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Abstract

Given semantic descriptions of object classes, zero-

shot learning aims to accurately recognize objects of the

unseen classes, from which no examples are available

at the training stage, by associating them to the seen

classes, from which labeled examples are provided. We

propose to tackle this problem from the perspective of

manifold learning. Our main idea is to align the seman-

tic space that is derived from external information to the

model space that concerns itself with recognizing visual

features. To this end, we introduce a set of “phantom”

object classes whose coordinates live in both the seman-

tic space and the model space. Serving as bases in a

dictionary, they can be optimized from labeled data such

that the synthesized real object classifiers achieve opti-

mal discriminative performance. We demonstrate supe-

rior accuracy of our approach over the state of the art

on four benchmark datasets for zero-shot learning, in-

cluding the full ImageNet Fall 2011 dataset with more

than 20,000 unseen classes.

1. Introduction

Visual recognition has made significant progress due

to the widespread use of deep learning architectures [20,

41] that are optimized on large-scale datasets of human-

labeled images [37]. Despite the exciting advances, to

recognize objects “in the wild” remains a daunting chal-

lenge. Many objects follow a long-tailed distribution:

in contrast to common objects such as household items,

they do not occur frequently enough for us to collect and

label a large set of representative exemplar images.

For example, this challenge is especially crippling

for fine-grained object recognition (classifying species

of birds, designer products, etc.). Suppose we want to

carry a visual search of “Chanel Tweed Fantasy Flap

∗ Equal contributions

Handbag”. While handbag, flap, tweed, and Chanel are

popular accessory, style, fabric, and brand, respectively,

the combination of them is rare — the query generates

about 55,000 results on Google search with a small num-

ber of images. The amount of labeled images is thus far

from enough for directly building a high-quality classi-

fier, unless we treat this category as a composition of

attributes, for each of which more training data can be

easily acquired [22].

It is thus imperative to develop methods for zero-shot

learning, namely, to expand classifiers and the space of

possible labels beyond seen objects, of which we have

access to the labeled images for training, to unseen ones,

of which no labeled images are available [22, 31]. To

this end, we need to address two key interwoven chal-

lenges [31]: (1) how to relate unseen classes to seen

ones and (2) how to attain optimal discriminative per-

formance on the unseen classes even though we do not

have their labeled data.

To address the first challenge, researchers have been

using visual attributes [9, 21, 32] and word vectors [10,

28, 40] to associate seen and unseen classes. We call

them the semantic embeddings of objects. Much work

takes advantage of such embeddings directly as middle

layers between input images and output class labels [1,

10, 16, 22, 24, 25, 30, 36, 40], whereas others derive new

representations from the embeddings using, for exam-

ple, Canonical Correlation Analysis (CCA) [11, 12, 26]

or sparse coding [19, 46, 47]. For the second chal-

lenge, the hand-designed probabilistic models in [22]

have been competitive baselines. More recent studies

show that nearest neighbor classifiers in the semantic

space are very effective [10, 11, 12, 13, 30]. Finally,

classifiers for the unseen classes can directly be con-

structed in the input feature space [1, 8, 23, 27, 44, 47].

In this paper, we tackle these two challenges with

ideas from manifold learning [5, 15], converging to a

two-pronged approach. We view object classes in a se-
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Figure 1: Illustration of our method for zero-shot learning. Object classes live in two spaces. They are characterized in the semantic

space with semantic embeddings (as) such as attributes and word vectors of their names. They are also represented as models for

visual recognition (ws) in the model space. In both spaces, those classes form weighted graphs. The main idea behind our approach

is that these two spaces should be aligned. In particular, the coordinates in the model space should be the projection of the graph

vertices from the semantic space to the model space — preserving class relatedness encoded in the graph. We introduce adaptable

phantom classes (b and v) to connect seen and unseen classes — classifiers for the phantom classes are bases for synthesizing

classifiers for real classes. In particular, the synthesis takes the form of convex combination.

mantic space as a weighted graph where the nodes cor-

respond to object class names and the weights of the

edges represent how they are related. Various informa-

tion sources can be used to infer the weights — human-

defined attributes or word vectors learnt from language

corpora. On the other end, we view models for recog-

nizing visual images of those classes as if they live in a

space of models. In particular, the parameters for each

object model are nothing but coordinates in this model

space whose geometric configuration also reflects the re-

latedness among objects. Fig. 1 illustrates this idea con-

ceptually.

