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Abstract

We propose a personalized ConvNet pose estimator that

automatically adapts itself to the uniqueness of a person’s

appearance to improve pose estimation in long videos.

We make the following contributions: (i) we show that

given a few high-precision pose annotations, e.g. from a

generic ConvNet pose estimator, additional annotations can

be generated throughout the video using a combination of

image-based matching for temporally distant frames, and

dense optical flow for temporally local frames; (ii) we de-

velop an occlusion aware self-evaluation model that is able

to automatically select the high-quality and reject the erro-

neous additional annotations; and (iii) we demonstrate that

these high-quality annotations can be used to fine-tune a

ConvNet pose estimator and thereby personalize it to lock

on to key discriminative features of the person’s appear-

ance. The outcome is a substantial improvement in the

pose estimates for the target video using the personalized

ConvNet compared to the original generic ConvNet.

Our method outperforms the state of the art (including

top ConvNet methods) by a large margin on three standard

benchmarks, as well as on a new challenging YouTube video

dataset. Furthermore, we show that training from the auto-

matically generated annotations can be used to improve the

performance of a generic ConvNet on other benchmarks.

1. Introduction

Recent advances in 2D human pose estimation exploit

complex appearance models [2, 24, 35, 38] and more re-

cently convolutional neural networks (ConvNets) [10, 13,

21, 23, 27, 32, 33, 44, 45]. However, even the state of the

art ConvNets often produce absurdly erroneous predictions

in videos – particularly for unusual poses, challenging illu-

mination or viewing conditions, self-occlusions or unusual

shapes (e.g. when wearing baggy clothing, or unusual body

proportions). This is due to the lack of large quantities of

annotated data, which is critical for training ConvNets; and,

as we show below, the models failing to exploit person-

specific information.

To address these issues, this paper proposes an

occlusion-aware method for automatically learning reliable,

person-specific pose estimators in long videos. Using the

fact that people tend not to change appearance over the

course of a video (same clothes, same body shape), we show

that the large quantity of data in the video can be exploited

to ‘personalize’ a pose estimator, thereby improving per-

formance for unusual poses. The key idea is to ‘spread’ a

small number of high quality automatic pose annotations

throughout the video using spatial image matching tech-

niques and temporal propagation (see Fig 1), and use this

new annotation to fine-tune a generic ConvNet pose estima-

tor. We demonstrate that such personalization yields signif-

icant improvements in detection performance over the orig-

inal generic pose estimation method.

Our idea stems from the observation that current pose

estimation methods fail to exploit person-specific informa-

tion, such as jewelery, clothing, tattoos etc. For example, if

one learns a person is wearing an item of clothing which is

easily tracked, such as a necklace, then this information can

be used to help localize the head and shoulders. Similarly,

for a distinctive pattern or color on an item of clothing, or

a tattoo/watch on a wrist. The personalization algorithm

essentially ‘locks on’ to these person-specific features, and

exploits them to more accurately determine the pose.

Operationalizing personalization requires a novel set of

methods: (i) spatial matching for body parts; (ii) tempo-

ral propagation based on dense optical flow; and (iii) an

occlusion-aware pose model for self-evaluation to verify or

excise erroneous annotations. We evaluate the personaliza-

tion algorithm on both long and short videos from YouTube,

sign language TV broadcasts and cooking videos, and show

that our method significantly outperforms state of the art

generic pose estimators.

More generally, the approach provides a ‘production sys-

tem’ for effortlessly and automatically generating copious

quantities of high quality annotated pose data, for exam-

ple starting from the abundant repository of long video se-

quences containing the same person on YouTube (e.g. com-

edy and cooking shows; DJs; single player sports such as

golf, aerobics, gymnastics; training videos etc.). These an-
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Figure 1. Personalized video pose estimation. Left: Overview. A few video frames are annotated with confident pose estimates from

one or more generic pose estimators in stage 1. Pose annotations are spread throughout the video in two more stages: Stage 2 uses spatial

matching (illustrated with the wrist joint), stage 3 propagates annotation temporally. Stage 4 self-evaluates the new annotations to discard

errors. These stages are iterated, and resulting annotations used to train a personalized pose estimator. Right: the improvement in wrist

accuracy after each stage on the YouTube Pose Subset dataset. Starting from a generic ConvNet based pose estimator [32], new annotations

are generated over five iterations, and used to fine-tune the ConvNet. Note, the large improvement gains obtained by personalizing.

notations can be used for large scale training of a generic

ConvNet pose estimator, thereby overcoming current limi-

tations due to limited and restricted training regimes which

rely upon manual annotation. The code, models and

data are available at https://www.robots.ox.ac.uk/

˜vgg/research/personalization.

