̈(τ) of the minimum possi-

ble area size, inside G, to satisfy (1).

∑
p∈ ¨R(τ)

G(p) ≥ τ
∑

p
G(p), τ ∈ [0, 1] (1)

The attention value of an image pixel can be considered

as the measurement of its visual importance. It is reason-

able to think that every pixel may contain certain amount

of visual information. Therefore in this work we simply

assume that attention values are non-negative. This is also

consistent with most existing works for calculating the at-

tention map [9] [10] [25] [8]. In case of no ambiguity, we

denote
∑

p∈R̈ G(p) as
∑

R̈ G, and
∑

p G(p) as
∑

G. Also,

a rectangle is called valid if it satisfies (1).
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Let ∥R̈(τ)∥ be the rectangular area of R̈(τ). For any

given G, ∥R̈(τ)∥ is an increasing function of τ as is ex-

pressed in (2). This can be deduced using abductive reason-

ing. Suppose that ∥R̈(τ1)∥ < ∥R̈(τ2)∥, combining (1) and

(2), we have
∑

R̈(τ1)
G ≥ τ1

∑
G ≥ τ2

∑
G. This indi-

cates that R̈(τ1) is also a rectangle with summed attention

value greater than or equal to τ2
∑

G. However, according

to Problem 1 definition, among all such rectangles, R̈(τ2)
should be the smallest, leading to obvious contradiction. In

case of no ambiguity, we set the rectangular area of the at-

tention map to be 1, so that the value of ∥R̈∥ stands for the

percentage of area occupied by R̈ in G.

∀τ1 ≥ τ2, ∥R̈(τ1)∥ ≥ ∥R̈(τ2)∥ (2)

It should be emphasized that for a given τ , R̈(τ) may not

be unique. In our algorithms, we always choose R̈(τ) with

the largest summed attention value. Even so, the unique-

ness of R̈(τ) still cannot be ensured. This is acceptable

in practice considering that it only lead to different crop-

ping results but with equal area sizes as well as equal vi-

sual importance. It should also be noted that ∥R̈(τ)∥ is not

a monotonic increasing function of τ . It is possible that

∥R̈(τ1)∥ = ∥R̈(τ2)∥ when τ1 ̸= τ2. This usually happens

when the difference between τ1 and τ2 is very small.

At the first glance, Problem 1 is similar to the famous

Maximum Submatrix problem which is to find for a ma-

trix its submatrix S̈ of which the sum of elements is maxi-

mized [2] [21]. Despite of their seeming resemblance, these

two problems are intrinsically different. First of all, finding

the maximum submatrix of a non-negative valued matrix,

such as G, is trivial since the solution is usually the matrix

itself. Also, converting these two problems to each other

leads to meaningless results. A easy to come up with, yet in-

correct solution to Problem 1 is to subtract average attention

Ḡ from G and then get the maximum submatrix of G− Ḡ.

A slight more reasonable solution is to take τ into account

and get the maximum submatrix for G − τḠ. However,

Figure 2 demonstrates that the three problems may lead to

absolutely different answers shown by shaded rectangles.

Another practical consideration for image cropping is re-

lated to the application of image retargeting. Nowadays, as-

pect ratio various a lot across different display devices such

as the desktop PC, mobile phone, or wearable device. To

achieve the optimum display efficiency, a promising choice

(a) R̈(0.6) of G (b) S̈ of G− Ḡ (c) S̈ of G− 0.6Ḡ

Figure 2. Problem 1 v.s. Maximum Submatrix problem.

(a) Original image (b) ∥R̈∥ = 0.44 (c) ∥R̈1 ∪ R̈2∥ = 0.22

Figure 3. Multiple rectangle cropping.

is to let the cropped image to have the same aspect ratio as

the target display, leading to the definition of Problem 2.