But how do we align the semantic space and the

model space? The semantic space coordinates of ob-

jects are designated or derived based on external infor-

mation (such as textual data) that do not directly ex-

amine visual appearances at the lowest level, while the

model space concerns itself largely for recognizing low-

level visual features. To align them, we view the co-

ordinates in the model space as the projection of the

vertices on the graph from the semantic space — there

is a wealth of literature on manifold learning for com-

puting (low-dimensional) Euclidean space embeddings

from the weighted graph, for example, the well-known

algorithm of Laplacian eigenmaps [5].

To adapt the embeddings (or the coordinates in the

model space) to data, we introduce a set of phantom ob-

ject classes — the coordinates of these classes in both

the semantic space and the model space are adjustable

and optimized such that the resulting model for the real

object classes achieve the best performance in discrimi-

native tasks. However, as their names imply, those phan-

tom classes do not correspond to and are not optimized

to recognize any real classes directly. For mathemati-

cal convenience, we parameterize the weighted graph in

the semantic space with the phantom classes in such a

way that the model for any real class is a convex combi-

nations of the coordinates of those phantom classes. In

other words, the “models” for the phantom classes can

also be interpreted as bases (classifiers) in a dictionary

from which a large number of classifiers for real classes

can be synthesized via convex combinations. In particu-

lar, when we need to construct a classifier for an unseen

class, we will compute the convex combination coeffi-

cients from this class’s semantic space coordinates and

use them to form the corresponding classifier.

To summarize, our main contribution is a novel idea

to cast the challenging problem of recognizing unseen

classes as learning manifold embeddings from graphs

composed of object classes. As a concrete realization

of this idea, we show how to parameterize the graph

with the locations of the phantom classes, and how to

derive embeddings (i.e., recognition models) as convex

combinations of base classifiers. Our empirical stud-

ies extensively test our synthesized classifiers on four

benchmark datasets for zero-shot learning, including the

full ImageNet Fall 2011 release [7] with 20,345 unseen

classes. The experimental results are very encouraging;

the synthesized classifiers outperform several state-of-

the-art methods, including attaining better or matching

performance of Google’s ConSE algorithm [30] in the

large-scale setting.

The rest of the paper is organized as follows. We give

an overview of relevant literature in Section 2, describe

our approach in detail in Section 3, demonstrate its ef-

fectiveness in Section 4, and conclude in Section 5.
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2. Related Work

In order to transfer knowledge between classes, zero-

shot learning relies on semantic embeddings of class

labels, including attributes (both manually defined [1,

22, 43] and discriminatively learned [3, 45]), word

vectors [10, 30, 35, 40], knowledge mined from the

Web [8, 27, 34, 35], or a combination of several em-

beddings [2, 11, 13].

Given semantic embeddings, existing approaches to

zero-shot learning mostly fall into embedding-based and

similarity-based methods. In the embedding-based ap-

proaches, one first maps the input image representations

to the semantic space, and then determines the class la-

bels in this space by various relatedness measures im-

plied by the class embeddings [1, 2, 10, 11, 13, 19, 22,

25, 30, 40, 43]. Our work as well as some recent work

combine these two stages [1, 2, 10, 36, 43, 46, 47], lead-

ing to a unified framework empirically shown to have,

in general, more accurate predictions. In addition to

directly using fixed semantic embeddings, some work

maps them into a different space through CCA [11, 12,

26] and sparse coding [19, 46, 47].

In the similarity-based approaches, in contrast, one

builds the classifiers for unseen classes by relating them

to seen ones via class-wise similarities [8, 13, 14, 27,

34, 35]. Our approach shares a similar spirit to these

models but offers richer modeling flexibilities thanks to

the introduction of phantom classes.

