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Abstract

Object proposals have quickly become the de-facto pre-

processing step in a number of vision pipelines (for object

detection, object discovery, and other tasks). Their perfor-

mance is usually evaluated on partially annotated datasets.

In this paper, we argue that the choice of using a par-

tially annotated dataset for evaluation of object proposals

is problematic – as we demonstrate via a thought experi-

ment, the evaluation protocol is ‘gameable’, in the sense

that progress under this protocol does not necessarily cor-

respond to a “better” category independent object proposal

algorithm.

To alleviate this problem, we: (1) Introduce a nearly-fully

annotated version of PASCAL VOC dataset, which serves as

a test-bed to check if object proposal techniques are over-

fitting to a particular list of categories. (2) Perform an ex-

haustive evaluation of object proposal methods on our in-

troduced nearly-fully annotated PASCAL dataset and per-

form cross-dataset generalization experiments; and (3) In-

troduce a diagnostic experiment to detect the bias capac-

ity in an object proposal algorithm. This tool circumvents

the need to collect a densely annotated dataset, which can

be expensive and cumbersome to collect. Finally, we have

released an easy-to-use toolbox which combines various

publicly available implementations of object proposal al-

gorithms which standardizes the proposal generation and

evaluation so that new methods can be added and evaluated

on different datasets. We hope that the results presented in

the paper will motivate the community to test the category

independence of various object proposal methods by care-

fully choosing the evaluation protocol.

1. Introduction

In the last few years, the Computer Vision community has

witnessed the emergence of a new class of techniques called

Object Proposal algorithms [1–11].

Object proposals are a set of candidate regions or bounding

boxes in an image that may potentially contain an object.

*Equal contribution.
†Now at Amgen Inc.

Object proposal algorithms have quickly become the de-

facto pre-processing step in a number of vision pipelines

– object detection [12–21], segmentation [22–26], ob-

ject discovery [27–30], weakly supervised learning of

object-object interactions [31, 32], content aware media re-

targeting [33], action recognition in still images [34] and

visual tracking [35, 36]. Of all these tasks, object pro-

posals have been particularly successful in object detection

systems. For example, nearly all top-performing entries

[13,37–39] in the ImageNet Detection Challenge 2014 [40]

used object proposals. They are preferred over the formerly

used sliding window paradigm due to their computational

efficiency. Objects present in an image may vary in loca-

tion, size, and aspect ratio. Performing an exhaustive search

over such a high dimensional space is difficult. By using

object proposals, computational effort can be focused on a

small number of candidate windows.

The focus of this paper is the protocol used for evaluating

object proposals. Let us begin by asking – what is the pur-

pose of an object proposal algorithm?

In early works [2, 4, 6], the emphasis was on category inde-

pendent object proposals, where the goal is to identify in-

stances of all objects in the image irrespective of their cate-

gory. While it can be tricky to precisely define what an “ob-

ject” is1, these early works presented cross-category evalu-

ations to establish and measure category independence.

More recently, object proposals are increasingly viewed as

detection proposals [1, 8, 11, 42] where the goal is to im-

prove the object detection pipeline, focusing on a chosen

set of object classes (e.g. ~20 PASCAL categories). In

fact, many modern proposal methods are learning-based

[9–11, 42–46] where the definition of an “object” is the set

of annotated classes in the dataset. This increasingly blurs

the boundary between a proposal algorithm and a detector.

Notice that the former definition has an emphasis on ob-

ject discovery [27,28,30], while the latter definition empha-

sises on the ultimate performance of a detection pipeline.

Surprisingly, despite the two different goals of ‘object pro-

1Most category independent object proposal methods define an object

as “stand-alone thing with a well-defined closed-boundary”. For “thing”

vs. “stuff” discussion, see [41].
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(a) (Green) Annotated, (Red) Unannotated (b) Method 1 with recall 0.6 (c) Method 2 with recall 1

Figure 1: (a) shows PASCAL annotations natively present in the dataset in green. Other objects that are not annotated but present in the

image are shown in red; (b) shows Method 1 and (c) shows Method 2. Method 1 visually seems to recall more categories such as plates,

glasses, etc. that Method 2 missed. Despite that, the computed recall for Method 2 is higher because it recalled all instances of PASCAL

categories that were present in the ground truth. Note that the number of proposals generated by both methods is equal in this figure.