Related work. The fact that human appearance tends to

stay unchanged through videos has been used in the past to

aid pose estimation [1, 36, 41]. Ramanan et al. [36] train

discriminative body part detectors by first detecting ‘easy’

poses (such as a ‘scissors’ walking pose) and then using

the appearance learnt from these poses to track the remain-

ing video with a pictorial structure model. Shen et al. [41]

iteratively re-train a pose estimator from confident detec-

tions, and also include temporal constraints. In the same

spirit as [36], we too initialize from high-precision poses

and re-train a discriminative model (a ConvNet pose esti-

mator) – but rather than training a personalized part detec-

tor from these poses alone, we first spread the initial anno-

tation throughout the whole video [3] using image match-

ing [42] and optical flow [8, 49] to generate far more anno-

tated frames. Since long video sequences contain an abun-

dance of data, we can simply delete poor pose annotations

(rather than trying to correct them); and even if some of the

remaining annotations are incorrect, our ConvNet is able to

deal with the label noise. Prior work [22] has used evalu-

ator algorithms to remove entire erroneous pose estimates,

whereas here we evaluate individual body part annotations.

Furthermore, in a similar manner to poselets [2, 18, 34, 40],

our matching framework captures dependencies between

both connected and non-connected body parts.

More generally, the idea of starting from general clas-

sifiers, and then ‘personalizing’ them has been used in

other areas of computer vision, such as pedestrian detec-

tion [20] or object tracking [26]. Kalal et al. [26] proposed

a tracking-learning-detection paradigm for learning a set of

object templates online, e.g. for vehicles. Typically, in this

type of approach, object models are initialized from a single

frame [15, 25], and then matched to the next frame before

being re-learnt. Supancic and Ramanan [43] improve this

by proposing to revisit tracked frames and re-learn a model

to correct previous errors. In a similar way, our approach

utilizes the whole video to learn body part appearance, but

differs to previous work in that we match to all frames in a

video sequence in one step, and not just frame to frame.

Self-occlusion is a challenging problem for pose estima-

tion, with some methods addressing the issue by incorpo-

rating a state in their body model to signal body part occlu-

sion [12, 28], or by including an explicit occlusion part tem-

plate [17]. Alternatively one can opt to use multiple body

models, each one handling a different type of part occlu-

sion [9, 46]. Fine-scale occlusion reasoning (pixel level)

is also possible when the depth order is known [4] or un-

known [12, 29]. Another approach is to train better dis-

criminative part detectors which learn the occlusion patterns

from large datasets [16]. In our case we use an occlusion-

aware pose model trained only to signal body part occlusion.

In this setting, occlusion inference and pose estimation are

decoupled, resulting in fast inference while also handling

occluded parts correctly.

2. Personalizing Pose Estimation

We start with an overview of the personalization algo-

rithm before going into details below. Fig 1 shows an

overview of the process, which has six distinct stages:

1. Initial pose annotation. Initial pose annotations for the

video are obtained with generic pose estimators for a few

frames (yellow regions in Fig 1). By design, these annota-
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(a) (b)

(c)
Figure 2. Initial pose estimates with generic pose estimators.

Two arm pose specific model estimate examples for (a) a bent arm,

and (b) a straight arm – note that the models need not fire on both

left and right arms. (c) Poses showing joint detections with high

confidence output from the generic ConvNet – in practice not all

joints in a pose will have high confidence and therefore not all will

be used during initialization.

tions have high precision, but low recall (i.e. only cover a

very small proportion of the frames in the video).

2. Spatial matching. Image patches from the remaining

frames are matched (blue regions in Fig 1) to image patches

of body joints in frames with annotations (from stage 1).

This forms a correspondence between annotated frames and

matched frames, allowing the body joint annotations to be

transferred to quite temporally distant frames in the video.

3. Temporal propagation. Pose annotations are spread

from the annotated frames to temporally near-by (neighbor-

ing) frames, by propagating current annotation temporally

along tracks using dense optical flow (pink regions in Fig 1).