Finally, our convex combination of base classifiers

for synthesizing real classifiers can also be motivated

from multi-task learning with shared representations [4].

While labeled examples of each task are required in [4],

our method has no access to data of the unseen classes.

3. Approach

We describe our methods for addressing zero-shot

learning where the task is to classify images from un-

seen classes into the label space of unseen classes.

Notations Suppose we have training data D =
{(xn ∈ R

D, yn)}
N
n=1

with the labels coming from the

label space of seen classes S = {1, 2, · · · , S}. Denote

by U = {S + 1, · · · , S + U} the label space of unseen

classes.

We focus on linear classifiers in the visual feature

space R
D that assign a label ŷ to a data point x by

ŷ = argmax
c

w
T
cx, (1)

where wc ∈ R
D, although our approach can be readily

extended to nonlinear settings by the kernel trick [38].

3.1. Main idea

Manifold learning The main idea behind our ap-

proach is shown by the conceptual diagram in Fig. 1.

Each class c has a coordinate ac and they live on a man-

ifold in the semantic embedding space. In this paper,

we explore two types of such spaces: attributes [22, 42]

and class name embeddings via word vectors [29]. We

use attributes in this text to illustrate the idea and in the

experiments we test our approach on both types.

Additionally, we introduce a set of phantom

classes associated with semantic embeddings br, r =
1, 2, . . . ,R. We stress that they are phantom as they

themselves do not correspond to any real objects — they

are introduced to increase the modeling flexibility, as

shown below.

The real and phantom classes form a weighted bipar-

tite graph, with the weights defined as

scr =
exp{−d(ac, br)}∑R

r=1
exp{−d(ac, br)}

(2)

to correlate a real class c and a phantom class r, where

d(ac, br) = (ac − br)
T
Σ

−1(ac − br), (3)

and Σ
−1 is a parameter that can be learned from data,

modeling the correlation among attributes. For simplic-

ity, we set Σ = σ2
I and tune the scalar free hyper-

parameter σ by cross-validation. The more general Ma-

halanobis metric can be used and we propose one way

of learning such metric as well as demonstrate its effec-

tiveness in the Suppl.

The specific form of defining the weights is motivated

by several manifold learning methods such as SNE [15].

In particular, scr can be interpreted as the conditional

probability of observing class r in the neighborhood of

class c. However, other forms can be explored and are

left for future work.

In the model space, each real class is associated with

a classifier wc and the phantom class r is associated with

a virtual classifier vr. We align the semantic and the

model spaces by viewing wc (or vr) as the embedding

of the weighted graph. In particular, we appeal to the

idea behind Laplacian eigenmaps [5], which seeks the

embedding that maintains the graph structure as much

as possible; equally, the distortion error

min
wc,vr

‖wc −

R∑

r=1

scrvr‖
2

2

is minimized. This objective has an analytical solution

wc =

R∑

r=1

scrvr, ∀ c ∈ T = {1, 2, · · · , S+ U} (4)
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In other words, the solution gives rise to the idea of syn-

thesizing classifiers from those virtual classifiers vr. For

conceptual clarity, from now on we refer to vr as base

classifiers in a dictionary from which new classifiers can

be synthesized. We identify several advantages. First,

we could construct an infinite number of classifiers as

long as we know how to compute scr. Second, by mak-

ing R ≪ S, the formulation can significantly reduce the

learning cost as we only need to learn R base classifiers.

3.2. Learning phantom classes

Learning base classifiers We learn the base classi-

fiers {vr}
R
r=1

from the training data (of the seen classes

only). We experiment with two settings. To learn one-

versus-other classifiers, we optimize,

min
v1,··· ,vR

S∑

c=1

N∑

n=1

ℓ(xn, Iyn,c;wc) +
λ

2

S∑

c=1

‖wc‖
2

2
, (5)

s.t. wc =

R∑

r=1

scrvr, ∀ c ∈ T = {1, · · · , S}

where ℓ(x, y;w) = max(0, 1 − ywT
x)2 is the squared

hinge loss. The indicator Iyn,c ∈ {−1, 1} denotes

whether or not yn = c. Alternatively, we apply the

Crammer-Singer multi-class SVM loss [6], given by

ℓcs(xn, yn; {wc}
S

c=1
)