(a) (Green) Annotated, (Red) Unannotated (b) Method 1 with recall 0.5 (c) Method 2 with recall 0.83

Figure 2: (a) shows PASCAL annotations natively present in the dataset in green. Other objects that are not annotated but present in the

image are shown in red; (b) shows Method 1 and (c) shows Method 2. Method 1 visually seems to recall more categories such as lamps,

picture, etc. that Method 2 missed. Clearly the recall for Method 1 should be higher. However, the calculated recall for Method 2 is

significantly higher, which is counter-intuitive. This is because Method 2 recalls more PASCAL category objects.

posal,’ there exists only a single evaluation protocol:

1. Generate proposals on a dataset: The most commonly

used dataset for evaluation today is the PASCAL VOC

[47] detection set. Note that this is a partially anno-

tated dataset where only the 20 PASCAL category in-

stances are annotated.

2. Measure the performance of the generated proposals:

typically in terms of ‘recall’ of the annotated instances.

Commonly used metrics are described in Section 3.

The central thesis of this paper is that the current evaluation

protocol for object proposal methods is suitable for object

detection pipeline but is a ‘gameable’ and misleading pro-

tocol for category independent tasks. By evaluating only

on a specific set of object categories, we fail to capture the

performance of the proposal algorithms on all the remain-

ing object categories that are present in the test set, but not

annotated in the ground truth.

Figs. 1, 2 illustrate this idea on images from PASCAL VOC

2010. Column (a) shows the ground-truth object anno-

tations (in green, the annotations natively present in the

dataset for the 20 PASCAL categories –‘chairs’, ‘tables’,

‘bottles’, etc.; in red, the annotations that we added to

the dataset by marking object such as ‘ceiling fan’, ‘table

lamp’, ‘window’, etc. originally annotated ‘background’ in

the dataset). Columns (b) and (c) show the outputs of two

object proposal methods. Top row shows the case when

both methods produce the same number of proposals; bot-

tom row shows unequal number of proposals. We can

see that proposal method in Column (b) seems to be more

“complete”, in the sense that it recalls or discovers a large

number of instances. For instance, in the top row it detects

a number of non-PASCAL categories (‘plate’, ‘bowl’, ‘pic-

ture frame’, etc.) but misses out on finding the PASCAL

category ‘table’. In both rows, the method in Column (c)

is reported as achieving a higher recall, even in the bottom

row, when it recalls strictly fewer objects, not just different

ones. The reason is that Column (c) recalls/discovers in-

stances of the 20 PASCAL categories, which are the only

ones annotated in the dataset. Thus, Method 2 appears to be

a better object proposal generator simply because it focuses

on the annotated categories in the dataset.

While intuitive (and somewhat obvious) in hindsight, we

believe this is a crucial finding because it makes the current

protocol ‘gameable’ or susceptible to manipulation (both

intentional and unintentional) and misleading for measuring

improvement in category independent object proposals.

Some might argue that if the end task is to detect a cer-
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tain set of categories (20 PASCAL or 80 COCO categories)

then it is enough to evaluate on them and there is no need

to care about other categories which are not annotated in

the dataset. We agree, but it is important to keep in mind

that object detection is not the only application of object

proposals. There are other tasks for which it is important

for proposal methods to generate category independent pro-

posals. For example, in semi/unsupervised object localiza-

tion [27–30] the goal is to identify all the objects in a given

image that contains many object classes without any spe-

cific target classes. In this problem, there are no image-

level annotations, an assumption of a single dominant class,

or even a known number of object classes [28]. Thus, in

such a setting, using a proposal method that has tuned itself

to 20 PASCAL objects would not be ideal – in the worst

case, we may not discover any new objects. As mentioned

earlier, there are many such scenarios including learning

object-object interactions [31, 32], content aware media re-

targeting [33], visual tracking [36], etc.