4. Annotation evaluation. In this stage, an evaluation mea-

sure discards annotations from the previous stages that are

deemed to be poor. Multiple evaluation measures are em-

ployed, the two principal ones are: (i) consistency of over-

lapping annotations where regions in the video with multi-

ple overlapping annotations (red regions in Fig 1) coming

from different ‘sources’ (e.g. propagated from different ini-

tial annotations) are tested to see whether the annotations

agree – this provides a very natural way to evaluate annota-

tion correctness; and (ii) an occlusion-aware puppet model

that renders a layout according to the predicted pose, and

measures consistency with the image, similar to [4, 5, 49].

5. Iterating. To maximize frame annotation coverage,

stages 2–4 are iterated, with the evaluator used to discard

incorrect propagation histories, and propagate further those

that are verified. Fig 3 demonstrates increased coverage and

accuracy as our system iterates.

6. Personalizing a ConvNet. A generic ConvNet pose es-

timator is personalized by fine-tuning with the annotations

acting as training data for the input video. This ConvNet can

be applied to frames which the annotation process hasn’t

reached. The caveat here is that the reasoning about self-

occlusions in the annotation is lost, since the ConvNet pose
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Figure 3. Annotation accuracy and coverage when iterating.

Accuracy of annotation and coverage (% of frames with annota-

tion) across the video increases as the system iterates. Body joints

with less appearance variation, such as the shoulders, have consis-

tent accuracy and coverage rapidly approaches 100%. Most no-

table gains in accuracy are for joints with high appearance varia-

tion such as the wrists, improving by 9% from iteration 1. Accu-

racy is measured as the percentage of estimated annotations within

d = 20 pixels from ground truth (approx wrist width 15 pix-

els). Results are averaged over videos with ground truth from the

Youtube Pose Subset dataset. Note, for this and all other figures,

results for all joints are given in the supplementary material.

estimator’s predictions are not occlusion-aware.

We next describe each of these stages in detail.

2.1. Generic pose estimator

In the first stage of the algorithm we obtain high-

precision initial pose annotations for a small number of

frames. These high-precision pose estimates are obtained

by two approaches: first, by using very high confidence

pose estimates from a ConvNet pose estimator [32] (we

have determined empirically that the high confidence joint

predictions (greater than 80% confidence) are quite accu-

rate). The second approach is poselet like [2, 18, 23, 34, 40]

and involves detecting specific limb poses using a Yang and

Ramanan [48] pose detector. This is done by training the

detector to only fire on a small number of poses [14, 36],

such as those with no complex self-occlusions or extreme

foreshortening of limbs.

In the case of the Yang and Ramanan [48] approach, we

modify their release code to detect poses for the left and

right arm separately. This effectively squares the total num-

ber of detectable upper-body poses, compared to learning

separate models for each pose involving both arms. 15 arm

models are trained, enabling us to detect up to 225 different

poses with high precision. In general, this model captures

more poses with arms above the head than the ConvNet.

Example high-precision detections from the arm pose-

specific models, and the high confidence ConvNet pose es-

timates are shown in Fig 2. We next discuss how we propa-

gate these pose annotations spatially and temporally.

2.2. Spatial matching

In this stage, we propagate the small number of high-

precision pose annotations, from the generic pose estima-

tors, to new frames using image patch matching. The
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(a) Current annotation (b) Spatial matching (c) Temporal propagation

Frame # 4176 Frame # 4181 Frame # 4186Frame # 5796Frame # 7088 Frame # 4181 Frame # 6341 Frame # 7311

Figure 4. Spreading the annotations spatially and temporally through the video. (a) Example patch of annotated left shoulder joint

(white cross) from the generic pose estimator. (b) Patches matched spatially to the patch in (a). Blue arrow illustrates an example propagated

annotation, and white crosses show locations in other frames where this annotation has also been propagated. Note, in this stage annotations

can propagate to temporally very distant frames within the video. (c) Temporal propagation of annotations to neighboring frames.

(a) Annotated frame (b) Candidate left wrist patch

(c) Annotated patch (d) Registration (e) Candidate annotation

Figure 5. Spatial matching phase. (a) Annotated frame, with the

square delineating the left wrist patch; (b) a candidate matching

RGB frame (left) and random forest part-detector confidence map

(right), square shows selected candidate left wrist patch. Using

SIFTflow, the annotated patch (c) is registered to the candidate

patch (e) as shown in (d). This enables annotation to be transferred

(blue arrows) to the candidate patch.

matching process is illustrated in Fig 4(a-b). For each body

joint, small image patches in the annotated frames (with the

annotated body joint at their center) are matched to new im-

age patches in other frames of the video, and the annotations

are then transferred. Note, body part patches rather than en-

tire poses are matched as this allows more flexibility. This

spatial matching proceeds in three steps as follows:

Candidate matching patches. A random forest classifier

similar to [6] is trained for each body part (e.g. left shoul-

der or left wrist) using all annotated frames for that joint.