=max(0, max
c∈S−{yn}

∆(c, yn) +wc
T
xn −wyn

T
xn),

We have the standard Crammer-Singer loss when the

structured loss ∆(c, yn) = 1 if c 6= yn, which, however,

ignores the semantic relatedness between classes. We

additionally use the ℓ2 distance for the structured loss

∆(c, yn) = ‖ac − ayn
‖
2

2
to exploit the class relatedness

in our experiments. These two learning settings have

separate strengths and weaknesses in empirical studies.

Learning semantic embeddings The weighted graph

eq. (2) is also parameterized by adaptable embeddings

of the phantom classes br. For this work, however, for

simplicity, we assume that each of them is a sparse linear

combination of the seen classes’ attribute vectors:

br =

S∑

c=1

βrcac, ∀r ∈ {1, · · · ,R},

Thus, to optimize those embeddings, we solve the fol-

lowing optimization problem

min
{vr}R

r=1
,{βrc}

R,S

r,c=1

S∑

c=1

N∑

n=1

ℓ(xn, Iyn,c;wc)

+
λ

2

S∑

c=1

‖wc‖
2

2
+ η

R,S∑

r,c=1

|βrc|+
γ

2

R∑

r=1

(‖br‖
2

2
− h2)2,

s.t. wc =

R∑

r=1

scrvr, ∀ c ∈ T = {1, · · · , S},

where h is a predefined scalar equal to the norm of real

attribute vectors (i.e., 1 in our experiments since we per-

form ℓ2 normalization). Note that in addition to learn-

ing {vr}
R
r=1

, we learn combination weights {βrc}
R,S
r,c=1

.

Clearly, the constraint together with the third term in

the objective encourages the sparse linear combination

of the seen classes’ attribute vectors. The last term in

the objective demands that the norm of br is not too far

from the norm of ac.

We perform alternating optimization for minimiz-

ing the objective function with respect to {vr}
R
r=1

and

{βrc}
R,S
r,c=1

. While this process is nonconvex, there are

useful heuristics to initialize the optimization routine.

For example, if R = S, then the simplest setting is to let

br = ar for r = 1, . . . ,R. If R ≤ S, we can let them be

(randomly) selected from the seen classes’ attribute vec-

tors {b1, b2, · · · , bR} ⊆ {a1,a2, · · · ,aS}, or first per-

form clustering on {a1,a2, · · · ,aS} and then let each

br be a combination of the seen classes’ attribute vec-

tors in cluster r. If R > S, we could use a combination

of the above two strategies. We describe in more detail

how to optimize and cross-validate hyperparameters in

the Suppl.

3.3. Comparison to several existing methods

We contrast our approach to some existing methods.

[27] combines pre-trained classifiers of seen classes to

construct new classifiers. To estimate the semantic em-

bedding (e.g., word vector) of a test image, [30] uses

the decision values of pre-trained classifiers of seen ob-

jects to weighted average the corresponding semantic

embeddings. Neither of them has the notion of base

classifiers, which we introduce for constructing the clas-

sifiers and nothing else. We thus expect them to be

more effective in transferring knowledge between seen

and unseen classes than overloading the pretrained and

fixed classifiers of the seen classes for dual duties. We

note that [1] can be considered as a special case of our

method. In [1], each attribute corresponds to a base and

each “real” classifier corresponding to an actual object

5330



is represented as a linear combination of those bases,

where the weights are the real objects’ “descriptions” in

the form of attributes. This modeling is limiting as the

number of bases is fundamentally limited by the number

of attributes. Moreover, the model is strictly a subset of

our model.1 Recently, [46, 47] propose similar ideas of

aligning the visual and semantic spaces but take differ-

ent approaches from ours.

4. Experiments

We evaluate our methods and compare to existing

state-of-the-art models on several benchmark datasets.