To summarize, the contributions of this paper are:

• We report the ‘gameability’ of the current object pro-

posal evaluation protocol.

• We demonstrate this ‘gameability’ via a simple

thought experiment where we propose a ‘fraudulent’

object proposal method that significantly outperforms

all existing object proposal techniques on current met-

rics, but would under any no circumstances be consid-

ered a category independent proposal technique. As

a side contribution of our work, we present a simple

technique for producing state-of-art object proposals.

• After establishing the problem, we propose three ways

of improving the current evaluation protocol to mea-

sure the category independence of object proposals:

1. evaluation on fully annotated datasets,

2. cross-dataset evaluation on densely annotated

datasets.

3. a new evaluation metric that quantifies the bias

capacity of proposal generators.

For the first test, we introduce a nearly-fully annotated

PASCAL VOC 2010 where we annotated all instances

of all object categories occurring in the images.

• We thoroughly evaluate existing proposal methods on

this nearly-fully and two densely annotated datasets.

• We have released release all code and data for experi-

ments2, and an object proposals library that allows for

comparison of popular object proposal techniques.

2. Related Work

Types of Object Proposals: Object proposals can be

broadly categorized into two categories:

• Window scoring: In these methods, the space of

all possible windows in an image is sampled to get

2Data and code can be accessed at: https://filebox.ece.vt.

edu/~aroma/web/object-proposals.html

a subset of the windows (e.g., via sliding window).

These windows are then scored for the presence of

an object based on the image features from the win-

dows. The algorithms that fall under this category

are [1, 4, 5, 10, 45, 48].

• Segment based: These algorithms involve over-

segmenting an image and merging the segments us-

ing some strategy. These methods include [2, 3, 6–9,

11, 44, 46, 49]. The generated region proposals can be

converted to bounding boxes if needed.

Beyond RGB proposals: Beyond the ones listed above, a

wide variety of algorithms fall under the umbrella of ‘ob-

ject proposals’. For instance, [50–54] used spatio-temporal

object proposals for action recognition, segmentation and

tracking in videos. Another direction of work [55–57] ex-

plores use of RGB-D cuboid proposals in an object detec-

tion and semantic segmentation in RGB-D images. While

the scope of this paper is limited to proposals in RGB im-

ages, the central thesis of the paper (i.e., gameability of the

evaluation protocol) is broadly applicable to other settings.

Evaluating Proposals: There has been a relatively limited

analysis and evaluation of proposal methods or the proposal

evaluation protocol. Hosang et al. [58] focus on evaluation

of object proposal algorithms, in particular the stability of

such algorithms on parameter changes and image perturba-

tions. Their works shows that a large number of category

independent proposal algorithms indeed generalize well to

non-PASCAL categories, for instance in the ImageNet 200

category detection dataset [40]. Although these findings are

important (and consistent with our experiments), they are

unrelated to the ‘gameability’ of the evaluation protocol. In

[59], authors present an analysis of various proposal meth-

ods regarding proposal repeatability, ground truth annota-

tion recall, and their impact on detection performance. They

also introduced a new evaluation metric (Average Recall).

Their argument for a new metric is the need for a better

localization between generated proposals and ground truth.

While this is a valid and significant concern, it is orthogonal

to the‘gameability’ of the evaluation protocol, which to the

best of our knowledge has not been previously addressed.

Another recent related work is [60], which analyzes various

methods in segment-based object proposals, focusing on the

challenges faced when going from PASCAL VOC to MS

COCO. They also analyze how aligned the proposal meth-

ods are with the bias observed in MS COCO towards small

objects and the center of the image and propose a method

to boost their performance. Although there is a discussion

about biases in datasets but it is unlike our theme, which

is ‘gameability’ due to these biases. As stated earlier, while

early papers [2,4,6] reported cross-dataset or cross-category

generalization experiments similar to ones reported in this

paper, with the trend of learning-based proposal methods,

these experiments and concerns seem to have fallen out of

standard practice, which we show is problematic.
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3. Evaluating Object Proposals