This personalized body part detector is applied to all frames

in the video to discover candidate (potentially matching)

patches. The random forest classifier is trained on raw RGB

image patches using multiple window sizes, and is able to

take advantage of ‘opportunistic features’ such as bright

colored gloves for detecting the wrists or trouser braces for

detecting the shoulders. Small windows lead to very pre-

cise location detection and larger windows add global con-

text. We found mixing the window sizes improves gener-

alization, especially when training from a small number of

initial annotations. As the forest classifier has the ability to

average out possible errors in annotation, it adds robustness

to the system and is also very fast to apply.

Candidate patch verification. The candidate match is ac-

cepted if its HOG similarity to an original annotated patch

is above a significance threshold. For this verification step,

an exemplar-SVM is trained to match patches with simi-

lar types of body joint configuration (i.e. bent elbow, or

straight elbow). Configurations are found by k-means clus-

tering RGB patches of annotated joints (typically 200 clus-

ters per joint are used). One exemplar-SVM is trained per

configuration medoid. A significance measure can then be

computed as in [19], between a candidate patch and each

exemplar-SVM. Candidate patches with maximum match-

ing significance (over all centroids) falling below a thresh-

old are discarded (see Fig 5(a-b)).

Annotation propagation and refinement. Annotations are

then transferred to patches that match. However, due to im-

perfections in the personalized detector, the candidate body

joint locations may be a small offset away from the correct

location. To rectify this, as shown in Fig 5(c), propagated

annotations are refined by registering the matched patches

to the annotated patch using SIFTflow [30], and transform-

ing the annotations using this registration.

2.3. Temporal propagation

In this stage, annotations (from initialization and spa-

tial matching) are further spread temporally (as illustrated

in Fig 4(c)). This is achieved by computing dense optical

flow [47] for frames within a temporal window around the

annotated frames. Starting from these annotated frames,

body joint locations are temporally propagated forwards

and backwards along the dense optical flow tracks. This

propagation is inspired by [49]. The outcome of this stage

is that all frames within the temporal window (of up to 30

frames before and after) now have pose annotations. Some

annotations may be incorrect, however, we are able to filter

these away as described next.

2.4. Self­evaluation

In this stage, the quality of the spatially and temporally

propagated annotations is automatically evaluated, and in-

correct annotations are discarded. To this end, we design a

self-evaluation measure which, for a given annotated frame

uses temporal information together with an occlusion-aware

puppet model to detect erroneous annotation. Below we de-

scribe these evaluators in detail:

Annotation agreement. When there are multiple annota-

tions per frame, originating from different ‘initially anno-

tated’ frames in the video, we can use their level of agree-
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ment as a confidence measure. This measure is formed by

looking at the standard deviation of the annotation’s 2D lo-

cation for a given frame and joint. If below a threshold, a

single annotation is derived from multiple annotations by

selecting the 2D location with maximum annotation density

(computed using a Parzen window density estimate with a

Gaussian kernel). On average, after one iteration each joint

will have at least two annotations per frame.

Occlusion-aware puppet model. Due to errors in both

the matching and temporal propagation stages, it is possi-

ble (particularly in cases of self-occlusion) for propagated

detections to drift to background content or other non-joint

areas on the person. Subsequent iterations of the system

would then reinforce these locations incorrectly. Addition-

ally, due to the independence assumption of the forest part

detector, errors can occur due to confusion between left and

right wrists. Both of these types of errors are alleviated

by learning a puppet model for the lower arm appearance,

and separate body joint occlusion detectors which check for

self-occlusion at head, shoulder and elbow joints. A puppet

model of the lower arms is used to infer likelihood of an arm

given the position of lower arm joints. Akin to other pup-

pet models [4, 5, 49], our lower arm puppets are ‘pulled’

around the image space according to proposed lower arm

joints, and used to evaluate the underlying image content.

In our case, the puppet is used to detect when a proposed

lower arm position is incorrect or when head, shoulder and

elbow joints become occluded.