For a rectangle, we define the aspect ratio to be its width

divided by its height. Later we will see that by constrain-

ing the aspect ratio of the cropping rectangle, Problem 2 is

intrinsically simpler than Problem 1. Hence, its low com-

putational complexity as well as its appropriateness for im-

age retargeting make it practically useful. Nevertheless, it

should be noticed that unlike R̈(τ), R̈(τ, r) may not exist

for certain τ and r values in a given attention map due to

the hard constraint of the aspect ratio. What is more, be-

cause of the spatial discretization of pixels, sometimes the

aspect ratio constraint can only be approximately satisfied.

Problem 2 [Fixed Aspect Ratio Rectangle Search] :

Given a percentile ratio τ , find a rectangle R̈(τ, r) of the

minimum possible area size, with a fixed aspect ratio r > 0,

inside G, to satisfy (1).

An issue that has seldom been addressed in previous

studies is that sometimes it may not be appropriate to se-

lect only one cropping rectangle from an image containing

multiple visually important regions that are spatially scat-

tered. A typical example is shown in Figure 3, in which τ
is set to 0.75. By selecting two instead of only one crop-

ping rectangle, the total cropping area size is halved and the

cropping result is visually much more reasonable. Based

on this understanding, we define Problem 3 which can be

regarded as a generalization of Problem 2.

Problem 3 [Multiple Rectangle Search] : Given a per-

centile ratio τ , find no more than N non-intersected rect-

angles R̈1, R̈2, ..., R̈N inside G, all with fixed aspect ra-

tio r > 0. Denote the union of these rectangles to be

R̈(τ, r,N) = R̈1 ∪ R̈2 ∪ ... ∪ R̈N . Minimizing the total

area size ∥R̈∥ while satisfying (1).

By allowing more cropping rectangles, Problem 2 in-

creases the degree of freedom of the search process, leading

to higher effectiveness of image cropping by decreasing the

total area size to be preserved. Nevertheless, it is obvious

that such a generalization will increase the problem com-

plexity combinatorially. Therefore, in this paper we will

only discuss the case of N = 2. It should be noted that

for certain images, using more than one cropping rectan-

gles may not be advantageous. In other words, some of the

rectangles may be found empty while solving Problem 3.
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3. Algorithms and analysis

In this section, we will present algorithms for solving

the three problems defined above. We will focus on eluci-

dating their correctness and analyzing their computational

complexity. We assume that the attention map G is of m
rows and n columns, and m ≤ n. To solve the spatial dis-

cretization problem mentioned above, we use the following

approximation for aspect ratio calculation. Given a aspect

ratio r, suppose the height of a candidate rectangle is h, then

its width is decided by (3).

w = ⌈h× r⌉ (3)

For a given attention map G, we adopt matrix like nota-

tions : G(i, j) stands for the attention value at the ith(i ∈
[1,m]) row and jth(j ∈ [1, n]) column; G(i, :) (or G(:, j))
stands for the one dimensional array of the ith row (or jth

column) of G. In case of no ambiguity, we let G(i, j) = 0
whenever i ≤ 0 or j ≤ 0. We define the integral map G+

of G, so that G+(i, j) =
∑i

k=1

∑j
l=1 G(k, l). To facili-

tate descriptive conciseness, we also define a column based

integral map G+
c which stores the column-wise accumula-

tive sum of G, so that G+
c (i, j) =

∑i
k=1 G(k, j). Figure 4

shows samples of the two integral maps. G+
c and G+ can

be calculated simutaneously using accumulative summation

with an overall computational complexity of O(mn) [23].

3.1. Problem 1

A brute force algorithm for solving Problem 1 is to ex-

haustively examine every possible rectangle inside G so as

to find the smallest rectangle satifying (1). More specifi-

cally, as is shown in Figure 5(a), for each point (i, j) in G,

the algorithm examines all the rectangles R with (i, j) as

their upper left corner. The summed attention value inside

R can be efficiently calculated using the integral map as is

expressed by (4). For each upper left corner point, there

are O(mn) rectangles to be examined. Looping through

all possible upper left conner points leads to an overall all

computational complexity of O(m2n2).
∑

R
G = G+(i2, j2)−G+(i2, j1 − 1)

−G+(i1 − 1, j2) +G+(i1 − 1, j1 − 1) (4)

Careful observation of Figure 5(a) reveals that many un-

necessary calculations have been performed in the brute

force algorithm. For example, if we have already found that

(a) G (b) G+ (c) G+
c

Figure 4. Integral map and column-wise integral map.