Before we describe our evaluation and analysis, let us first

look at the object proposal evaluation protocol that is widely

used today. The following two factors are involved:

1. Evaluation Metric: The metrics used for evaluating

object proposals are all typically functions of inter-

section over union (IOU) (or Jaccard Index) between

generated proposals and ground-truth annotations. For

two boxes/regions bi and bj , IOU is defined as:

IOU(bi, bj) =
area(bi ∩ bj)

area(bi ∪ bj)
(1)

The following metrics are commonly used:

• Recall @ IOU Threshold t: For each ground-truth

instance, this metric checks whether the ‘best’ pro-

posal from list L has IOU greater than a threshold t. If

so, this ground truth instance is considered ‘detected’

or ‘recalled’. Then average recall is measured over all

the ground truth instances:

Recall @ t =
1

|G|

∑

gi∈G

I [max
lj∈L

IOU(gi, lj) > t], (2)

where I[·] is an indicator function for the logical

preposition in the argument. Object proposals are eval-

uated using this metric in two ways:

– plotting Recall-vs.-#proposals by fixing t

– plotting Recall-vs.-t by fixing the #proposals in L.

• Area Under the recall Curve (AUC): AUC summa-

rizes the area under the Recall-vs.-#proposals plot for

different values of t in a single plot. This metric mea-

sures AUC-vs.-#proposals. It is also plotted by varying

#proposals in L and plotting AUC-vs-t.

• Volume Under Surface (VUS): This measures the

average recall by linearly varying t and varying the

#proposals in L on either linear or log scale. Thus it

merges both kinds of AUC plots into one.

• Average Best Overlap (ABO): This metric elimi-

nates the need for a threshold. We first calculate the

overlap between each ground truth annotation gi ∈ G,

and the ‘best’ object hypotheses in L. ABO is calcu-

lated as the average:

ABO =
1

|G|

∑

gi∈G

max
lj∈L

IOU(gi, lj) (3)

ABO is typically is calculated on a per class basis.

Mean Average Best Overlap (MABO) is defined as the

mean ABO over all classes.

• Average Recall (AR): This metric was recently in-

troduced in [59]. Here, average recall (for IOU be-

tween 0.5 to 1)-vs.-#proposals in L is plotted. AR also

summarizes proposal performance across different val-

ues of t. AR was shown to correlate with ultimate de-

tection performance better than other metrics.

2. Dataset: The most commonly used datasets are the

PASCAL VOC [47] detection datasets. Note that these

are partially annotated datasets where only the 20

PASCAL category instances are annotated. Recently

analyses have been shown on ImageNet [58], which

has more categories annotated than PASCAL, but is

still a partially annotated dataset.

4. A Thought Experiment:
How to Game the Evaluation Protocol

Let us conduct a thought experiment to demonstrate that the

object proposal evaluation protocol can be ‘gamed’.

Imagine yourself reviewing a paper claiming to introduce a

new object proposal method – called DMP.

Before we divulge the details of DMP, consider the perfor-

mance of DMP shown in Fig. 3 on the PASCAL VOC 2010

dataset, under the AUC-vs.-#proposals metric.
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Figure 3: Performance of different object proposal methods

(dashed lines) and our proposed ‘fraudulent’ method (DMP) on the

PASCAL VOC 2010 dataset. We can see that DMP significantly

outperforms all other proposal generators. See text for details.

As we can clearly see, the proposed method DMP signifi-

cantly exceeds all existing proposal methods [1–6,8,10,11]

(which seem to have little variation over one another). The

improvement at some points in the curve (e.g., at M=10)

seems to be an order of magnitude larger than all previous

incremental improvements reported in the literature! In ad-

dition to the gain in AUC at a fixed M, DMPs also achieves

the same AUC (0.55) at an order of magnitude fewer num-

ber of proposals (M=10 vs. M= 50 for edgeBoxes [1]).

Thus, fewer proposals need to be processed by the ensu-

ing detection system, resulting in an equivalent run-time

speedup. This seems to indicate that a significant progress

has been made in the field of generating object proposals.