Lower arm puppet construction. The lower arm of a pup-

pet is represented by a rectangle which can be oriented and

scaled anisotropically (to model limb foreshortening) ac-

cording to proposed elbow and wrist joint locations. Two

linear SVMs are jointly used to classify the image content

encompassed by the rectangle as ‘passed’ or ‘failed’, one

SVM uses HOG features the other RGB values, both SVMs

have to agree on a ‘pass’ decision for the proposed lower

arm to pass the evaluation. A separate model is trained and

evaluated independently for left and right arms. The mod-

els are trained using initial annotation as positive examples

with negative examples generated by adding random offsets

to the elbow and wrist annotations. Further negatives are

created by swapping left and right wrist locations to simu-

late a hand swap, similar to the method used in [6].

Occlusion detection. To check for occlusion at head,

shoulder and elbow joints, a square window is considered

around a joint of interest. An SVM using HOG features and

another using RGB features is applied. A low score from ei-

ther SVM signifies an occluded joint. The SVMs are trained

(a pair per joint) using initial un-occluded annotations, de-

termined by considering the body part layout. Negative ex-

amples are generated from random offsets to these anno-

tations. At run-time, if a joint is flagged as occluded we

remove its track until flagged as un-occluded. The lower

(a) Layer 2 fusion map (b) Layer 3 fusion map

Figure 6. ConvNet filter response maps. Heatmap responses

from two different personalized ConvNets shown overlaid on ex-

ample input frames. (a) and (b) are filter responses from layers 2

and 3, respectively, of the spatial fusion layers obtained using [32].

Personalized features for (a) show that the hat and glove are impor-

tant, and in (b) hairline is important. The original generic ConvNet

of the same network shows no personalized features of this type

(i.e. person specific features are added by the fine-tuning.)

arm and occlusion detectors are retrained at each iteration

using updated annotations.

Discarding annotations. The above self-evaluation mea-

sures are used to discard annotations that are considered

‘failed’. An annotation (per joint, per frame) is discarded if

any one of the above measures falls below a threshold value

or classified as ‘failed’ by the lower arm evaluator (see sup-

plementary for details). The puppet model is also used to

discard some initial annotations prior to subsequent stages.

Correcting failed annotations. Sometimes it is possible to

correct lower arm joint detections ‘failing’ the puppet eval-

uation method. This is done by randomly sampling a pair of

wrist and elbow points (25 combinations in practice) around

the ‘failed’ detection and re-evaluating each pair with the

lower arm model . If a pair of points ‘pass’ evaluation

we accept them as new annotation. Correcting failed an-

notations is beneficial as this leads to improved propagation

when iterating the system.

2.5. Personalizing a ConvNet pose estimator

The final distributed annotations are used to fine-tune

(with back-propagation) the generic ConvNet-based pose

estimator of Pfister et al. [32], with which we initialized

our system. The ConvNet is fine-tuned using all anno-

tated frames thereby personalizing the ConvNet to the input

video. Examples of channels that adapt to detect personal-

ized features for a particular video are shown in Fig 6. The

net is trained with a fixed learning rate of 1×10
−7 for 2,000

iterations using a batch size of 30 frames and momentum set

at 0.95. This pose estimator is used to predict body joints

for all frames of the video, possibly correcting any local

mistakes that do persevere in the annotation process.

3. Experiments

We first present the datasets; then evaluate gains from

each stage in our method; and finally present a compari-

son to state of the art. Experimental details are included in

the supplementary material, and a demo video is online at

https://youtu.be/YO1JF8aZ_Do.
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3.1. Datasets and evaluation

Experiments are performed using three datasets that con-

tain long videos suitable for personalization.

YouTube Pose. This new dataset consists of 50 videos of

different people from YouTube, each with a single person

in the video. Videos range from approximately 2,000 to

20,000 frames in length. For each video, 100 frames were

randomly selected and manually annotated (5,000 frames

in total). The dataset covers a broad range of activities,

e.g., dancing, stand-up comedy, how-to, sports, disk jock-

eys, performing arts and dancing sign language signers.

YouTube Pose Subset. A five video subset from YouTube

Pose. Example frames from the YouTube Pose Subset are

shown in Fig 8(a), and further examples from YouTube Pose

are shown in the supplementary material.

MPII Cooking. This dataset contains video sequences

from [37] for recognizing cooking activities. Each video is

on average approximately 20,000 frames. 21 videos come

manually annotated with upper body pose, with 1,277 test-

ing frames. Each video contains a single person (person

varies between videos) captured with a static camera; all

sequences are shot in the same kitchen.