(a) Problem 1 (b) Problem 2

Figure 5. Illustration of brute force algorithms.

R is valid, or in other words, it satisfies (1). Then any rect-

angle with area size larger than R should not be considered

any more. A typical example is the larger dash lined rectan-

gle containing R shown in Figure 5(a). Even more aggres-

sively, all the rectangles with upper left corner (i1, j1) and

lower right corner (i2, j > j2) can be safely ignored.

∑i2

i=i1
G(i, :) = G+

c (i2, :)−G+
c (i1 − 1, :) (5)

Suppose we are examining all the candidate rectangles

with their upper border at row i1 and lower border at row

i2, as is shown in Figure 6(a). We are actually looking for

two column index j1 and j2 as close to each other as pos-

sible, while the shaded rectangle is valid. By accumulat-

ing row i1 to row i2 column-wisely, this two dimensional

problem can be converted to a one dimension problem il-

lustrated at the bottom of Figure 6(a). Given a non-negative

input array, we are to find the shortest subarray of which the

sum of elements is larger than or equal to a given threshold.

Specifically in our case, the threshold is τ
∑

G, and the in-

put array is
∑i2

i=i1
G(i, :) which can be calculated using the

column-wise integral map with O(n) complexity using (5).

This Shortest Subarray problem can be efficiently solved

using Algorithm 1, in which st and ed are two moving

pointers pointing to the starting and ending positions of the

current subarray. Whenever the sum of the current subarray

is smaller than the threshold T , it is prolonged by moving ed
one step forward (line 7). Otherwise, the current subarray is

valid and will be used to update the shortest subarray when

necessary (line 16), after which it will be shortened by mov-

ing st one step forward (line 18). The above two steps are

repeated until the pointers reach the end of the input array.

The key idea of the algorithm is that whenever a valid subar-

ray candidate is found, it will be shortened in the next step

(a) Problem 1 (b) Problem 2

Figure 6. Illustration of proposed algorithms.
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so that any longer subarray starting from st are automati-

cally ignored to avoid redundant calculation. Specifically,

j1 = j2 = 0 if the subarray is not found or T ≤ 0. Inside

each loop, either st or ed will be increased by 1. Noticing

that both st and ed will not exceed n on exit, the loop body

will be executed for at most 2n times. Therefore, the overall

computation complexity is O(n).

Combining Algorithm 1 and the idea illustrated Fig-

ure 6(a), Algorithm 2 is proposed for solving Problem 1.

The basic idea it to loop for all possible (i1, i2) while find-

ing the corresponding shortest subarray. The most time

consuming operations in this algorithm are at lines 5 and

line 6. As we have already explained, both of these two

operations are of O(n) complexity. They will be executed

m2/2 times by looping for all possible (i1, i2), leading to

an overall computation complexity of O(m2n). Or more

accurately,O(m2n+mn) considering the extra calculation

of the two integral maps.

3.2. Problem 2

Due to the restriction of the aspect ratio of the cropping

rectangle, Problem 2 is intrinsically simpler than Problem 1.

This can be observed from the illustration of the brute force

algorithm shown in Figure 5(b). As stated before, given the

Algorithm 1 shortestSubarray(â, T )

Input: â is a non-negative valued array with length n; T is

threshold of the subarray sum.

Output: Starting and ending index, j1 and j2, of the short-

est contiguous subarray of â which has a sum larger

than T .