So what is our proposed state-of-art technique DMP?

It is a mixture-of-experts model, consisting of 20 experts,

where each expert is a deep feature (fc7)-based [61] object-

ness detector. At this point, you, the savvy reader, are prob-

ably already beginning to guess what we did.
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DMP stands for ‘Detector Masquerading as Proposal gener-

ator’. We trained object detectors for the 20 PASCAL cat-

egories (in this case with RCNN [12]), and then used these

20 detectors to produce the top-M most confident detections

(after NMS), and declared them to be ‘object proposals’.

The point of this experiment is to demonstrate the following

fact – clearly, no one would consider a collection of 20 ob-

ject detectors to be a category independent object proposal

method. However, our existing evaluation protocol declared

the union of these top-M detections to be state-of-the-art.

Why did this happen? Because the protocol today involves

evaluating a proposal generator on a partially annotated

dataset such as PASCAL. The protocol does not reward re-

call of non-PASCAL categories; in fact, early recall (near

the top of the list of candidates) of non-PASCAL objects

results in a penalty for the proposal generator! As a result, a

proposal generator that tunes itself to these 20 PASCAL cat-

egories (either explicitly via training or implicitly via design

choices or hyper-parameters) will be declared a better pro-

posal generator when it may not be (as illustrated by DMP).

Notice that as learning-based object proposal methods im-

prove on this metric, “in the limit” the best object proposal

technique is a detector for the annotated categories, sim-

ilar to our DMP. Thus, we should be cautious of methods

proposing incremental improvements on this protocol – im-

provements on this protocol do not necessarily lead to a bet-

ter category independent object proposal method.

This thought experiment exposes the inability of the exist-

ing protocol to evaluate category independence.

5. Evaluation on Fully and Densely Annotated
Datasets

As described in the previous section, the problem of ‘game-

ability’ is occurring due to the evaluation of proposal meth-

ods on partially annotated datasets. An intuitive solution

would be evaluating on a fully annotated dataset.

In the next two subsections, we evaluate the performance

of 7 popular object proposal methods [1, 3–6, 8, 10] and

two DMPs (RCNN [12] and DPM [63]) on one nearly-fully

and two densely annotated datasets containing many more

object categories. This is to quantify how much the per-

formance of our ‘fraudulent’ proposal generators (DMPs)

drops once the bias towards the 20 PASCAL categories is

diminished (or completely removed).

We begin by creating a nearly-fully annotated dataset by

building on the effort of PASCAL Context [62] and eval-

uate on this nearly-fully annotated modified instance level

PASCAL Context; followed by cross-dataset evaluation on

other partial-but-densely annotated datasets MS COCO [64]

and NYU-Depth V2 [65].

Experimental Setup: On MS COCO and PASCAL Con-

text datasets we conducted experiments as follows:

• Use the existing evaluation protocol for evaluation,

i.e., evaluate only on the 20 PASCAL categories.

• Evaluate on all the annotated classes.

• For the sake of completeness, we also report results on

all the classes except the PASCAL 20 classes.3

Training of DMPs: The two DMPs we use are based on

two popular object detectors - DPM [63] and RCNN [12].

We train DPM on 20 PASCAL categories and use it as an

object proposal method. To generate large number of pro-

posals, we chose a low value of threshold in Non-Maximum

Suppression (NMS). Proposals are generated for each cate-

gory and a score is assigned to them by the corresponding

DPM for that category. These proposals are then merge-

sorted on the basis of this score. Top M proposals are se-

lected from this sorted list where M is the number of pro-

posals to be generated.