Upper-body YouTube Dancing Pose (UYDP). This

dataset [41] consists of 20 short video clips, each containing

approximately 100 consecutive frames with annotations.

BBC Pose. This dataset [7] contains five one-hour-long

videos each with different sign language signers, different

clothing and sleeve length. Each video has 200 test frames

which have been manually annotated with joint locations

(1,000 test frames in total). Test frames were selected by the

authors to contain a diverse range of poses. Additionally,

we annotated the location of the nose-tip on test frames.

Evaluation measure. The accuracy of the pose estimator

is evaluated on ground truth frames. An estimated joint

is deemed correctly located if it is within a set distance

of d pixels from the ground truth. Accuracy is measured

as the percentage of correctly estimated joints over all test

frames. For consistency with prior work, we evaluate on

the UYDP dataset using the Average Precision of Keypoints

(APK) [48] at a threshold of 0.2.

Since automatically propagated annotations may not

reach all ‘test’ frames with manual ground truth, we mea-

sure accuracy of the annotation stages by fine-tuning a

ConvNet [32] using all available annotations, and then

evaluating this ConvNet’s predictions on all test frames.

This ensures evaluation consistency and fairness, and is

a good indirect measure for annotation performance (as

higher-quality training annotations should lead to improved

ConvNet pose predictions).

3.2. Component evaluation

We first evaluate the stages of the method on the

YouTube Pose Subset. Tab 1 and Fig 3 show the changes

YouTube Pose Subset Accuracy (%) at d = 20 pixels

Method Head Wrsts Elbws Shldrs Average

Pfister et al. [32] 74.4 59.0 70.7 82.7 71.3

Chen & Yuille [10] 89.4 76.5 83.1 90.7 84.3

Yang & Ramanan [48] 87.2 43.1 60.6 82.5 65.7

Stage 1 - Initial 95.2 61.8 69.4 86.6 75.8

Stage 2 - Spatial 95.4 72.1 80.0 91.9 83.3

Stage 3 - Temporal 96.4 79.7 82.7 94.7 87.2

Personalized ConvNet 97.6 88.6 84.7 96.5 91.0

Table 1. Component analysis on YouTube Pose Subset. Accu-

racy at each stage of the method compared to baseline algorithms.

Personalized ConvNet results are shown after 5 iterations. Corre-

sponding curves are given in Fig 7.

in accuracy (at a threshold of 20 pixels) and coverage as the

iterations progress, whereas Fig 7 shows accuracy as the al-

lowed distance from manual ground truth d is increased.

Accuracy: Each stage leads to a significant improvement in

performance across all body joints. Even after Stage 1 (ini-

tialization) we improve upon the generic ConvNet of Pfis-

ter et al. [32], demonstrating that fine-tuning with relatively

few annotations (from the generic ConvNet and Yang and

Ramanan arm detection) brings benefits. Stage 2 (spatial

matching) yields further gains in accuracy. One of the rea-

sons spatial matching is so beneficial is that it helps propa-

gate annotation to frames with similar poses but different lo-

cal background content – in the YouTube videos the person

moves against a static scene with some videos using a mov-

ing camera and containing shots from different angles. Per-

sonalizing a pose estimator from annotations at this stage,

therefore, introduces more invariance to background con-

tent. Stage 3 (temporal propagation), is another mechanism

for reaching unannotated frames containing different poses

(more so than stage 2) from previous stages. Thus at this

stage, we begin increasing the variation of poses that can be

recognized. Again, this leads to an increase in performance.

The main causes of failure for Stage 3 are heavy self

occlusion and optical flow errors, causing propagated anno-

tation to drift to background content. In some cases annota-

tions from different frames in the video can drift to the same

background location, and (incorrectly) ‘pass’ the annotation

agreement measure of Stage 4. However, the occlusion-

aware puppet model effectively detects and removes these

errors, permitting subsequent iterations to progress without

propagating errors. This is evident from the increase in ac-

curacy when iterating the stages, most notably for the wrist

joints which reach near 90% after five iterations.

Coverage: The number of initially annotated frames across

each video varies greatly and is highly dependent on the

types of pose being performed and camera angle used.

More initial annotations are obtained for videos where peo-

ple have their hands down, such as the disc jokey sequences.