1: j1 ← 0, j2 ← 0
2: Lmin ←∞, Smin ← −1
3: st← 1, ed← 1, S0 ← â(1)
4: if T > 0 then

5: repeat

6: if S0 < T then

7: ed← ed+ 1
8: if ed > n then

9: Break

10: else

11: S0 ← S0 + â(ed)
12: end if

13: else

14: L← ed− st+ 1
15: if L < Lmin ∨ (L = Lmin ∧S0 > Smin) then

16: j1 ← st, j2 ← ed, Lmin ← L, Smin ← S0.

17: end if

18: S0 ← S0 − â(st), st← st+ 1
19: end if

20: until st > n
21: end if

22: return j1, j2, Smin

Algorithm 2 Mininum Rectangle(G,τ )

Input: G is a non-negative attention map with size m× n;

τ is the percentage of total attention to be preserved;

suppose integral maps G+ and G+
c are calculated.

Output: The smallest valid cropping rectangle R̈; four val-

ues to define R̈ : i and j are the upper left corner coor-

dinates, w and h are the width and height.

1: i← 0, j ← 0, w ←∞, h←∞
2: Smin ← −1, T ← τG+(m,n)
3: for i1 = 1 to m do

4: for i2 = i1 to m do

5: â← G+
c (i2, :)−G+

c (i1 − 1, :)
6: j1, j2, S0 ← shortestSubarray(â, T )
7: if j1 > 0 ∧ j2 > 0 then

8: w0 ← j2 − j1 + 1, h0 ← i2 − i1 + 1
9: if w0h0 < wh ∨ (w0h0 = wh ∧ S0 > Smin)

then

10: i← i1, j ← j1, w ← w0, h← h0

11: Smin ← S0

12: end if

13: end if

14: end for

15: end for

16: return i, j, w, h

height h of a rectangle with fixed aspect ratio r, its width

will be uniquely decided by (3). Therefore in Figure 5(b),

the number of possible rectangles with upper left corner

(i1, j1) becomes much smaller. It is actually decided by the

number of different height values, which is basicallyO(m).
By looping for all possible (i1, i2), the overal computational

complexity of the brute force algorithm is O(m2n).

The idea for improving the algorithm is illustrated in Fig-

ure 6(b). With a fixed aspect ratio, all the candidate rectan-

gles bounded by i1 and i2 are of the same size w0 × h0, in

Algorithm 3 maxSubarrayFL(â,w, T )

Input: â is a non-negative valued array with length n; w is

length of the subarray; T is the threshold of the subar-

ray sum.

Output: Starting index j1 of the contiguous subarray of

fixed length w having the maximum sum≥ T ; suppose

the accumulative sum array â+ is calculated.

1: j1 ← 0, Smax ← −1
2: if T > 0 ∧ w > 0 then

3: for st = 1 to n− w + 1 do

4: S0 ← â+(st+ w − 1)− â+(st− 1)
5: if S0 ≥ T ∧ S0 > Smax then

6: j1 ← st, Smax ← S0

7: end if

8: end for

9: end if

10: return j1, Smax
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which w0 = i2−i1+1. Obviously, there areO(n) different

such rectangles. We only need to find among these rectan-

gles the one with the maximum summed attention value.

Similar to the idea used in the last section, this problem can

be converted to a one dimensional search problem which is

to find a fixed length subarray with maximum sum. Specifi-

cally in our case, this maximum sum should be greater than

or equal to the given threshold τ
∑

G. This is a naive prob-

lem which can be easily solved with O(n) complexity as is

shown in Algorithm 3.

Problem 2 can be solved by simply looping for all pos-

sible (i1, i2) while invoking Algorithm 3. Unfortunately,

such an approach is meaningless since it will lead to a com-

putational complexity of O(m2n), which is identical to the

brute force search. However, as stated above, in Figure 6(b),

area size of the candidate rectangle is fully decided by the

distance between i1 and i2. As such, for a given i1 value,

if a valid rectangle has been found for a certain i2, then

any position below i2, for example i
′

2 in Figure 6(b), will

no longer need to be considered because of the definitely

increased rectangular area size.