Another (stronger) DMP is RCNN which is a detection

pipeline that uses 20 SVMs (each for one PASCAL cate-

gory) trained on deep features (fc7) [61] extracted on selec-

tive search boxes. Since RCNN itself uses selective search

proposals, it should be viewed as a trained reranker of se-

lective search boxes. As a consequence, it ultimately equals

selective search performance once the number of candidates

becomes large. We used the pretrained SVM models re-

leased with the RCNN code, which were trained on the 20

classes of PASCAL VOC 2007 trainval set. For every test

image, we generate the Selective Search proposals using the

‘FAST’ mode and calculate the 20 SVM scores for each

proposal. The ‘objectness’ score of a proposal is then the

maximum of the 20 SVM scores. All the proposals are then

sorted by this score and top M proposals are selected.4

Object Proposals Library2: To ease the process of carry-

ing out the experiments, we created an open source, easy-

to-use object proposals library. This can be used to seam-

lessly generate object proposals using all the existing algo-

rithms [1–9] (for which the Matlab code has been released

by the respective authors) and evaluate these proposals on

any dataset using the commonly used metrics.

5.1. Fully Annotated Dataset

PASCAL Context: This dataset ()introduced by Mot-

taghi et al. [62]) contains additional annotations for PAS-

CAL VOC 2010 dataset [66]. The annotations are semantic

segmentation maps, where every single pixel previously an-

notated ‘background’ in PASCAL was assigned a category

label. In total, annotations have been provided for 459 cat-

egories. This includes the original 20 PASCAL categories

and new classes such as keyboard, fridge, picture, cabinet.

Unfortunately, the dataset contains only category-level se-

mantic segmentations. For our task, we needed instance-

level annotations, which can’t be reliably extracted from

category-level segmentation masks.

3On NYU-Depth V2 evaluation is done on all categories. This is be-

cause only 8 PASCAL categories are present in this dataset.
4It was observed that merge-sorting calibrated/rescaled SVM scores led

to inferior performance as compared to merge-sorting without rescaling.
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(a) Average #annotations for

different categories.

(b) Fraction of image-area cov-

ered by different categories.

(c) PASCAL Context annota-

tions [62].

(d) Our augmented annotations.

Figure 4: (a),(b) Distribution of object classes in PASCAL Context with respect to different attributes. (c),(d) Augmenting PASCAL

Context with instance-level annotations. (Green = PASCAL 20 categories; Red = new objects)
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(b) Performance on PASCAL Context,

only 60 non-PASCAL classes annotated.
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(c) Performance on PASCAL Context, all

classes annotated.
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(d) Performance on MS COCO, only 20

PASCAL classes annotated.
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(e) Performance on MS COCO, only 60

non-PASCAL classes annotated.
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(f) Performance on MS COCO, all classes

annotated.
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(g) Performance on NYU-Depth V2, all

classes annotated
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Figure 5: Performance of different methods on PASCAL Context, MS COCO and NYu Depth-V2 with different sets of annotations.

Creating Instance-Level Annotations for PASCAL Con-

text2: Thus, we created instance-level bounding box anno-

tations for all images in PASCAL Context dataset. First, out

of the 459 category labels in PASCAL Context, we identi-

fied 396 categories to be ‘things’, and ignored the remaining
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‘stuff’ or ‘ambiguous’ categories5 – neither of these lend

themselves to bounding-box-based object detection. See

supplement6 for details.

We selected the 60 most frequent non-PASCAL categories

from this list of ‘things’ and manually annotated all their

instances. Selecting only top 60 categories is a reason-

able choice because the average per category frequency in

the dataset for all the other categories (even after including

background/ambiguous categories) was roughly one third

as that of the chosen 60 categories (Fig. 4a). Moreover,

the percentage of pixels in an image left unannotated (as

‘background’) drops from 58% in original PASCAL to 50%

in our nearly-fully annotated PASCAL Context. This man-

ual annotation was performed with the aid of the semantic

segmentation maps present in the PASCAL Context anno-

tations. Examples annotations are shown in Fig. 4d. For

detailed statistics, see supplement6.

Results and Observations: We now explore how changes

in the dataset and annotated categories affect the results of

the thought experiment from Section 4. Figs. 5a, 5b, 5c, 5h

compare the performance of DMPs with a number of exist-

ing proposal methods [1–6, 8, 10, 11] on PASCAL Context.

We can see in Column (a) that when evaluated on only

20 PASCAL categories DMPs trained on these categories

appear to significantly outperform all proposal generators.