While there is a large degree of variations in the current

empirical studies in terms of datasets, evaluation proto-

cols, experimental settings, and implementation details,

we strive to provide a comprehensive comparison to as

many methods as possible, not only citing the published

results but also reimplementing some of those methods

to exploit several crucial insights we have discovered in

studying our methods.

We summarize our main results in this section. More

extensive details are reported in the Suppl. We provide

not only comparison in recognition accuracy but also

analysis in an effort to understand the sources of better

performance.

4.1. Setup

Datasets We use four benchmark datasets in our ex-

periments: the Animals with Attributes (AwA) [22],

CUB-200-2011 Birds (CUB) [42], SUN Attribute

(SUN) [33], and the ImageNet (with full 21,841

classes) [37]. Table 1 summarizes their key character-

istics. The Suppl. provides more details.

Semantic spaces For the classes in AwA, we use 85-

dimensional binary or continuous attributes [22], as well

as the 100 and 1,000 dimensional word vectors [28],

derived from their class names and extracted by Fu

et al. [11, 12]. For CUB and SUN, we use 312 and

102 dimensional continuous-valued attributes, respec-

tively. We also thresh them at the global means to obtain

binary-valued attributes, as suggested in [22]. Neither

datasets have word vectors for their class names. For

ImageNet, we train a skip-gram language model [28,

1For interested readers, if we set the number of attributes as the

number of phantom classes (each br is the one-hot representation of

an attribute), and use Gaussian kernel with anisotropically diagonal

covariance matrix in eq. (3) with properly set bandwidths (either very

small or very large) for each attribute, we will recover the formulation

in [1] when the bandwidths tend to zero or infinity.

Table 1: Key characteristics of studied datasets

Dataset # of seen # of unseen Total #

name classes classes of images

AwA† 40 10 30,475

CUB‡ 150 50 11,788

SUN‡ 645/646 72/71 14,340

ImageNet§ 1,000 20,842 14,197,122

†: Following the prescribed split in [22].
‡: 4 (or 10, respectively) random splits, reporting average.
§: Seen and unseen classes from ImageNet ILSVRC 2012

1K [37] and Fall 2011 release [7, 10, 30].

29] on the latest Wikipedia dump corpus2 (with more

than 3 billion words) to extract a 500-dimensional word

vector for each class. Details of this training are in the

Suppl. We ignore classes without word vectors in the

experiments, resulting in 20,345 (out of 20,842) unseen

classes. For both the continuous attribute vectors and the

word vector embeddings of the class names, we normal-

ize them to have unit ℓ2 norms unless stated otherwise.

Visual features Due to variations in features being

used in literature, it is impractical to try all possible

combinations of features and methods. Thus, we make

a major distinction in using shallow features (such as

color histograms, SIFT, PHOG, Fisher vectors) [1, 2,

17, 22, 35, 43] and deep learning features in several re-

cent studies of zero-shot learning. Whenever possible,

we use (shallow) features provided by those datasets or

prior studies. For comparative studies, we also extract

the following deep features: AlexNet [20] for AwA and

CUB and GoogLeNet [41] for all datasets (all extracted

with the Caffe package [18]). For AlexNet, we use the

4,096-dimensional activations of the penultimate layer

(fc7) as features. For GoogLeNet, we take the 1,024-

dimensional activations of the pooling units, as in [2].

Details on how to extract those features are in the Suppl.

Evaluation protocols For AwA, CUB, and SUN, we

use the (normalized, by class-size) multi-way classifica-

tion accuracy, as in previous work. Note that the accu-

racy is always computed on images from unseen classes.

Evaluating zero-shot learning on the large-scale Ima-

geNet requires substantially different components from

evaluating on the other three datasets. First, two evalua-

tion metrics are used, as in [10]: Flat hit@K (F@K) and

Hierarchical precision@K (HP@K).