Algorithm 4 Fixed AspRatio Rectangle(G,τ, r)

Input: G is a non-negative attention map with size m×n; τ
is the percentage of total attention to be preserved; r is

the aspect ratio of cropping rectangle; suppose integral

maps G+ and G+
c are calculated.

Output: The smallest rectangle R̈ with aspect ratio r that

satisfies (1); four values to define R̈ : i and j are the

upper left corner coordinates, w and h are the width

and height.

1: i← 0, j ← 0, w ←∞, h←∞
2: i1 ← 1, i2 ← 1, T ← τG+(m,n), Smin ← −1
3: repeat

4: h0 ← i2 − i1 + 1, w0 ← ⌈h0 × r⌉
5: if w0 > n then

6: i1 ← i1 + 1
7: else

8: â = G+
c (i2, :)−G+

c (i1 − 1, :)
9: j1, S0 ←maxSubarrayFL(â,w0, T )

10: if j1 > 0 then

11: if w0h0 < wh ∨ (w0h0 = wh ∧ S0 > Smin)
then

12: i← i1, j ← j1, w ← w0, h← h0

13: Smin ← S0

14: end if

15: i1 ← i1 + 1
16: else

17: i2 ← i2 + 1.

18: end if

19: end if

20: until i2 > m ∧ i1 ≥ m
21: return i, j, w, h

(a) v(i1, i2) = 1 (b) v(i
′

1
, i2) = 0 (c) v(i

′

1
, i

′

2
) = 1

Figure 7. Illustration of Algorithm 4.

Algorithm 4 is proposed based on this understanding.

Two pointers i1 and i2 are pointing to the upper and lower

boundaries of the candidate rectangle. Pointer i2 is moved

forward to enlarge the search area until the first valid rectan-

gle is found (line 17). Then pointer i1 is moved forward to

reduce the search area until no valid rectangle can be found

(line 15). The above two steps are performed alternatively

until the two pointers reach the bottom of G. During the

process, R̈ keeps being updated accordingly .

We use Figure 7 to help proving the correctness of Al-

gorithm 4. Let’s define a bool function v(i1, i2) to denote

whether a valid rectangle bounded by row i1 and row i2
exists. Obviously, this function fulfills (6) due to the non-

negativity of G. Supposed at a certain stage of execution,

we have v(i1, i2) = 1 as is shown in Figure 7(a). Accord-

ing to the algorithm, i1 is then moved to the very first po-

sition to let v(i
′

1, i2) = 0 as is shown in Figure 7(b). No-

tice that this also implies v(i
′

1 − 1, i2) = 1. Finally, i2 is

moved to the very first position to let v(i
′

1, i
′

2) = 1, imply-

ing v(i
′

1, i
′

2 − 1) = 0.

v(i, j) = 0 ⇒ ∀i∗, j∗ ∈ [i, j], v(i∗, j∗) = 0 (6)

To ensure completeness, we ought to inspect all the cases

when i∗2 ∈ [i2, i
′

2) and i∗1 ∈ [1, i∗2]. If i∗1 ∈ [1, i
′

1 − 2], any

rectangle bounded by row i∗1 and row i∗2 can be safely ig-

nored since it is definitely larger than the already considered

valid rectangle bound by row i
′

1 − 1 and row i2 considering

i∗2−i
∗

1 ≥ i2−(i
′

1−2) > i2−(i
′

1−1). When i∗1 = i
′

1−1, the

case of i∗2 = i2 has already been considered and all the other

cases where i∗2 > i2 can be similarly ignored due to the

definitely increased rectangular area size. If i∗1 ∈ [i
′

1, i
∗

2],
since i∗1, i

∗

2 ∈ [i
′

1, i
′

2 − 1] and v(i
′

1, i
′

2 − 1) = 0, we have

v(i∗1, i
∗

2) = 0 according to (6). The above reasoning is valid

through out the execution of the whole algorithm.