For videos containing a high pose variation there is a greater
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Figure 7. Component evaluation on the YouTube Pose Subset

dataset. The graphs show the improvement from each stage of the

algorithm. Notice how each stage leads to a very significant in-

crease in accuracy. Accuracy is shown (averaged over left & right

body parts) as the allowed distance from ground truth is increased.

increase in coverage over the iterations.

Fig 3 shows the percentage of video frames (on Youtube

Pose Subset) that have been annotated after each iteration.

A typical video of 10,000 frames, starting with 500 initially

annotated, can rapidly increase annotation coverage in just

one iteration. Stage 2 (spatial matching) normally doubles

the annotations. The biggest boost in coverage comes from

stages 3 and 4 (temporal propagation followed by check-

ing with self-evaluation), with annotated frames rapidly in-

creasing to over 60% (6,000 frames) of the video. Gains

in coverage after temporal propagation are dependent upon

the size of the temporal window (a larger temporal window

improves coverage but can result in decreased accuracy (be-

fore self-evaluation) as errors in optical flow compound).

A temporal window of 30 frames is selected as the trade-

off between coverage and accuracy. Subsequent iterations

result in close to 100% of the frames being annotated for

head and shoulder joints with wrist and elbow annotations

covering 85% (8,500 frames) of the video. Relative gains

in coverage decrease at each iteration because the system is

tackling increasingly more difficult-to-detect poses.

Timings: Timings for training are amortized over the ap-

plication costs per frame for a typical 10k frame video, pro-

cessed on a single core Intel Xeon 2.60GHz. Stage 1 (the

most expensive stage) takes ∼15 seconds per-frame (s/f )

for initialization as multiple arm-models have to be ap-

plied. Stage 2 performs both model training and matching

in ∼8s/f . Stage 3 computes in ∼8s/f and self-evaluation

in ∼4s/f . Further iterations are quicker as less of the video

requires spatial matching.

3.3. Comparison to baselines and state of the art

As baselines we compare against two ConvNet-based es-

timators from Chen & Yuille [10] and Pfister et al. [32],

and the deformable parts-based model by Yang & Ra-

manan [48]. All baseline pose estimators are trained for

upper-body pose detection on the FLIC dataset [39]. Addi-

tionally, on YouTube Pose we compare against Cherian et

al. [11] (trained on FLIC); and to Charles et al. [7],

Rohrbach et al. [37] and Shen et al. [41] on BBC Pose, MPII

YouTube Pose Accuracy (%) at d = 20 pixels

Method Head Wrsts Elbws Shldrs Average

Pfister et al. [32] 89.3 64.2 74.6 85.8 76.9

Chen & Yuille [10] 85.7 78.8 83.5 87.3 83.5

Yang & Ramanan [48] 89.9 38.5 58.3 85.3 64.9

Cherian et al. [11] - 54.3 66.9 84.7 -

Personalized ConvNet 95.4 86.1 86.8 93.9 89.9

MPII Cooking Accuracy (%) at d = 20 pixels

Pfister et al. [32] 53.4 79.0 70.4 57.0 66.6

Chen & Yuille [10] 62.3 75.5 73.8 72.7 72.3

Yang & Ramanan [48] 46.7 37.5 43.7 46.1 43.0

Rohrbach et al. [37] 80.5 66.2 67.1 72.2 70.2

Personalized ConvNet 86.7 85.8 80.4 76.3 81.7

UYDP (%) at APK=0.2

Pfister et al. [32] 78.7 - 35.2 63.3 -

Chen & Yuille [10] 86.3 - 46.8 80.3 -

Yang & Ramanan [48] 81.7 - 17.6 66.5 -

Shen et al. [41] 90.9 - 33.3 83.5 -

Personalized ConvNet 91.7 - 57.6 83.8 -

BBC Pose Accuracy (%) at d = 6 pixels

Pfister et al. [32] 97.1 78.6 88.2 83.0 85.3

Chen & Yuille [10] 65.9 47.9 66.5 76.8 64.1

Yang & Ramanan [48] 91.6 27.6 66.0 81.0 63.0

Charles et al. [7] 98.2 59.9 85.3 88.6 80.8

Personalized ConvNet 99.5 93.5 95.5 95.9 95.6

Table 2. Evaluation of accuracy over the four datasets. Accu-

racy is the percentage of correctly estimated body joints within a

distance d pixels from ground truth (wrist width approx 15 pixels

on average on YouTube Pose and MPII cooking, and 8 pixels on

BBC pose). Results are averaged over all videos with ground truth

from each dataset. Note, for Cherian et al. [11], head estimates

are not comparable with other methods; and for UYDP there is a

problem with the evaluation script for wrists.