2http://dumps.wikimedia.org/enwiki/latest/

enwiki-latest-pages-articles.xml.bz2 on September

1, 2015
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F@K is defined as the percentage of test images for

which the model returns the true label in its top K pre-

dictions. Note that, F@1 is the multi-way classification

accuracy. HP@K takes into account the hierarchical or-

ganization of object categories. For each true label, we

generate a ground-truth list of K closest categories in the

hierarchy and compute the degree of overlapping (i.e.,

precision) between the ground-truth and the model’s top

K predictions. For the detailed description of this met-

ric, please see the Appendix of [10] and the Suppl.

Secondly, following the procedure in [10, 30], we

evaluate on three scenarios of increasing difficulty:

• 2-hop contains 1,509 unseen classes that are within

two tree hops of the seen 1K classes according to

the ImageNet label hierarchy3.

• 3-hop contains 7,678 unseen classes that are within

three tree hops of seen classes.

• All contains all 20,345 unseen classes in the Ima-

geNet 2011 21K dataset that are not in the ILSVRC

2012 1K dataset.

The numbers of unseen classes are slightly different

from what are used in [10, 30] due to the missing se-

mantic embeddings (i.e., word vectors) for certain class

names.

In addition to reporting published results, we

have also reimplemented the state-of-the-art method

ConSE [30] on this dataset, introducing a few improve-

ments. Details are in the Suppl.

Implementation details We cross-validate all hyper-

parameters — details are in the Suppl. For convenience,

we set the number of phantom classes R to be the same

as the number of seen classes S, and set br = ac for

r = c. We also experiment setting different R and learn-

ing br. Our study (cf. Fig. 2) shows that when R is about

60% of S, the performance saturates. We denote the

three variants of our methods in constructing classifiers

(Section 3.2) by Ourso-vs-o (one-versus-other), Ourscs

(Crammer-Singer) and Oursstruct (Crammer-Singer with

structured loss).

4.2. Experimental results

4.2.1 Main results

Table 2 compares the proposed methods to the state-of-

the-art from the previously published results on bench-

mark datasets. While there is a large degree of variations

3http://www.image-net.org/api/xml/structure_

released.xml

Table 2: Comparison between our results and the previously

published results in multi-way classification accuracies (in %)

on the task of zero-shot learning. For each dataset, the best is

in red and the 2nd best is in blue.

Methods AwA CUB SUN ImageNet

DAP [22] 41.4 - 22.2 -

IAP [22] 42.2 - 18.0 -

BN [43] 43.4 - - -

ALE [1] 37.4 18.0† - -

SJE [2] 66.7 50.1† - -

ESZSL [36] 49.3 - - -

ConSE[30] - - - 1.4

SSE-ReLU [47]⋆ 76.3 30.4† - -

[46]⋆ 80.5 42.1† - -

Ourso-vs-o 69.7 53.4 62.8 1.4

Ourscs 68.4 51.6 52.9 -

Oursstruct 72.9 54.7 62.7 1.5

†: Results reported on a particular seen-unseen split.
⋆: Results were just brought to our attention. Note that VGG

[39] instead of GoogLeNet features were used, improving on

AwA but worsening on CUB. Our results using VGG will

appear in a longer version of this paper.

in implementation details, the main observation is that

our methods attain the best performance in most scenar-

ios. In what follows, we analyze those results in detail.

We also point out that the settings in some exist-

ing work are highly different from ours; we do not in-

clude their results in the main text for fair comparison

[3, 11, 12, 13, 16, 19, 24, 45] — but we include them in

the Suppl. In some cases, even with additional data and

attributes, those methods underperform ours.

4.2.2 Large-scale zero-shot learning

One major limitation of most existing work on zero-shot

learning is that the number of unseen classes is often

small, dwarfed by the number of seen classes. However,

real-world computer vision systems need to face a very

large number of unseen objects. To this end, we evaluate

our methods on the large-scale ImageNet dataset.

Table 3 summarizes our results and compares to the

ConSE method [30], which is, to the best of our knowl-

edge, the state-of-the-art method on this dataset.4 Note

that in some cases, our own implementation (“ConSE

by us” in the table) performs slightly worse than the re-

ported results, possibly attributed to differences in visual

features, word vector embeddings, and other implemen-

tation details. Nonetheless, the proposed methods (using

4We are aware of recent work by Lu [26] that introduces a novel

form of semantic embeddings.
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Table 3: Comparison between results by ConSE and our method on ImageNet. For both types of metrics, the higher the better.