Algorithm 4 is of very low computation complexity. In-

side each loop, either i1 or i2 will be increased by 1. Since

both i1 and i2 will not exceed m on exit, the loop body will

be executed for at most 2m times. Therefore the overall

computational complexity is O(mn), which is actually the

naive lower bound of the problem considering that there are

altogether m× n elements in G and each element has to be

considered for at least once.

3.3. Problem 3

For Problem 3, we only consider the case when N = 2.

Namely, to find at most two disjoint rectangles. Even
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though, the complexity is substantially increased consider-

ing the explosion of the solution space due to the combina-

tion of the positions and relative sizes of two rectangles. An

even tougher problem is the distribution of total attention

values among the two rectangles. In this work, we merely

explore the feasibility of this problem by proposing a pre-

liminary solution which is illustrated in Figure 8.

Two non-intersected rectangles can be spatially sepa-

rated either vertical or horizontal. Without losing gener-

ality, suppose the two rectangles are vertically separable.

Divided the attention map vertically to get G1 and G2 with

n1 columns and n2 columns respectively, and n1+n2 = n.

Suppose h1 is the height of the left sided rectangle R̈1 in-

side G1. Then the width of R̈1 equals ⌈h1 × r⌉. Let T1 be

the sum of attention values inside R̈1, maximize the value

of T1 by exhaustive search in G1. This is straightforward

since the shape of R̈1 is fixed, and the complexity is ob-

viously O(mn1). Find in G2 the smallest rectangle R̈2

with summed attention value no less than τ
∑

G − T1 us-

ing Algorithm 4 with computational complexity O(mn2).
Loop for all possible values of h1 and n1 to minimize

∥R̈1∥+ ∥R̈2∥. It is not difficult to see that the overall com-

putational complexity is O(m2n2). Similar method can be

used for N > 2 with even higher complexity.

Figure 8. A solution to Problem 3.

3.4. Automatic selection of τ

According to our definition, τ is the percentage of atten-

tion to be preserved. Generally speaking, the value of τ can

be selected empirically or according to user requirements.

Due to the low complexity of the proposed algorithms, we

may even allow users to change τ in real time. Nevertheless,

it may still be interesting to investigate the possibility of se-

lecting τ automatically. We only study this issue for Prob-

lem 1 considering that R̈(τ) always exist for ∀τ ∈ [0, 1] in

Problem 1, leading to conciseness in analysis.

Considering the nature of image cropping, selection of

τ relies heavily on the mathematical property of function

∥R̈(τ)∥. Obviously, ∥R̈(τ)∥ is a complicate function which

varies a lot for different attention maps. Ideally, for a uni-

form attention map in which all pixels are equally impor-

tant, we have ∥R̈(τ)∥ = τ . Also for a positive valued at-

tention map, ∥R̈(0)∥ = 0 and ∥R̈(1)∥ = 1. In real life

images, pixels with high attention values are often spatially

concentrated, leading to the phenomenon that ∥R̈(τ)∥ usu-

(a) γ = 1.26 (b) γ = 1.46

Figure 9. Relationship between ∥R̈(τ)∥ and τ .

ally increases slowly for small τ and fast for large τ val-

ues as is shown in the third row of Figure 9. The function

curve may vary significantly for different images. However,

by plotting them in a logarithmic coordinate shown in the

fourth row of Figure 9, strong linear correlation between

log(∥R̈(τ)∥) and log(τ) can be observed. To further vali-

date this observation, we calculate the Pearson’s correlation

coefficients between log(∥R̈(τ)∥) and log(τ) for 1000 ran-

domly selected Microsoft COCO images [12]. The mean

and standard deviation of the correlation coefficients are

0.995 and 0.004 respectively, indicating a strong statistical

validity of this assumption of logarithmic linearity.