However, we can see that they are not category independent

because they suffer a big drop in performance when evalu-

ated on 60 non-PASCAL categories in Column (b). Notice

that on PASCAL context, all proposal generators suffer a

drop in performance between the 20 PASCAL categories

and 60 non-PASCAL categories. We hypothesize that this

due to the fact that the non-PASCAL categories tend to be

generally smaller than the PASCAL categories (which were

the main targets of the dataset curators) and hence difficult

to detect. But this could also be due to the reason that

authors of these methods made certain choices while de-

signing these approaches which catered better to the 20 an-

notated categories. However, the key observation here (as

shown in Fig. 5h) is that DMPs suffer the biggest drop.

This drop is much greater than all the other approaches. It

is interesting to note that due to the ratio of instances of 20

PASCAL categories vs other 60 categories, DMPs continue

to slightly outperform proposal generators when evaluated

on all categories, as shown in Column (c).

5.2. Densely Annotated Datasets

Besides being expensive, “full” annotation of images is

somewhat ill-defined due to the hierarchical nature of object

semantics (e.g. are object-parts such as bicycle-wheel, win-

dows in a building, eyes in a face, etc. also objects?). One

way to side-step this issue is to use datasets with dense an-

notations (albeit at the same granularity) and conduct cross-

5e.g., a ‘tree’ may be a ‘thing’ or ‘stuff’ subject to camera viewpoint.
6See Appendix in: http://arxiv.org/abs/1505.05836

dataset evaluation.

MS COCO: Microsoft Common Objects in Context (MS

COCO) dataset [64] contains 91 common object classes (82

of them having more than 5,000 labeled instances). It not

only has significantly higher number of instances per class

than PASCAL, but also more object instances per image

(7.7) as compared to ImageNet (3.0) and PASCAL (2.3).

NYU-Depth V2: NYU-Depth V2 dataset [65] is com-

prised of video sequences from a variety of indoor scenes as

recorded by both the RGB and Depth cameras. It features

1449 densely labeled pairs of aligned RGB and depth im-

ages with instance-level annotations. We used these 1449

densely annotated RGB images for evaluating object pro-

posal algorithms. To the best of our knowledge, this is the

first paper to compare proposal methods on such a dataset.

Results and Observations: Figs. 5d, 5e, 5f, 5i show a plot

similar to PASCAL Context on MS COCO. Again, DMPs

outperform all other methods on PASCAL categories but

fail to do so for the Non-PASCAL categories. Fig. 5g shows

results for NYU-Depth V2. See that when many classes in

the test dataset are not PASCAL classes, DMPs tend to per-

form poorly, although it is interesting that the performance

is still not as poor as the worst proposal generators. Results

on other evaluation criteria are in the supplement6.

6. Bias Inspection

So far, we have discussed two ways of detecting ‘game-

ability’ – evaluation on nearly-fully annotated dataset and

cross-dataset evaluation on densely annotated datasets. Al-

though these methods are fairly useful for bias detection,

they have certain limitations. Datasets can be unbalanced.

Some categories can be more frequent than others while

others can be hard to detect (due to choices made in

dataset collection). These issues need to be resolved for

perfectly unbiased evaluation. However, generating unbi-

ased datasets is an expensive and time-consuming process.

Hence, to detect the bias without getting unbiased datasets,

we need a method which can measure performance of pro-

posal methods in a way that category specific biases can be

accounted for and the extent or the capacity of this bias can

be measured. We introduce such a method in this section.

6.1. Assessing Bias Capacity

Many proposal methods [9–11,42–46] rely on explicit train-

ing to learn an “objectness” model, similar to DMPs. De-

pending upon which, how many categories they are trained

on, these methods could have a biased view of “objectness”.

One way of measuring the bias capacity in a proposal

method to plot the performance vs. the number of ‘seen’

categories while evaluating on some held-out set. A method

that involves little or no training will be a flat curve on

this plot. Biased methods such as DMPs will get better

and better as more categories are seen in training. Thus,

this analysis can help us find biased or ‘gamebility-prone’
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Figure 6: Performance of RCNN and other proposal generators vs number of object categories used for training. We can see that RCNN

has the most ‘bias capacity’ while the performance of other methods is nearly (or absolutely) constant.

methods like DMPs that are/can be tuned to specific classes.