Scenarios Methods Flat Hit@K Hierarchical precision@K

K= 1 2 5 10 20 2 5 10 20

2-hop ConSE [30] 9.4 15.1 24.7 32.7 41.8 21.4 24.7 26.9 28.4

ConSE by us 8.3 12.9 21.8 30.9 41.7 21.5 23.8 27.5 31.3

Ourso-vs-o 10.5 16.7 28.6 40.1 52.0 25.1 27.7 30.3 32.1

Oursstruct 9.8 15.3 25.8 35.8 46.5 23.8 25.8 28.2 29.6

3-hop ConSE [30] 2.7 4.4 7.8 11.5 16.1 5.3 20.2 22.4 24.7

ConSE by us 2.6 4.1 7.3 11.1 16.4 6.7 21.4 23.8 26.3

Ourso-vs-o 2.9 4.9 9.2 14.2 20.9 7.4 23.7 26.4 28.6

Oursstruct 2.9 4.7 8.7 13.0 18.6 8.0 22.8 25.0 26.7

All ConSE [30] 1.4 2.2 3.9 5.8 8.3 2.5 7.8 9.2 10.4

ConSE by us 1.3 2.1 3.8 5.8 8.7 3.2 9.2 10.7 12.0

Ourso-vs-o 1.4 2.4 4.5 7.1 10.9 3.1 9.0 10.9 12.5

Oursstruct 1.5 2.4 4.4 6.7 10.0 3.6 9.6 11.0 12.2

the same setting as “ConSE by us”) always outperform

both, especially in the very challenging scenario of All

where the number of unseen classes is 20,345, signifi-

cantly larger than the number of seen classes. Note also

that, for both types of metrics, when K is larger, the

improvement over the existing approaches is more pro-

nounced. It is also not surprising to notice that as the

number of unseen classes increases from the setting 2-

hop to All, the performance of both our methods and

ConSE degrade.

4.2.3 Detailed analysis

We experiment extensively to understand the benefits of

many factors in our and other algorithms. While trying

all possible combinations is prohibitively expensive, we

have provided a comprehensive set of results for com-

parison and drawing conclusions.

Advantage of continuous attributes It is clear from

Table 4 that, in general, continuous attributes as se-

mantic embeddings for classes attain better performance

than binary attributes. This is especially true when deep

learning features are used to construct classifiers. It is

somewhat expected that continuous attributes provide

a more accurate real-valued similarity measure among

classes. This presumably is exploited further by more

powerful classifiers.

Advantage of deep features It is also clear from Ta-

ble 4 that, across all methods, deep features significantly

boost the performance based on shallow features. We

use GoogLeNet and AlexNet (numbers in parentheses)

and GoogLeNet generally outperforms AlexNet. It is

worthwhile to point out that the reported results under

Table 5: Effect of types of semantic embeddings on AwA.

Semantic embeddings Dimensions Accuracy (%)

word vectors 100 42.2

word vectors 1000 57.5

attributes 85 69.7

attributes + word vectors 185 73.2

attributes + word vectors 1085 76.3

deep features columns are obtained using linear classi-

fiers, which outperform several nonlinear classifiers that

use shallow features. This seems to suggest that deep

features, often thought to be specifically adapted to seen

training images, still work well when transferred to un-

seen images [10].

Which types of semantic space? In Table 5, we show

how effective our proposed method (Ourso-vs-o) exploits

the two types of semantic spaces: (continuous) attributes

and word-vector embeddings on AwA (the only dataset

with both embedding types). We find that attributes

yield better performance than word-vector embeddings.

However, combining the two gives the best result, sug-

gesting that these two semantic spaces could be comple-

mentary and further investigation is ensured.

Table 6 takes a different view on identifying the best

semantic space. We study whether we can learn opti-

mally the semantic embeddings for the phantom classes

that correspond to base classifiers. These preliminary

studies seem to suggest that learning attributes could

have a positive effect, though it is difficult to improve

over word-vector embeddings. We plan to study this is-

sue more thoroughly in the future.