τ∗ = argmax
τ

τ(1− ∥R̈(τ)∥) = argmax
τ

(τ − τ1+γ) (7)

We thus propose a simple power function model as

∥R̈(τ)∥ = τγ , (γ ≥ 1), in which γ can actually be used

to measure the degree of concentration of the intention

map. Larger value of γ usually indicates higher degree of

visual attention concentration as is shown in Figure 9(b).

For a given image, γ can be estimated by linearly fitting

log(∥R̈(τ)∥) to log(τ). In practice, we choose 10 sampling

points of τ for fitting. Based on this model, different objec-

tives can be easily defined for selecting the optimum τ . As

an example, we propose a simple objective function in (7)

of which the rationale is to achieve a equilibrium between

attention preserving and region cropping. Analytically solv-

ing (7) leads to τ∗ = (1 + γ)−1/γ .
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4. Experiments

Although we focus on improving the computational ef-

ficiency of cropping rectangle search, it is of no doubt that

the key to cropping effectiveness is still the reliability of

the attention map. In all the visual results shown below, we

use attention maps generated using two different methods.

The yellow and red rectangles are calculated based on at-

tention maps generated using [8] and [10] respectively. All

the images used in our experiments are selected from the

Microsoft COCO database [12]. Figure 10 and Figure 11

show results of minimum area cropping defined in Prob-

lem 1. Figure 10 illustrates the influence of τ value. It can

be observed that both the size and position of the cropping

rectangle change with τ . Figure 11 demonstrates the effec-

tiveness of automatic τ selection. Figure 12 presents the

visual results of Problem 2 when the aspect ratio changes.

Quite surprisingly, cropping rectangles with different aspect

ratio all seem to be visually reasonable. Figure 13 are the

multiple rectangle cropping results. The attention model

proposed in [10] intentionally emphasizes the visual impor-

tance near the image center, leading unsatisfactory results

shown by red rectangles in Figure 13.

(a) R̈(0.2) (b) R̈(0.5) (c) R̈(0.7)

Figure 10. Problem 1 : cropping results for different τ .

Figure 11. Problem 1 : automatic τ selection R̈(τ∗)

We also compare the average running time of Algo-

rithm 2 and Algorithm 4 to the corresponding brute force

algorithms on 1000 randomly selected images. The ex-

periment is performed on a desktop PC equipped with a

3.6GHz CPU and 16GB memory using Matlab implemen-

tations. The acceleration ratios are plot against τ in Fig-

ure 14. All the attention maps are generated using [8] and

m = 188, n = 250. The average running time for all τ val-

ues is 137.8ms for Algorithm 2 and 4.2ms for Algorithm 4.

(a) R̈(0.5, 1) (b) R̈(0.5, 16/9) (c) R̈(0.5, 9/16)

Figure 12. Problem 2 : cropping results for different aspect ratio.

Figure 13. Problem 3 : multiple rectangle cropping R̈(0.5, 3/4, 2).

The high acceleration ratio for large τ values are caused by

the extremely low practical complexity of the proposed al-

gorithms for large τ values. For example, when τ = 0.9, the

average running time is 5.7ms for Algorithm 2 and 0.9ms

for Algorithm 4.

(a) Algorithm 2 (b) Algorithm 4

Figure 14. Acceleration ratio of proposed algorithms.

5. Conclusions

We study the computational complexity of the optimum

rectangle search in the attention based automatic image

cropping. According to different application requirements

as well as image properties, we propose three problem for-

mulations, for which algorithms with low computational

complexity are designed. We also propose a fully auto-

mated image cropping approach based on a new model de-

scribing the relationship between attention preserving and

region cropping. Experimental results have demonstrated

the effectiveness and efficiency of our proposals. There are

still problems left to be studied in the future. For example,

the relationship between visual satisfactory and the selec-

tion of τ value; and the possibility of fusing different atten-

tion maps. It is also interesting to extend this research to

aesthetics oriented image cropping methods.
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