To the best of our knowledge, no previous work has at-

tempted to measure bias capacity by varying the num-

ber of ‘object’ categories seen at training time. In this

experiment, we compared the performance of one DMP

method (RCNN), one learning-based proposal method (Ob-

jectness), and two non learning-based proposal methods

(Selective Search [8], EdgeBoxes [1]) as a function of the

number of ‘seen’ categories (the categories trained on7) on

MS COCO [64] dataset. Method names ‘RCNNTrainN’,

‘objectnessTrainN’ indicate that they were trained on im-

ages that contain annotations for only N categories (50 in-

stances per category). Total number of images for all 60

categories was ~2400 (because some images contain >1 ob-

ject). Once trained, these methods were evaluated on a

randomly-chosen set of ~500 images, which had annota-

tions for all 60 categories.

Fig. 6a shows Area under Recall vs. #proposals curve for

learning-based methods trained on different sets of cate-

gories. Fig. 6b and Fig. 6c show the variation of AUC vs.

# seen categories and improvement due to increase in train-

ing categories (from 10 to 60) vs. #proposals respectively,

for RCNN and objectness when trained on different sets of

categories. The key observation to make here is that with

even a modest increase in ‘seen’ categories with the same

amount of increased training data, performance improve-

ment of RCNN is significantly more than objectness. Se-

lective Search [8] and edgeBoxes [1] are the dashed straight

lines since there is no training involved.

These results clearly indicate that as RCNN sees more cat-

egories, its performance improves. One might argue that

the reason might be that the method is learning more ‘ob-

jectness’ as it is seeing more data. However, as discussed

above, the increase in the dataset size is marginal (~40 im-

ages per category) and hence it unlikely that such a signif-

icant improvement is observed due to that. Thus, it is rea-

sonable to conclude that this improvement is because the

method is learning class specific features.

7The seen categories are picked in the order they are listed in MS

COCO dataset (i.e., no specific criterion was used).

Thus, this approach can be used to reason about

‘gameability-prone’ and ‘gameability-immune’ proposal

methods without creating an expensive fully annotated

dataset. We believe this simple but effective diagnostic ex-

periment would help to detect and thus contribute in manag-

ing the category specific bias in all learning-based methods.

7. Conclusion

To conclude, the main message of this paper is simply this

– the current evaluation protocol for object proposal algo-

rithms is not suitable if we view them as category indepen-

dent object proposal methods (meant to discover [27, 28],

instances of all categories). By evaluating the ‘recall’ of

instances on a partially annotated dataset, we fail to cap-

ture the performance of the proposal algorithm on all the

remaining object categories that are present in the test set,

but not annotated in the ground truth.

We demonstrate this ‘gameability’ via a simple thought ex-

periment where we propose a ‘fraudulent’ object proposal

method that outperforms all existing object proposal tech-

niques on current metrics. We introduce a nearly-fully an-

notated version of PASCAL VOC 2010 where we annotated

all instances of 60 object categories other than 20 PASCAL

categories occurring in all images. We perform an exhaus-

tive evaluation of object proposal methods on our intro-

duced modified instance level PASCAL dataset and perform

cross-dataset generalization experiments on MS COCO and

NYU-Depth V2. We have also released an easy-to-use li-

brary to evaluate and compare various proposal methods

which we think will also be useful. Furthermore, since

densely annotating the dataset is a tedious and costly task,

we proposed a diagnostic experiment to detect and quantify

the bias capacity in object proposal methods.

As modern proposal methods become more learning-based

and trained in an end-to-end fashion, it is clear that the dis-

tinction between detectors and proposal generators is be-

coming blurred. With that in mind, it is important to recog-

nize and safeguard against the flaws in the protocol, lest we

over-fit as a community to a specific set of object classes.
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