How many base classifiers are necessary? In Fig. 2,

we investigate how many base classifiers are needed —
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Table 4: Detailed analysis of various methods: the effect of feature and attribute types on multi-way classification accuracies (in

%). Within each column, the best is in red and the 2nd best is in blue. We cite both previously published results (numbers in bold

italics) and results from our implementations of those competing methods (numbers in normal font) to enhance comparability and

to ease analysis (see texts for details). We use the shallow features provided by [22], [17], [33] for AwA, CUB, SUN, respectively.

Methods Attribute Shallow features Deep features

type AwA CUB SUN AwA CUB SUN

DAP [22] binary 41.4 28.3 22.2 60.5 (50.0) 39.1 (34.8) 44.5

IAP [22] binary 42.2 24.4 18.0 57.2 (53.2) 36.7 (32.7) 40.8

BN [43] binary 43.4 - - - - -

ALE [1]‡ binary 37.4 18.0† - - - -

ALE binary 34.8 27.8 - 53.8 (48.8) 40.8 (35.3) 53.8

SJE [2] continuous 42.3‡ 19.0†‡ - 66.7 (61.9) 50.1 (40.3)† -

SJE continuous 36.2 34.6 - 66.3 (63.3) 46.5 (42.8) 56.1

ESZSL [36]§ continuous 49.3 37.0 - 59.6 (53.2) 44.0 (37.2) 8.7

ESZSL continuous 44.1 38.3 - 64.5 (59.4) 34.5 (28.0) 18.7

ConSE [30] continuous 36.5 23.7 - 63.3 (56.5) 36.2 (32.6) 51.9

COSTA [27]♯ continuous 38.9 28.3 - 61.8 (55.2) 40.8 (36.9) 47.9

Ourso-vs-o continuous 42.6 35.0 - 69.7 (64.0) 53.4 (46.6) 62.8

Ourscs continuous 42.1 34.7 - 68.4 (64.8) 51.6 (45.7) 52.9

Oursstruct continuous 41.5 36.4 - 72.9 (62.8) 54.5 (47.1) 62.7

†: Results reported by the authors on a particular seen-unseen split.
‡: Based on Fisher vectors as shallow features, different from those provided in [17, 22, 33].
§: On the attribute vectors without ℓ2 normalization, while our own implementation shows that normalization helps in some cases.
♯: As co-occurrence statistics are not available, we combine pre-trained classifiers with the weights defined in eq. (2).

Table 6: Effect of learning semantic embeddings

Datasets Types of embeddings w/o learning w/ learning

AwA attributes 69.7% 71.1%

100-d word vectors 42.2% 42.5%

1000-d word vectors 57.6% 56.6%

CUB attributes 53.4% 54.2%

SUN attributes 62.8% 63.3%

so far, we have set that number to be the number of seen

classes out of convenience. The plot shows that in fact,

a smaller number (about 60% -70%) is enough for our

algorithm to reach the plateau of the performance curve.

Moreover, increasing the number of base classifiers does

not seem to have an overwhelming effect. Further details

and analysis are in the Suppl.

5. Conclusion

We have developed a novel classifier synthesis mech-

anism for zero-shot learning by introducing the notion

of “phantom” classes. The phantom classes connect the

dots between the seen and unseen classes — the clas-

sifiers of the seen and unseen classes are constructed

from the same base classifiers for the phantom classes

and with the same coefficient functions. As a result,

we can conveniently learn the classifier synthesis mech-

anism leveraging labeled data of the seen classes and
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Figure 2: We vary the number of phantom classes R as a

percentage of the number of seen classes S and investigate how

much that will affect classification accuracy (the vertical axis

corresponds to the ratio with respect to the accuracy when R =

S). The base classifiers are learned with Ourso-vs-o.

then readily apply it to the unseen classes. Our approach

outperforms the state-of-the-art methods on four bench-

mark datasets in most scenarios.
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