Cooking and UYDP, respectively. On BBC Pose, head loca-

tion accuracy is evaluated for Charles et al. [7] using head

center of mass ground truth (as this is how the model is

trained), all other models are evaluated against nose-tip.

Results are given in Tab 2 and Fig 9. The results from the

baselines indicate that MPII is the most challenging dataset

of the three. As is evident, personalization achieves a huge

improvement over both the baselines and state of the art.

For example, obtaining 86.1% accuracy for wrist detection

on YouTube Pose and an astonishing 93.5% accuracy for

wrist detection on BBC Pose – significantly increasing over

the state of the art results of 59.9% of [7] and 78.6% of [32].

The boost in performance of the generic ConvNet estima-

tor by fine-tuning using personalization, that was noted on

the YouTube dataset, is also repeated here on the BBC and

MPII datasets. For example, increasing average prediction

accuracy from 66.6% to 81.7% on MPII. Personalization

leverages many frames in long videos; yet even for short

videos such as UYDP we see an increase in accuracy and

perform particularly well for the elbow joints.
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(a) YouTube Pose (b) BBC Pose (c) MPII Cooking

Figure 8. Example pose estimates on frames from three datasets (a) YouTube Pose , (b) BBC Pose and (c) MPII Cooking. Note the variety

of poses, clothing, and body shapes in the YouTube videos.
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Figure 9. Comparison to the state of the art. Accuracy of pose

estimation evaluated on three datasets. Accuracy is averaged over

left and right body parts and shown as allowed distance from man-

ual ground truth as d is increased.

In comparing stages of the algorithm on YouTube Pose

Subset (Tab 1 and Fig 3), by Stage 2 (spatial matching) the

head and shoulder accuracy already exceeds all baselines.

By Stage 3 (temporal propagation), the system outperforms

all baselines across all body joints. As mentioned above,

spatial matching helps propagate annotations to frames with

similar poses but different local background content. This

occurs frequently in the BBC Pose dataset since signers are

overlaid on a moving background in broadcasts.

3.4. Boosting a generic ConvNet for other videos

The previous section showed the boost in performance

through personalization on a target video. There remains

the question of whether there is an additional benefit for

generic pose estimation: if the ConvNet is fine-tuned on

personalized annotations over many videos, does this im-

prove pose estimation performance when applied to other

videos and datasets?

This question is answered by attempting to boost perfor-

mance of the generic ConvNet model by supplementing the

training data with automatically annotated frames from the

YouTube dataset (leaving out the YouTube Pose Subset for

testing). For this we use a model that is pre-trained on the

FLIC training set, and fine-tune using the full FLIC train-

ing set together with an equal number of annotated frames

sampled from the YouTube videos.

The performance of the pre-trained and fine-tuned mod-

els is compared on the FLIC, YouTube and MPII Cooking

test frames. There is a performance boost in all cases: for

FLIC an increase in wrist & elbow accuracy of 4% & 6%

respectively (at 0.1 normalized distance); for YouTube an

increase in wrist & elbow accuracy of 8% & 5% respec-

tively (at d = 20); and for MPII Cooking an increase of 5%

& 8% respectively (at d = 20), demonstrating the benefit of

using additional automatically annotated training material.

4. Summary and extensions

We have proposed a semi-supervised-like method for

personalizing video pose estimation and have shown that

this significantly improves performance compared to a non-

personalized, ‘generic’, pose estimator, and beats the state

of the art by a large margin on four challenging video pose

estimation datasets.

The method can be used to boost the pose estimation per-

formance on any long video sequence containing the same

person, and we have also shown that the annotations gen-

erated by this personalization can be used to improve the

performance of a ConvNet estimator for other videos.

It is straightforward to extend the method to estimate

full body pose by adding the extra joints and limbs to the

initialisation and the puppet model. The method can also

be extended to deal with multiple people in a video and

occlusion, given a suitable ConvNet model. For example,

using the generated occlusion-aware annotations to train

an occlusion-aware ConvNet pose estimator. One alterna-

tive formulation is to train from additional synthetic data

as in [31], with the data generated using the puppet model.

Given the recent success with training ConvNets on syn-

thetic data, this would certainly be worth investigating.
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